Induction (Chapter 10)

Some slides have been taken from the
sites

http://cse.unl.edu/~choueiry/S13-235/




Motivation

How can we prove the following proposition?
VxEA S(x)

For a finite set A={a,,a,,...,a,,}, we can prove that S(x)
holds for each element because of the equivalence

S(a;)AS(a,)A...AS(a,)

For an infinite set, we can try to use universal
generalization

Another, more sophisticated way is to use induction



Principle of Mathematical Induction

 To prove that a statement S(n) is true for all positive
integers n (i.e. n € N), we perform two steps:

Basis step: We verify that S(1) is true.
Inductive step: We show that the conditional statement

S(k) = S(k+1) is true Vk & N

* Symbolically, the statement
(S(1) A V(k=1) (S(k) = S(k+1))) = V(n € N) S(n)



Principle of Mathematical Induction

* How do we do this?
— S(1) is usually an easy property to show.

— To prove the conditional statement, we assume that S(k) is
true (it is called inductive hypothesis) and show that under
this condition S(k+1) is also true.



Mathematical Induction

* |tis a powerful proof techniques.

The Simple Idea Behind Mathematical Induction

S Ss S3 Sy S5 Se| - Sk | (Sk+1| [Sks2| [Sk+3| [Skag|

Statements are lined up like dominoes.

S1/|s2 S3 Sy S5 Sg| - Sk | ISes1| [Skea| [Sk+3| [Skadq|

(1) Suppose the first statement falls (i.e. is proved true);

N
\
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(2) Suppose the k" falling always causes the (% + 1) to fall;

Then all must fall (i.e. all statements are proved true).
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Then all must fall (i.e. all statements are proved true).

The Domino Effect

Show that all dominos fall.

e Basis Step: The first domino
falls.

* Inductive step: Whenever a
domino falls, its next
neighbor will also fall.



Outline for Proof by Induction

Proposition The statements S1,S9,S3,S4,... are all true.

Proof. (Induction)

(1) Prove that the first statement S; is true.

(2) Given any integer k > 1, prove that the statement S, = S, is true.
It follows by mathematical induction that every S, is true. |




Another View

 Tolook at it in another way, assume that the
statements
— S(1)
— S(k) = S(k+1)
are true. We can now use a form of universal
generalization as follows:




Another View

* Tolook atitin another way, assume that the statements
(1) S(1)
(2) P(k) = P(k+1)

are true. We can now use a form of universal generalization as follows.

e Say we choose an element c of N. cis finite. We wish
to establish that S(c) is true. If c=1, then we are
done.



Another View

To look at it in another way, assume that the statements
(1) S(1)
(2) S(k) = S(k+1)

are true. We can now use a form of universal generalization as follows.

Say we choose an element c of N. cis finite. We wish to establish that S(c)
is true. If c=1, then we are done.

Otherwise, we apply (2) above to get
S(1) = S(2), S(2)= S(3), S(3) = S(4), ..., S(c-1) = S(c)

via a finite number of steps (c-1) we get that S(c) is
true.



Another View

To look at it in another way, assume that the statements
(1) S(1)
(2) S(k) = S(k+1)

are true. We can now use a form of universal generalization as follows.

Say we choose an element c of N. c is finite. We wish to establish that S(c)
is true. If c=1, then we are done.

Otherwise, we apply (2) above to get
S(1) = S(2), S(2)= S(3), S(3) = S(4), ..., S(c-1) = S(c)
via a finite number of steps (c-1) we get that S(c) is true.

Because c is arbitrary, the universal generalization is
established and

VneN S(n)



Example 1

* Prove that for any integer n=1, 22"-1 is divisible by 3.
* Define S(n) to be the statement 3 | (22"-1).



Example 1

* Prove that for any integer n=1, 22"-1 is divisible by 3
* Define S(n) to be the statement 3 | (22"-1)

 We note that for the basis case n=1, we do have S(1)
2%1-1 = 3 is divisible by 3.



Example 1

Prove that for any integer n=1, 22"-1 is divisible by 3
Define S(n) to be the statement 3 | (22"-1)

We note that for the basis case n=1 we do have P(1)

2%1-1 = 3 is divisible by 3
Next we assume that S(k) holds. That is, there exists
some integer t such that

22k-1 = 3t. (Inductive hypothesis)



Example 1

Prove that for any integer n=1, 22"-1 is divisible by 3
Define S(n) to be the statement 3 | (22"-1)

We note that for the basis case n=1 we do have P(1)

2%1-1 = 3 is divisible by 3
Next we assume that S(k) holds. That is, there exists
some integer t such that

22k-1 = 3t. (Inductive hypothesis)
We must prove that S(k+1) holds. That is, 22(kt1)-1 js
divisible by 3.



Example 1 (contd.)

e Note that: 22(k+1) — 1 = 2222k .1=4,22k _1



Example 1 (contd.)

e Note that: 221) — 1 = 2222k _1=4 2%k -1
* The inductive hypothesis: 22k— 1 = 3t = 22k = 3t+1



Example 1 (contd.)

e Note that: 22k+1) — 1 = 2222k _1=4 2%k -1
 The inductive hypothesis: 22k— 1 = 3t = 22k = 3t+1
e Thus: 22(k+1) -1 =4.22k -1 = 4(3t+1)-1

= 12t+4-1

=12t+3

= 3(4t+1), a multiple of 3



Example 1 (contd.)

e Note that: 22k+1) — 1 = 2222k _1=4 2%k -1
* The inductive hypothesis: 22k— 1 = 3t = 22k = 3t+1
e Thus: 22(k+1) -1 =4.22k -1 = 4(3t+1)-1

=12t+4-1

=12t+3

= 3(4t+1), a multiple of 3

 We conclude, by the principle of mathematical
induction, for any integer n=1, 22"-1 is divisible by 3.



Example 2 (page 154)

Proposition IfneN, then 1+3+5+7+---+(2n—-1)=n2

Open Statement S_:1+3+5 +.....+ (2n-1) = n?

Proof. We will prove this with mathematical induction.

(1) Observe that if n =1, this statement is 1 =12, which is obviously true.

(2) We must now prove S, = S;.; for any k2 >1. That is, we must show
that if 1+3+5+7+---+(2k—1)=k2, then 1+3+5+7+ --+(2(k+1)-1) = (k+1)%.

* The rest of the details will be shown in the class.



Example 3: Summation

Show that 2._," (i) = (Z,_;"i)? foralln = 1.

The basis case is trivial: forn=1, 13 =12

The inductive hypothesis assumes that for some n=1
we have X._, ¥ (i3) = (2., i)?

We now consider the summation for (k+1): ._ %2 (i3)
= (Z¢ )2 + (k+1)* = (k(k+1)/2 )2+ (k+1)3

= ( k*(k+1)?+ 4(k+1)3) /2% = (k+1)% (k*+ 4(k+1) ) /22

= (k+1)? ( k*+4k+4) /22 = (k+1)? ( k+2)? /22

= ((k+1)(k+2) / 2) 2

Thus, by the PMI, the equality holds



Outline for Proof by Induction

Proposition The statements S1,S9,S3,S4,... are all true.

Proof. (Induction)

(1) Prove that the first statement S; is true.

(2) Given any integer k > 1, prove that the statement S, = S, is true.
It follows by mathematical induction that every S, is true. |




Examples solved in the text

Proposition If n is a non-negative integer, then 5| (n° —n).

Proposition IfneZ and n =0, then Z i-il=(n+1)!-1.
i=0
Proposition For each n €N, it follows that 2" <2n*l_gnr-1_1,

Proposition IfneN, then (1+x)"=1+nx for all xeR with x > -1.



Example
Example: Suppose aq,as, ..., a, are n integers, where n >
2. If p is prime and p|(a; X as X ... X a,), then p|a; for at
least one of the a;.
Proof: The proof is on induction on n.

* LetS(n):pl(a;xa,x..xa,), n22, paprime integer.
* The basis step involves proving p|(a; x a,).



Example
Example: Suppose ay,as, ..., a, are n integers, where n >

2. If p is prime and p|(a; X as X ... X a,), then p|a; for at
least one of the a;.
Proof: The proof is on induction on n.

* LetS(n):pl(a;xa,x..xa,), n22, paprime integer.
* The basis step involves proving p|(a; x a,).
o Suppose p does not divide a,.
o gcd(p,a,) = 1.



Example

Example: Suppose ay,ao,...,a, are n integers, where n >

2. If p is prime and p|(a; X as X ... X a,), then p|a; for at
least one of the a;.

Proof: The proof is on induction on n.
* LetS(n):pl(a;xa,x..xa,), n22, paprime integer.
* The basis step involves proving p|(a; x a,).

o Suppose p does not divide a,.

o gcd(p,a,) = 1.

o Therefore, 1 =p.k +a,l, kand | are elements of Z.



Example

Example: Suppose ay,ao,...,a, are n integers, where n >
2. If pis prime and p|(a; X ag X ... X a,), then pla; for at
least one of the a;.

Proof: The proof is on induction on n.

* LetS(n):pl(a;xa,x..xa,), n22, paprime integer.
* The basis step involves proving p|(a; x a,).

o Suppose p does not divide a,.
gcd(p,a,) = 1.
Therefore, 1 = p.k + a,1, k and | are elements of Z.
We can write a, = p.k. a, + a,l. a,
Since p|(a; xa,), pla,.
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Example

Example: Suppose aq,as, ..., a, are n integers, where n >
2. If pis prime and p|(a; X ag X ... X a,), then pla; for at
least one of the a;.

Proof: The proof is on induction on n.

* LetS(n):pl(a;xa,x..xa,), n22, paprime integer.
* The basis step involves proving p|(a; x a,).

Suppose p does not divide a,.

gcd(p,a,) = 1.

Therefore, 1 = p.k + a,1, k and | are elements of Z.
We can write a, = p.k. a, + a,l. a,

Since p|(a; xa,), pla,.

Similar arguments for the case when p does not
divide a,.

O O O O O O



Example: Suppose a1, a9, ..., a, are n integers, where n >
2. If p is prime and p|(a; X ag X ... X a,), then p|a; for at
least one of the a;.

Proof: The proof is on induction on n.

e The basis step involves n = 2. Suppose p|aias. We have
seen that either pla; or plas.

e Suppose that £ > 2 and p|(a; X ag X ... X a) implies
then pla; for some a;. (Inductive hypothesis)

e Now let pl(a; X ag X ... X ag X ags1). Then p|((a1 X
as X ... X ag) X ag+1). By what we proved in the basis
step, it follows that p|(a; X ag X ... X ag) or plag,1. This
and the inductive hypothesis imply that p divides one of
the a;.



Why Induction Works? Well Ordering

@ One of the axioms of positive integers is the principle of well-
ordering:

Every non-empty subset of N contains the least element.

@ Note that the sets of all integers, rational numbers, and real numbers
do not have this property.

@ Suppose that mathematical induction is not valid.
Then there is a predicate P(n) such that P(1) is true,
Vk ( P(k) = P(k + 1)) is true, but there is n such that P(n) is false
Let TC N be the setofall n such that P(n) is false.
By the principle of well-ordering T contains the least element a
As P(1) istrue, a=1.

We have P(a-1) is true. However, since P(a—1) — P(a), we get
a contradiction



Triomino

@ Let n be apositive integer. Show that every 2" x 2"
checkerboard with one square removed can be tiled using triominos

@ P(n) denotes the statement above

@ Basis step: P(1) istrue, as 2 x 2 checkerboards with one square
removed have one of the following shapes




Triomino (cntd)

@ Inductive step: Suppose that P(k) is true that is every 2% x 2"
checkerboard with one square removed can be tiled with triominos.

We have to prove P(k + 1), thatis, every 2°*'x2**" checkerboard
without one square can be tiled.

Split the big checkerboard into 4
half-size checkerboards

Put one triomino as shown in the
picture.

. We have 4 2%x 2
checkerboards, each without one

square. By the induction

hypothesis, they can be tiled.




Example

* Show that any number larger than 43 can be written
as the sum of nonnegative multiples of 6, 9, or 20.

—i.en=6t,+9t,+20t,;, wheret, t,, t;20,n2>44.



Example

Show that any number larger than 43 can be written
as the sum of nonnegative multiples of 6, 9, or 20.

—i.en=6t,+9t,+20t,;, wheret, t,, t;20,n2>44.
Consider n=1,2,3,....
We notice that only the numbers 6, 9, 12, 15, 18, 20,

21, 24, 26, 27, 29, 30, 32, 33, 36, 38, 39, 40, 42 (less
than 43) can be expressed as the sum of 6 and 9.

However, 43 is not expressible as the sum of 6, 9,
and 20.



Example

Show that any number larger than 43 can be written
as the sum of nonnegative multiples of 6, 9, or 20.

—i.en=6t,+9t,+20t,;, wheret, t,, t;20,n2>44.
Consider n=1,2,3,....

We notice that only the numbers 6, 9, 12, 15, 18, 20,
21, 24, 26, 27, 29, 30, 32, 33, 36, 38, 39, 40, 42 (less
than 43) can be expressed as the sum of 6 and 9.

However, 43 is not expressible as the sum of 6, 9,
and 20.

Claim any number greater than or equal to 44 can be
expressed as

—S(n):n=6t,+9t,+20t;, wheret, t, t;20,n2>44,



Example (contd.)

 We can show that S(44), S(45), S(46), S(47), S(48), S(49)
are true.

* \We now show that
(S(44) A S(45) A ... A S(k)) = S(k + 1), k > 49.



Example (contd.)

We can show that S(44), S(45), S(46), S(47), S(48), S(49) are true.
We now show that

(S(44) A S(45) A .... A S(k)) = S(k + 1), k > 49.
Consider m= (k+1)-6.
Since k 249, m > 44.
We assumed (induction hypothesis) that S(m) is true.
lem=6t,+9t,+20t;, wheret', t',,t';20.
Hence m+6=k+1= 6 (t';+1)+9t, +20t';
Therefore, S(k+1) is true. This means that
S(44) = S(50), S(45) = S(51), S(46) = S(52), S(47) = S(53), ...,
completing the induction.

By the principle of strong induction, Vn&N S(n), n > 44 is true.



Principle of Strong Mathematical
Induction

* Sometimes mathematical induction is not enough.

* |In order to prove that S(n) is true for all positive integer
n 2 n, we complete two steps:

— Basis step: We verify that S(n;), S(ny+1), ..., S(n,) are true.

— Inductive step: We show that conditional statement (S(n,) A
S(ng+1) A ... A S(k)) = S(k + 1) for all positive integers k 2 n,.

— |t follows by the principle of strong mathematical induction
that every S(n), n>n, is true.

* Symbolically
[(S(Ng)AS(ng+1)A ... AS(ny) A S(n;+1) A ...A S(k) = S(k+1), k = n,]
=> V(n2>ng) S(n)



Example

 Anyinteger n > 11 can be written in the form
n=4a + 5b fora, b &€ Z.

* Try at home.



Steps to doing an inductive proof

1. State the theorem, which is the proposition S(n)



Steps to doing an inductive proof

1. State the theorem, which is the proposition S(n)

2. Show that S(base case) is true. There could be more than
one base case.



Steps to doing an inductive proof

. State the theorem, which is the proposition S(n)

. Show that S(base case) is true. There could be more than
one base case.

. State the inductive hypothesis (S(k), S(k-1), ... are true)
. State what must be proven (substitute k+1 for n)



Steps to doing an inductive proof

. State the theorem, which is the proposition S(n)

. Show that S(base case) is true. There could be more than
one base case.

. State the inductive hypothesis (S(k), S(k-1), ... are true)

4. State what must be proven (substitute k+1 for n)

. State that you are beginning your proof of the inductive
step, and proceed to manipulate the inductive hypothesis
(which we assume is true) to find a link between the
inductive hypothesis and the statement to be proven.
Always state explicitly where you are invoking the
inductive hypothesis.



Steps to doing an inductive proof

State the theorem, which is the proposition S(n)

Show that S(base case) is true. There could be more than one
base case.

State the inductive hypothesis (S(k), S(k-1), ... are true)
State what must be proven (substitute k+1 for n)

State that you are beginning your proof of the inductive step,
and proceed to manipulate the inductive hypothesis (which
we assume is true) to find a link between the inductive
hypothesis and the statement to be proven. Always state
explicitly where you are invoking the inductive hypothesis.

Always finish your proof with something like: S(k+1) is true
when S(k) is true, S(k-1) is true, etc., and therefore, S(n) is true
for all n > base case.



Using strong induction to graphs.

A graph is a configuration consisting of points (called
vertices) and edges which are lines connecting the
vertices.

Examples of graphs:

TR kN

Figure 10.1. Examples of Graphs

First two instances of the graphs have cycles, set of
edges together forming a cycle.

A graph with no cycles is called a tree. The two graphs on
the right are trees.



Trees

\Qx

Figure 10.2. A tree



Proposition:

* Proposition: If a tree has n vertices, then it has n-1 edges,
Vn & N.

* S(n): A tree with n vertices has n-1 edges.



Proposition:

Proposition: If a tree has n vertices, then it has n-1 edges,
Vn & N.

S(n): A tree with n vertices has n-1 edges.

Basis: If a tree has n = 1 vertex, it has no edges. Thus it has
n-1 edges, so the theorem is true when n=1.



Proposition:

Proposition: If a tree has n vertices, then it has n-1 edges,
Vn & N.

S(n): A tree with n vertices has n-1 edges.

Basis: If a tree has n = 1 vertex, it has no edges. Thus it has
n-1 edges, so the theorem is true when n=1.

Inductive hypothesis: S(1) S(2) ... S(k) is true for any k > 1.



Proposition:

Proposition: If a tree has n vertices, then it has n-1 edges,
Vn & N.

S(n): A tree with n vertices has n-1 edges.

Basis: If a tree has n = 1 vertex, it has no edges. Thus it has
n-1 edges, so the theorem is true when n=1.

Inductive hypothesis: S(1) S(2) ... S(k) is true for any k > 1.
We need to show that : S(1) S(2) ... S(k) = S(k+1).

The inductive hypothesis is saying that any tree with m
vertices, 1 < m < k has m-1 edges.



Proposition:

Proposition: If a tree has n vertices, then it has n-1 edges,
Vn & N.

S(n): A tree with n vertices has n-1 edges.

Basis: If a tree has n = 1 vertex, it has no edges. Thus it has
n-1 edges, so the theorem is true when n=1.

Inductive hypothesis: S(1) S(2) ... S(k) is true for any k > 1.
We need to show that : S(1) S(2) ... S(k) = S(k+1).

The inductive hypothesis is saying that any tree with m
vertices, 1 < m < k has m-1 edges.

Showing S(k+1) is true.



Showing S(k+1) is true.

* Consider an arbitrary tree T with k+1 vertices.
* The tree has at least one edge.




Showing S(k+1) is true.

Consider an arbitrary tree T with k+1 vertices.
The tree has at least one edge.
Single out anedge e of T. '

Remove the edge e from T.

This results in two smaller trees AR N J
! T1 .I|. ......... : T2 ,|

T, and T, with no more than k vertices. ." % \



Showing S(k+1) is true.

Consider an arbitrary tree T with k+1 vertices.
The tree has at least one edge.
Single out anedge e of T. '

Remove the edge e from T.
This results in two smaller trees :/ T.1>¥ _________ @l
T, and T, with no more than k vertices. . "¢ ,/
Let T, has x vertices, and therefore, T,

has (k+1)-x vertices.



Showing S(k+1) is true.

Consider an arbitrary tree T with k+1 vertices.
The tree has at least one edge.
Single out anedge e of T. a

Remove the edge e from T.
This results in two smaller trees / > g Y
. NS ot N T
T, and T, with no more than k vertices. ."'* -
Let T, has x vertices, and therefore, T,
has (k+1)-x vertices.

Inductive hypothesis guarantees that T, has (x-1) edges and
T, has (k-x) edges.



Showing S(k+1) is true.

Consider an arbitrary tree T with k+1 vertices.

The tree has at least one edge.

Single out an edge e of T. N S
Remove the edge e from T.

This results in two smaller trees
T, and T, with no more than k vertices. T.1>* --------- @ :'
Let T, has x vertices, and therefore, T,  ~---"
has (k+1)-x vertices.

Inductive hypothesis guarantees that T, has (x-1) edges and
T, has (k-x) edges.

The total number of edges in T is (x-1)+(k-x) +1 = k. The
edge e contributes one to the total. Hence S(k+1) is true.



Showing S(k+1) is true.

Consider an arbitrary tree T with k+1 vertices.
The tree has at least one edge.
Single out an edge e of T.
Remove the edge e from T.
This results in two smaller trees

T, and T, with no more than k vertices.  ,-7.7 .
Let T, has x vertices, and therefore, T, _.f.l"1>-} --------- T2 |
has (k+1)-x vertices.

Inductive hypothesis guarantees that T, has (x-1) edges and T,
has (k-x) edges.

The total number of edges in T is (x-1)+(k-x) +1 = k. The edge e
contributes one to the total. Hence S(k+1) is true.

Follows by strong induction that a tree with n vertices has (n-1)
edges.



Fibonacci Number

The Fibonacci sequence is defined as the sequence starting with F; =1
and F» =1, and then recursively as F, = F,_1 + Fp_o.

The Fibonacci sequence starts off with 1, 1, 2, 3, 5, 8, 13, 21, 34, ....



Fibonacci Number

Proposition: Prove that

F,+F,+..+F =F ,,-1forn2>2

n+2

Proof.
We use induction. As our basis step, notice that F; + F» = F4 — 1 since

Fi+t+ F=1+1=2, and Fr—1=3-1=2.

Suppose that F1 + Fo + --- + Fx = Fxao — 1. Adding Fi.1 on both sides
gives

Fi+Fo+--+Fe+ Frp1 = Feyo — 1+ Feypa
= Fiy1+ Firq2 — 1
= Frq43 — 1.

which completes the induction. []



Number of diagonals in a convex
polygon with n vertices.

n = 3; # of diagonal =0

Y
________ \\\
n=5; # of diagonal =5



Number of diagonals in a convex
polygon with n vertices is n(n-3)/2.

S(n) : n 2 3 vertex convex polygon realizes N(n) = n(n-3)/2
diagonals.
Proof by Induction.
Basis: S(3) is true, since a triangle realizes N(3 )= 0 diagonal.
Inductive Hypothesis: S(k) is true for any k = 3, N(k) = k(k-3)/2.
Show that S(k+1) is also true.
* Consider a convex polygon P with k+1 vertices p,, p,, ..,
Pr+1-
e N(k+1)=N(k)+ ((k—2)+1)
= k(k-3)/2 + k-1
= (k+1)((k+1)-3)/2 (details in the class)

Using the principle of strong induction, ¥ n > 3, S(n) is true.



Summation

@ Prove that the sum of the first n natural numbers equals n(n2+ D
that is 1+2+3+...+n=”("+1)
2

@ P(n): "the sum of the first n natural numbers ...
@ Basis step: P(1) means 1=1(1;'1)

@ Inductive step: Make the mductlve h)ypothesns P(k) is true, i.e.
1+2+3+--+k=

2
Prove P(k + 1): 1+2+3+---+k+(k+1)=(k+1)((';+1)+1)
1+2+3+--+k+(k+1) = k(k2+1)+(k+1)

=k(k+1)+2(k+1)= k+DKk+2)
2 2



More Summation

@ Provethat 1+2+2%+---4+2" =21 _1

@ Let P(n) be the statement 1+2 + 2% +---+2" = 2"*' —1' for the
integer n

@ Basis step: P(0) is true, as 2° =1=2"" -1
@ Inductive step: We assume the inductive hypothesis
1+2+2% +.-42F =281 1
and prove P(k + 1), thatis
1+2+2% 4428 420 okl 1 _ok+2
We have 1+2+2% +..-+2F 4251 = (2% 1) 4 2k
=2-2¢1 1
— 2k+2 -1



The Cardinality of the Power Set

We have proved that, for any finite set A, itis true that | P(A) | = 2%
Let Q(n) denote the statement ‘an n-element set has 2" subsets’
Basis step: Q(0), and empty set has only one subset, empty

Inductive step. We make the inductive hypothesis, a k-element set
A has 2"subsets

We have to prove Q(k + 1), thatisifaset A contains k + 1
elements, then | P(A) | =2**'

Fix an element a&€ A, and set B=A-{a}.
The set B contains k elements, hence | P(B) | = 2k
Every subset X of B corresponds to two subsets of A



The Cardinality of the Power Set (cntd)
@ ;
/ A

Therefore, |P(A)|=2-|P(B)|=2-2% = 2%



Practice problems from the text.
(Chapter 10)

 1,2,4,5,9, 11, 16, 23, 24, 33, 35



