Logic- Part-I

Some slides have been taken from the sites <u>http://cse.unl.edu/~choueiry/S13-235/</u> and http://www.csee.umbc.edu/~ypeng/S03203/ S03203.html

Logic

- Important for mathematical reasoning, program design.
- Used for designing electronic circuitry
- (Propositional) Logic is a system based on statements (also called propositions).

Logic

- A statement is a (declarative) sentence that is either true or false (not both).
- We say that the truth value of a proposition is either true (T) or false (F).
- Corresponds to 1 and 0 in digital circuits
- We usually denote a proposition by a letter:
 p, *q*, *r*, *s*, ...

- Consider a sentence: The sun rises in the east
- Is it a statement?
- What is the truth value of the proposition?

- Consider a sentence: The sun rises in the east
- Is it a statement? YES
- What is the truth value of the proposition? TRUE

- Consider a sentence: $\{0,2,3\} \cap N = \Phi$
- Is it a statement?
- What is the truth value of the proposition?

- Consider a sentence: $\{0,2,3\} \cap N = \Phi$
- Is it a statement? YES
- What is the truth value of the proposition? False

- Consider a sentence: y > 21
- Is it a statement?
- What is the truth value of the proposition?

- Consider a sentence: y > 21
- Is it a statement? No
- What is the truth value of the proposition? Its truth value depends on unspecified y. This statement is called an open statement.

- Consider a sentence: Please do not fall asleep.
- Is it a statement?
- What is the truth value of the proposition?

- Consider a sentence: Please do not fall asleep.
- Is it a statement? No
- What is the truth value of the proposition?
 It is neither true nor

false.

Sentences that are not statements with similar expressions that are statements

NOT Statements:	Statements:
Add 5 to both sides.	Adding 5 to both sides of $x - 5 = 37$ gives $x = 42$.
Z	$42 \in \mathbb{Z}$
42	42 is not a number.
What is the solution of $2x = 84$?	The solution of $2x = 84$ is 42.

- Consider a sentence:
 - Every even integer greater than 2 is a sum of two prime numbers.
 - Goldbach conjecture
- Is it a statement?
- What is the truth value of the proposition?

- Consider a sentence:
 - Every even integer greater than 2 is a sum of two prime numbers.

Yes

- Goldbach conjecture
- Is it a statement?
- What is the truth value of the proposition?
 Probably true

- Consider a sentence:
 - Either x is a multiple of 7 or it is not
- Is it a statement?
- What is the truth value of the proposition?

- Consider a sentence:
 - Either x is a multiple of 7 or it is not
- Is it a statement? Yes
- What is the truth value of the proposition? True since it is true for all x.

Logical Connectives (Operators)

- Combining statements to make compound statements.
- *p*, *q*, *r*, *s*, ... represent statements/propositions.
- Following connectives are considered now.

Operator	Symbol	Usage
Conjunction	\wedge	and
Disjunction	\vee	or
Negation	-	not
Exclusive or	\oplus	xor
Conditional	\Rightarrow	if, then
Biconditional	\Leftrightarrow	if and only if (iff)

Logical Connective: Logical And

- The logical connective AND is true only when both of the propositions are true. It is also called a <u>conjunction</u>
- Examples
 - It is raining and it is warm
 - (2+3=5) and (1<2).
- Truth table

p	q	$p \wedge q$	
Τ	Τ	Т	
Т	F	F	
F	Τ	F	
F	F	F	

Logical Connective: Logical OR

- The logical <u>disjunction</u>, or logical OR, is true if one or both of the propositions are true.
- Examples
 - It is raining or it is the second lecture
 - (2+2=5) v (1<2)

Truth table

p	q	$p \lor q$		
Τ	Т	Т		
Τ	F	Т		
F	Т	Т		
F	F	F		

Logical Connective: Negation

- ¬p, the negation of a proposition p, is also a proposition
- p: Today is Monday
- Examples:
 - Today is not Monday
 - It is not the case that today is Monday, etc.
- Truth table

Logical Connective: Exclusive Or

- The exclusive OR, or XOR, of two propositions is true when exactly one of the propositions is true and the other one is false
- Example
 - The circuit is either ON or OFF but not both
 - Let *ab*<0, then either *a*<0 or *b*<0 but not both</p>
- Truth table

p	q	$p \oplus q$
Τ	Τ	F
Т	F	Т
F	Т	Т
F	F	F

Logical Connective: Implication (1)

- **Definition:** Let p and q be two propositions. The implication $p \rightarrow q$ is the proposition that is false when p is true and q is false and true otherwise
 - *p* is called the hypothesis, antecedent, premise
 - q is called the conclusion, consequence

• Truth table

p	q	$p \Rightarrow q$
Τ	Т	Т
Т	F	F
F	Т	Т
F	F	Т

Logical Connective: Implication (2)

- The implication of $p \rightarrow q$ can be also read as
 - -p implies q
 - If p, then q
 - whenever p, then also q
 - q follows from p
 - p only if q (p cannot be true if q is not true)
 - p is a sufficient condition for q (p is sufficient for q)
 - q is a necessary condition for p (q is necessary for p) (p cannot be true unless q is true (i.e. if q is false, p is false)

Logical Connective: Implication ()

• Consider the statements:

- you pass the exam \rightarrow you pass the course

- Equivalent statements:
 - Passing the exam is sufficient for passing the course.
 - For you to pass this course, it is sufficient that you pass the exam.

• If -1 is a positive number, then 2+2=5

• If -1 is a positive number, then 2+2=5

True. The premise is obviously false, thus no matter what the conclusion is, the implication holds.

- If -1 is a positive number, then 2+2=5 True. The premise is obviously false, thus no matter what the conclusion is, the implication holds.
- If -1 is a positive number, then 2+2=4

True. Same as above.

- If -1 is a positive number, then 2+2=5 True. The premise is obviously false, thus no matter what the conclusion is, the implication holds.
- If -1 is a positive number, then 2+2=4

True. Same as above.

 If you get an 100% on your Midterm 1, then you will have an A⁺.

- If -1 is a positive number, then 2+2=5 True. The premise is obviously false, thus no matter what the conclusion is, the implication holds.
- If -1 is a positive number, then 2+2=4

True. Same as above.

 If you get an 100% on your Midterm 1, then you will have an A⁺.

False. Your grades homework, quizzes, Midterm 2, and Final, if they are bad, would prevent you from having an A⁺.

- To take discrete mathematics, you must have taken calculus or a course in computer science.
- When you buy a new car from Acme Motor Company, you get \$2000 back in cash or a 2% car loan.
- School is closed if more than 2 feet of snow falls and if the wind chill is below -80.

- To take discrete mathematics, you must have taken calculus or a course in computer science.
- Propositions
 - p: take discrete math
 - q: you have taken calculus
 - r : you have taken a course in CS
- $p \Rightarrow q \lor r$

- When you buy a new car from Acme Motor Company, you get \$2000 back in cash or a 2% car loan.
- Propositions
 - p: you buy a car
 - q: you you get \$2000 back
 - r : you get 2% car loan
- $p \Rightarrow q \oplus r$

- School is closed if more than 2 feet of snow falls and if the wind chill is below -80.
- Propositions
 - p: School is closed
 - q: 2 feet of snow falls
 - r : wind chill is below -80

 $q \wedge r \Rightarrow p$

Logical Connective: Biconditional (1)

- Definition: The biconditional p ⇔ q is the proposition that is true when p and q have the same truth values. It is false otherwise.
- Note that it is equivalent to $(p \Rightarrow q) \land (q \Rightarrow p)$
- Truth table

p	q	$p \Rightarrow q$	$q \Rightarrow p$	$p \Leftrightarrow q$
Τ	Т	Т	Т	Т
Τ	F	F	Т	F
F	Т	Т	F	F
F	F	Т	Т	Т

Logical Connective: Biconditional (2)

- The biconditional p⇔q can be equivalently read as
 - p if and only if q
 - p is a necessary and sufficient condition for q
 - if p then q, and conversely
 - *p* iff *q*
- Examples
 - x>0 if and only if x^2 is positive
 - The alarm goes off iff a burglar breaks in

Truth Tables

- Truth tables are used to show/define the relationships between the truth values of
 - the individual propositions and
 - the compound propositions based on them

p	q	$p \wedge q$	$p \lor q$	$p\oplus q$	$\neg p$	eg q	$p \Rightarrow q$	$q \Rightarrow p$	$p \Leftrightarrow q$
Τ	Τ	Т	Т	F	F	F	Т	Т	Т
Τ	F	F	Т	Т	F	Т	F	Т	F
F	Т	F	Т	Т	Т	F	Т	F	F
F	F	F	F	F	Т	Т	Т	Т	Т
Web Search

tip
tip

Precedence of Logical Operators

- As in arithmetic, an ordering is imposed on the use of logical operators in compound propositions
- However, it is preferable to use parentheses to disambiguate operators and facilitate readability

 $\neg p \lor q \land \neg r \equiv (\neg p) \lor (q \land (\neg r))$

- To avoid unnecessary parenthesis, the following precedence hold:
 - 1. Negation (\neg) highest
 - 2. Conjunction (\wedge)
 - 3. Disjunction (\lor); Exclusive-or (\oplus)
 - 4. Implication (\Rightarrow)
 - 5. Biconditional (\Leftrightarrow) ——lowest

Examples

- Sentence ?
 - Some sets are finite.
 - $N \in PowerSet (N)$
- Express each statement or open statement in one of the forms: p ∧ q, p ∨ q, or ¬p.
 - Today is cold but it is not cloudy
 - $-x \in A B$
 - At least one of the numbers x and y equals 0.

Examples

- Express the following sentence in the form If P, then Q.
 - We will order pizza today if there are 100 students in the class.
 - (If there are 100 students, then we will order pizza today)
 - We will order pizza today only if there are 100 students in the class.
 - (If we order pizza today, there are 100 students in the class)
 - You can use the lab if you are a cs major or not a freshman.
 - (if you are a cs major or not a freshman, then you can use the lab.)
 - An integer is divisible by 8 only if it is divisible by 4.
 - (If an integer is divisible by 8, then it is divisible by 4.)

Logical Equivalence

- Two statements are logically equivalent if their truth values match up line-for-line in a truth table.
- Logical equivalence gives us different ways of looking at the same thing.
- Consider the following truth table concerning $p \Rightarrow q$.

p	q	$\neg p$	$\neg q$	$p \Rightarrow q$	$ eg p \lor q$	$\neg q \Rightarrow \neg p$
Т	Т	F	F	Т	Т	Т
Т	F	F	Т	F	F	F
F	Т	Т	F	Т	Т	Т
F	F	Т	Т	Т	Т	Т

Example

- If m is an even integer then m+7 is odd.
- Let p: m is an even integer; q: m+7 is odd.
- Using propositional notation $p \implies q$.
- Proving $p \Rightarrow q$.
 - p is true
 - \Rightarrow m=2a, a \in Z
 - \Rightarrow 2a + 6 is an even number
 - \Rightarrow (2a +6) +1 is an odd number
 - \Rightarrow m + 7 is an odd number

 \Rightarrow q

Example

- Proving $\neg q \Rightarrow \neg p$.
 - q is not true
 - \Rightarrow m+7 is even
 - \Rightarrow m + 7 = 2b, b \in Z
 - \Rightarrow 2b 7 = 2(b-4) +1
 - \Rightarrow 2b 7 is odd
 - \Rightarrow m is odd
 - ⇒¬p

Tautology

- A compound proposition (a formula) that is always true no matter what the truth values of the propositions in the formula is called a tautology.
 - $p \vee \neg p$ is a simple tautology.
 - $p \implies q$ and $\neg q \implies \neg p$ are logically equivalent
 - i.e. $(p \Longrightarrow q) \Leftrightarrow (\neg q \Longrightarrow \neg p)$ is a tautology.

(Truth table will be shown in the class)

Tautology

- A compound proposition (a formula) that is always true no matter what the truth values of the propositions in the formula is called a tautology.
- Informally, two compound propositions P and Q are logically equivalent if whenever P is true, Q is true, and whenever Q is true then P is true.
 - In other words $P \iff Q$ is a tautology
 - It is denoted as P = Q (in the text)
 - Also denoted as $P \equiv Q$ (Rosen); $P \iff Q$ (Grimaldi)

Contradiction

- A compound proposition (a formula) that is always false no matter what the truth values of the propositions in the formula is called a contradiction.
 - $p \land \neg p$ is a simple contradiction.

The following table contains some important equivalences

Laws of Logic

Law of Double Negation	$ eg p \Leftrightarrow p$	
Contrapositive Law	$p \Rightarrow q \Leftrightarrow (\neg q) \Rightarrow (\neg p)$	
DeMorgan's Law	$\neg(p \land q) \Leftrightarrow \neg p \lor \neg q$	$\neg(p\lor q) \Leftrightarrow \neg p\land \neg q$
Commutative Law	$p \wedge q \Leftrightarrow q \wedge p$	$p \lor q \Leftrightarrow q \lor p$
Distributive Law	$p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$	$p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$

The following table contains some important equivalences (contd.)

Associative Law	$p \wedge (q \wedge r) \Leftrightarrow (p \wedge q) \wedge r$	$p \lor (q \lor r) \Leftrightarrow (p \lor q) \lor r$	
Idempotent Law	$p \land p \Leftrightarrow p$	$p \lor p \Leftrightarrow p$	
Identity Law	$p \wedge T \Leftrightarrow p$	$p \lor F \Leftrightarrow p$	
Inverse law	$p \land \neg p \Leftrightarrow F$	$p \lor \neg p \Leftrightarrow T$	
Domination Law	$p \wedge F \Leftrightarrow F$	$p \lor T \Leftrightarrow T$	
Absorption Law	$p \land (p \lor q) \Leftrightarrow p$	$p \lor (p \land q) \Leftrightarrow p$	

Some equivalences involving conditional statements

Some of the important equivalences involving conditional propositions are listed below.

- $p \Rightarrow q = \neg p \lor q$
- $p \Rightarrow q = \neg q \Rightarrow \neg p$
- $(p \Rightarrow q) \land (p \Rightarrow r) = (p \Rightarrow (q \land r))$

•
$$(p \Rightarrow r) \land (q \Rightarrow r) = ((p \lor q) \Rightarrow r)$$

- $(p \Rightarrow q) \lor (p \Rightarrow r) = (p \Rightarrow (q \lor r))$
- $(p \Rightarrow r) \lor (q \Rightarrow r) = ((p \land q) \Rightarrow r)$
- $(p \Leftrightarrow q) = (p \Rightarrow q) \land (q \Rightarrow p)$
- $(p \Leftrightarrow q) = (\neg p \Leftrightarrow \neg q)$

Example

- if ((x > 0) and (y > 0)) then writeln(...) is equivalent to if
 (x > 0) then if (y > 0) then writeln (---)
- Propositions (x and y are constants)
 - p : x > 0
 - -q: y > 0
 - r : line gets written
- Claim is $(p \land q \Rightarrow r) = (p \Rightarrow (q \Rightarrow r))$

Example

- if ((x > 0) and (y > 0)) then writeln(...) is equivalent to if
 (x > 0) then if (y > 0) then writeln (---)
- Propositions (x and y are constants)
 - p : x > 0
 - -q: y > 0
 - r : line gets written
- Claim is $(p \land q \implies r) = (p \implies (q \implies r))$

1.
$$(p \land q) \Rightarrow r$$
 (l.h.s)
2. $\equiv \neg (p \land q) \lor r$
3. $\equiv (\neg p \lor \neg q) \lor r$
4. $\equiv \neg p \lor (\neg q \lor r)$
5. $\equiv \neg p \lor (q \Rightarrow r)$
6. $\equiv p \Rightarrow (q \Rightarrow r)$ (r.h.s)

Implication Law DeMorgan's Law Associative Law Implication Law Implication Law

A general approach to proving equivalence using the laws of logic

- Remove double negation
- Remove implication by disjunction (v)
- Push negation inside the parentheses using DeMorgan's law
- Use distribution law

Other Examples

• Find a proposition with truth value

p	q	?
Т	Т	F
Т	F	Т
F	Т	Т
F	F	F

Other Examples

• Determine a logically equivalent proposition to $p \oplus q$.

p	q	$p \oplus q$
Τ	Τ	F
Т	F	Т
F	Т	Т
F	F	F

- Logically equivalent: $(p \land \neg q) \lor (\neg p \land q)$
- Replacing each row with value T with an equivalent proposition. These rows are then combined with v.

Using the truth table, one can show that ...

 Any compound proposition (a formula) can be transformed to a logically equivalent formula involving only ¬, ∧, ∨ operators.

Other Examples

- Write a proposition equivalent to ¬p ∧ ¬q using only ¬ and ∨.
- Determine whether p⇒(¬q ∧ r), ¬p ∨ ¬(r ⇒ q) are logically equivalent
- Prove that (q ∧ (p ⇒ ¬q)) ⇒ ¬p is a tautology using propositional equivalence and laws of logic.
- Write the negation of
 - If it is sunny, we go skiing.
 - I will go the movie or read a book, but not both.

Practice problems from the text:

- Section 2.1
 - 2, 3, 10, 11
- Section 2.2
 - 1, 3, 4, 6, 7, 12
- Section 2.3
 - 1, 3, 9, 10, 11
- Section 2.4
 - 3, 4, 5
- Section 2.5
 2, 6, 7, 10, 11
- Section 2.6
 - 1, 2, 7, 9, 10, 12, 13