Logic- Part-l|

Some slides have been taken from the sites
http://cse.unl.edu/~choueiry/S13-235/
and

http://www.whitman.edu/mathematics/
higher_math_online/section01.02.html



Predicate Logic (Propositional Function)

e Propositional statements are not powerful
enough to capture wide range of statements.

e Consider the statement:
For everyn €2, 2nis even

 Consider the sentences
— vy has four sides
— X has black hair
— X+2is an even integer

e The above sentences involve variables.



Open sentences

e A sentence whose truth value depends on the
value of one or more variables is called an open

sentence.
e Examples of open statements
e p(y): y has four sides
e p(x): x has black hair
e p(x): x+2 is an even integer
e Mother(x): propositional function with one variable.
e Friend(x,y): function with two variables. (2-tuple)
e P(x,, X,, ..., X, ): function with n variables. (n-tuple)

e An open statement p(x) is a proposition when x
is assighed a value.



Universe of Discourse

Intuitively, universe of discourse of a variable x
in a propositional function is the set of values x
can take.

p(y): y has four sides.

e Universe: set of polygons
p(x): x has black hair

e Universe: humans

p(x): x + 2 is an even integer
e Universe: set of integers



Quantifiers

e Wecanuse A, v, 7, =, < todeconstruct many
English sentence to an equivalent symbolic form.

e These symbols are not enough.
e Foreveryn&Z, 2nis even

Consider the open statement p(x): x is an even integer.
Since the universe is Z, the above proposition can be
written as

[...A p(2.(-2)) A p(2.(-1)) A p(2(0)) A p(2(1)) A ...].
— This is not much of help.



Universal Quantifier: V (for all)

e Y x p(x): a proposition which is true if p(x) is true for
all values of x of the universe of discourse.

e Consider: Foreveryn&Z, 2nis even
e Let p(x): x is even be an open statement.

e Foreveryn €Z, 2n is even can be wriiten as
VY x&Z, p(2x).

e If the Universe is finite, say {a,, a,, ..., a,}, then
V x p(x) < p(a;) A p(a,) A ... ap(a,) .
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Examples : universal quantifiers

e Let p(x): x takes macm 101; g(x): x is a CS student.

e Express the statements:
e Every CS student must take macm101
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e Let p(x): x takes macm 101; g(x): x is a CS student.

e Express the statements:
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V x(a(x) = p(x))

e Everybody must take macm101 or be a hon CS
student.



Examples : universal quantifiers

e Let p(x): x takes macm 101; g(x): x is a CS student.

e Express the statements:
e Every CS student must take macm101
V x(a(x) = p(x))

e Everybody must take macm101 or be a hon CS
student.

V x (p(x) v =q(x))



Examples : universal quantifiers

* Express the statement
‘for every x and every y, x+y>10’

* Answer:
1. Let P(x,y) be the statement x+y>10
2. Where the universe of discourse for x, y is the set of
integers
3. The statementis: Vx Vy P(x,y)

e Shorthand: Vx,y P(x,y)



Existential Quantifier: 4 (there exists)

e Jxp(x): aproposition which is true if p(x) is true
for at least one values of x of the universe of
discourse.

e Consider : There is an integer that is not even
e Let p(x): x is even be an open statement.

e The above proposition can be wriiten as
dxE7Z, - p(x).

e If the Universe is finite, say {a,, a,, ..., a,}, then
dxp(x) < p(a,) v p(a,) v ..vp(a,).



Existential Quantifier: 4 (there exists)

e Example: What is the truth value of dx p(x)
where p(x) is the statement ““x? > 10”? Suppose
the universe of discourse is set of positive number
not exceedin 4, i.e. the set {1,2,3,4}

e Ans:



Existential Quantifier: 4 (there exists)

e Example: What is the truth value of dx p(x)
where p(x) is the statement “'x? > 10”? Suppose
the universe of discourse is set of positive number
not exceeding 4, i.e. the set {1,2,3,4}

e Ans:
In our case dx p(x) < p(1)v p(2) v p(3) v p(4).
Since p(4) is true, Ax p(x) is true.



Existential Quantifier: Examples

Let p(x): x takes macm 101; q(x): x is a CS student. The universe is the
student body at SFU.

Express the statements:

e Every CS student must take macm 101.
Vx gq(x) = p(x).

e There exists a non CS student who 1s taking macm 101.
Ix(—g(x) Ap(x)).

e Everybody must take macm 101 or be a non CS student.
Vx(p(x) V —q(x))



Quantifiers: Truth values

The truth table for the quantified statements.

Statement

When True?

When False?

Vx p(x)

p(x) is true for every x

There exists an x for which p(x) is false.

Ix p(x)

There is an x for which p(x) is true

p(x) is false for every x




Example:

e p(x): x> 0; q(x):x%2=0; r(x): x2—3x -4 =0
s(x): x2 — 3 >0.

Statement Universe =real (+,-) | Universe: real (+)

dx [p(x) Ag(x)]

Vx [p(x) = q(x)]

Vx [r(
Vx |[r(




Example:

e p(x): x> 0; g(x):x?=0; r(x): x2—3x-4 =0
s(x): x2 — 3 >0.

Statement Universe =real (+,-) | Universe: real (+)
Ix |p(x) Agx)] T I
vx [p(x) = g(x) T I
Vx [r(x) Vs(x)] F F
Vx [r(x) = p(x)] F T




Precedence of Quantifiers

* The quatifiers V and 4 have higher
precedence than all logical connectives.

— Vx p(x) A q(x) is the conjunction of Vx p(x) and
a(x).
— it is equivalent to (Vx p(x)) A q(x)

— but not equivalent to Vx (p(x) A q(x) )



Problems

* Let p(x,y): xy =0; Universe is R.
— Vx Vy p(xy) < Vy Vxp(x,y) (?)
— Vx dy p(x,y) < dy Vxp(x,y) (?)
e Let q(x,y): x+y = 0; Universe is R
— dy Vx q(x,y)
— Vxdya(xy)



Problems

* Let p(x,y): xy =0; Universe is R.
— Vx Vy p(x,y) < Vy Vxp(xy) (?) (T)
— Vx 3y p(x,y) < dy Vxplxy)(?) (T)
e Let q(x,y): x+y = 0; Universe is R
—dy Vx q(x,y) (F)
— Vx 3y alxy) (T)



Translating English to Symbolic Logic

* Goldbach’s conjecture: Every even integer
greater than 2 is the sum of two prime
numbers.

—LetP={2,3,5, 7, ...} be the set of primes;
— Let S={4,6,8,10, ...} be the set of even integers > 2.
—Vx€S,dp,gEP,x=p+q.
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numbers.
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 We can also write the conjecture as
—(x&€S) = dp,q€P,x=p+aq.

* Every universally quantified statement can be
expressed as a conditional statement.
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expressed as a conditional statement.
— The following statements mean the same thing.
Vx €S, Q(x)
(x €S) = Qlx)

* Sometimes a theorem will be expressed as a
universally quantified statement, but it will

be more convenient to think of it as a
conditional statement.



Translating English to Symbolic Logic

* Every universally quantified statement can be
expressed as a conditional statement.
— The following statements mean the same thing.
Vx €S, Q(x)
(x €S) = Qlx)

* Sometimes a theorem will be expressed as a
universally quantified statement, but it will

be more convenient to think of it as a

conditi e should be able to switch

between the two forms



Translating English to Symbolic Logic

* |f somebody is female and is a parent, this
person is someone’s mother

— f(x): x is female
— p(x): x is a parent
— m(x,y): x is the mother of y



Translating English to Symbolic Logic

* |f somebody is female and is a parent, this
person is someone’s mother

— f(x): x is female
— p(x): x is a parent
— m(x,y): x is the mother of y
Vx (f(x) A p(x) = Jym(xy))



Translating English to Symbolic Logic

* For every prime number p there is another
prime number q with g > p.
—f(x): x & N is a prime.
—g(x,y): x>y, x,y & N.
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Translating English to Symbolic Logic

* For every prime number p there is another
prime number q with g > p.
—f(x): x & N is a prime.
—g(x,y): x>y, x,y & N.

— Vp, f(x) = dq, f(a) A gla, p))
— Vp, (f(x) A (3 q, f(a) A gla, p)))



Translating English to Symbolic Logic

P(x): x is a person; T(y): time is y; F(x,y): you can fool x
In time .

* You can fool some of the people all of the time
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Translating English to Symbolic Logic

P(x): x is a person; T(y): time is y; F(x,y): you can fool x
In time .

* You can fool some of the people all of the time
dp (Vt (P(p) A (T(t) = F(p,1))))

* You can fool all of the people some of the time
3t (Vp (P(p) A (T(t) = F(p,1))))

* You can fool all of the people all of the time
Vp Vt (P(p) A (T(t) = F(p,t))))



Negation

 We can use negation with quantified expressions as
we used them with propositions

* Let P(x) be a predicate. Then the followings hold:
- (Vx P(x)) = dx =P(x)
- (dx P(x)) = Vx =P(x)
* This is essentially the quantified version of De
Morgan’ s Law.



Negation: Truth

Truth Values of Negated Quantifiers

Statement | True when.. False when..

-dx P(x) = There is an x for which

P(x) is false for every x

Vx = P(x) P(x) is true

-Vx P(x) = There is an x for which

Ix - P(x) P(x) is false P(x) is true for every x



Negation: Example

* Rewrite the following expression, pushing
negation inward:

- Vx(dy VzP(xyz) AdzVyP(xy,z))
* Answer:
dx (Vy dz =P(x,y,z) v Vz dy =P(x,y,2))



Example

* p(x): xis odd; g(x): x> — 1 is odd.
* Vx (p(x) = q(x))
* = [Vx(p(x)= q(x))]

< dx

< dx

= (p(x)= qlx))]

= (= p(x) v alx))]

Ix [ p(x) A = q(x) ]



Example

* p(x): xis odd; g(x): x> — 1 is odd.

 Vx(p(x)= q(x)) True
* = [Vx(p(x)= q(x))]

< dx

< dx

= (p(x)= qlx))]

= (= p(x) v alx))]

dx [ p(x) A = g(x)] False



Comments

Whenever you see a quantifier, ask what is the universe of
discourse.

Should know the precedence rules. It is better to eliminate
confusion by using the parentheses.

The order of quantifiers matters a lot. Most often Vx dy
q(x,y) is not equal to dx Vy q(x,y).

DeMorgan’s laws for quantifiers are very useful. It is
important to be comfortable with DeMorgan’s laws.

You don’t need to memorize the laws of logic. Just convince
yourself that they are true.

One way to show logical equivalence is through truth tables,
at least when they do not have quantifiers over variables.



Practice problems from the text:

* Section 2.7
-1,2,4,5,7,8

* Section 2.9
—5,6,8,11

e Section 2.10
— 3,4,5,6



Some more practice problems (the universe is real)

Ex 1.2.1 Express the following as formulas involving quantifiers:
a) Any number raised to the fourth power is non-negative.
b) Some number raised to the third power is negative.
c) The sine of an angle is always between +1 and —1.
d) The secant of an angle is never strictly between +1 and —1.

Ex 1.2.2 Suppose X and Y are sets. Express the following as formulas involving

quantifiers.
a) Every element of X is an element of Y.
b) Some element of X is an element of Y.
c) Some element of X is not an element of Y.

d) No element of X is an element of Y.



Some more practice problems (the universe is real)

Ex 1.2.3 Recall (from calculus) that a function f is increasing if
VaVb(a < b = f(a) < f(b))
Express the following definitions as formulas involving quantifiers:
a) f is decreasing.
b) f is constant.
¢) f has a zero.
Ex 1.2.4 Express the following laws symbolically:
a) the commutative law of multiplication
b) the associative law of multiplication

¢) the distributive law



Some more practice problems (the universe is real)
Ex 1.2.5 Are the following sentences true or false?
a) VxVy(x < y = x? < y?)
b)VxVWz #0(xz=yz=>x=y)
¢) Ix < 0Ty < 0(x2 + xy + y> = 3)
d) IxTyFz(x? + y* + 22 = 2xy — 2 + 22)
Ex 1.2.6 Suppose P(x) and Q(y) are formulas.

a) Is VxVy(P(x) = Q(y)) equivalent to Vx(P(x)) = Vy(Q(y))?

b) Is dxdy(P(x) A Q(y)) equivalent to dx(P(x)) A dy(Q(y))?



