Functions

Chapter 12

Acknowledgement

- I have used materials from the following sources:
 - Textbook
 - Lecture notes slides prepared by Prof. Bulatov.
 - <u>http://cse.unl.edu/~choueiry/S13-235/</u>
 - http://www.math-cs.gordon.edu/courses/mat231/ notes.html

Outline

- Functions
- Injective (one-to-one) and Surjective (onto)
 Functions
- Composition of Functions
- Inverse Functions
- The Pigeonhole Principle.

Functions

- The concept of relations between the sets plays a big role here.
- Consider the function $f(x) = x^2$, where $x \in R$.

Figure 12.1. A familiar function

Functions

- The concept of relations between the sets plays a big role here.
- Consider the function $f(x) = x^2$, where $x \in R$.
- The points on the curve are related. $-T=\{(x,x^2): x \in R\} \subseteq R \times R.$
- Functions are special kinds of relations.

Figure 12.1. A familiar function

Another example of a function

				N					
٠	0	0	0	6	0	0	0	•	
0	•	0	0	5 0	0	0	•	0	
0	0	•	0	4 0	0	•	0	0	
0	0	0	•	3 0	•	0	0	0	
0	0	0	0	2•	0	0	0	0	
0	0	0	0	: 10	0	0	0	0	
				₀ 0				•••⊙•••••> 4	Z

Figure 12.2. The function $f : \mathbb{Z} \to \mathbb{N}$, where f(n) = |n| + 2

• Here R= {(n, |n|+2): $n \in N$ } $\subseteq Z \times N$.

Functions

- Definition:
 - Suppose A and B are sets.
 - A function f from A to B (denoted as f: : A → B) is a relation f ⊆ A x B from A to B.
 - The relation satisfies the property that for each element $a \in A$ the relation f contains exactly one ordered pair (2-tuple) of the form (a,b).
 - The statement $(a,b) \in f$ is abbreviated as f(a) = b.
- A shorter form of the definition
 - A function f from A to B is an assignment of exactly one element of B to each element of A.

We can diagram f: $A \rightarrow B$ as

Function: Visualization

Terminology

- Let *f*: A → B and *f*(a)=b. Then we use the following terminology:
 - -A is the <u>domain</u> of f
 - B is the <u>co-domain</u> of f
 - b is the <u>image</u> of a
 - a is the preimage (antecedent) of b
 - The <u>range</u> of f is the set of all images of elements of A

Given

$$A = \{a, b, c, d\}, \qquad B = \{1, 2, 3, 4\},$$

which of the following are functions from A to B?

Given

$$A = \{a, b, c, d\}, \qquad B = \{1, 2, 3, 4\},$$

which of the following are functions from A to B?

- The diagram on the left is a function. The codomain is a subset of B.
- The one on the right is not a function. The domain is not A. Moreover b is assigned (mapped) to two different elements of B.

Which of the following are functions from \mathbb{R} to \mathbb{R} ?

Which of the following are functions from \mathbb{R} to \mathbb{R} ?

- $f = \{(x, x) : x \in \mathbb{R}\}$. Function.
- $g = \{(x, x^2) : x \in \mathbb{R}\}$. Function.
- $h = \{(x^2, x) : x \in \mathbb{R}\}$. Not a function; (4, -2) and (4, 2) both in h.
- $j = \{(x, x^3) : x \in \mathbb{R}\}$. Function.
- $k = \{(x^3, x) : x \in \mathbb{R}\}$. Function.
- $m = \{(x, y) : x, y \in \mathbb{R}\}$. Not a function; (1, 1) and (1, 2) both in m.

Definitions

- A function is called **real-valued** if its codomain is the set of real numbers.
- A function is called **integer-valued** if its codomain is the set of integers.
- Two real-valued functions or two integer-valued functions with the same domain can be added or multiplied.

- Let f: $R \rightarrow R$ and g: $R \rightarrow R$ such that $f(x) = x^2$ and $g(x) = x x^2$. What are the functions f+g and f.g?
- Solution:

$$(f+g)(x) = f(x) + g(x) = x^2 + (x - x^2) = x.$$

f.g(x) = f(x).g(x) = x². (x - x²) = x³ - x⁴.

Equality of functions

- Definition: Two functions f: A → B and g: C → D are equal if A = C and ∀x ∈ A, f(x) = g(x).
- Note that

f: Z \rightarrow N and g: Z \rightarrow Z, f(x) = |x| + 2, g(x) = |x|+2are equal.

More Definitions (2)

- **Definition**: Let $f: A \rightarrow B$ and $S \subseteq A$. The image of the set S is the subset of B that consists of all the images of the elements of S. We denote the image of S by f(S), so that $f(S)=\{f(s) \mid \forall s \in S\}$
- Note there that the image of S is a set and not an element.

Image of a set: Example

- Let:
 - $A = \{a_1, a_2, a_3, a_4, a_5\}$
 - $B = \{b_1, b_2, b_3, b_4, b_5\}$
 - f={(a₁,b₂), (a₂,b₃), (a₃,b₃), (a₄,b₁), (a₅,b₄)}
 - $S = \{a_1, a_3\}$
 - $f(S) = \{b_2, b_3\}$
- Draw a diagram for f
- What is the:
 - Domain, co-domain, range of f?
 - Image of S, f(S)?

Section 12.2

(Injective and Surjective functions)

- In the literature
 - injective and one-to-one mean the same
 - surjective and onto mean the same
 - bijective and one-to-one correspondence mean the same.

Section 12.2

(Injective and Surjective functions)

• Definitions:

Definition 12.4 A function $f: A \rightarrow B$ is:

- 1. **injective** (or one-to-one) if for every $x, y \in A$, $x \neq y$ implies $f(x) \neq f(y)$;
- 2. **surjective** (or onto) if for every $b \in B$ there is an $a \in A$ with f(a) = b;
- 3. **bijective** if f is both injective and surjective.

- Consider the following functions on the students in macm class. Under what conditions is the function one-to-one if it assigns to a student his or her
 - 1. cell phone number
 - 2. student id
 - 3. final grade in the class
 - 4. home town

- Consider the following functions on the students in macm class. Under what conditions is the function one-to-one if it assigns to a student his or her
 - 1. cell phone number **one-to-one**
 - 2. student id one-to-one
 - final grade in the class generally not one-to-one unless each student gets a unique grade
 - home town one-to-one if each student comes from a different town

Injective functions One-to-one functions

Which of the following are functions from $A = \{a, b, c\}$ to $B = \{1, 2, 3\}$? Of those, which are injective?

•
$$f = \{(a, 1), (b, 2), (c, 3)\}.$$

•
$$g = \{(a, 1), (a, 2), (b, 3), (c, 3)\}$$

•
$$h = \{(a, 2), (b, 2), (c, 2)\}$$
.

•
$$j = \{(a,3), (b,1), (c,2)\}.$$

Which of the following are functions? Of those, which are injective?

•
$$f:\mathbb{Z}\to\mathbb{Z},\ f(x)=x^2.$$

- $g: \mathbb{N} \to \mathbb{Z}, g(x) = x^2$.
- $h: \mathbb{Z} \to \mathbb{N}, h(x) = x^2$.

•
$$j: \mathbb{N} \to \mathbb{N}, j(x) = x^2$$
.

Injective functions One-to-one functions

Which of the following are functions from $A = \{a, b, c\}$ to $B = \{1, 2, 3\}$? Of those, which are injective?

- $f = \{(a, 1), (b, 2), (c, 3)\}$. Function, injective.
- $g = \{(a, 1), (a, 2), (b, 3), (c, 3)\}$. Not a function.
- $h = \{(a, 2), (b, 2), (c, 2)\}$. Function, **not** injective.
- $j = \{(a, 3), (b, 1), (c, 2)\}$. Function, injective.

Which of the following are functions? Of those, which are injective?

• $j: \mathbb{N} \to \mathbb{N}, j(x) = x^2$.

How to show a function f: $A \rightarrow B$ is injective?

Direct approach:

Suppose $x, y \in A$ and $x \neq y$.

Therefore $f(x) \neq f(y)$.

Contrapositive approach: Suppose $x, y \in A$ and f(x) = f(y).

Therefore x = y.

 $\forall x,y \in A [\{(x \neq y) \Longrightarrow (f(x) \neq f(y))\} \equiv \{(f(x) = f(y)) \Longrightarrow (x = y)\}]$

Injective functions One-to-one functions

Which of the following are functions from $A = \{a, b, c\}$ to $B = \{1, 2, 3\}$? Of those, which are injective?

- $f = \{(a, 1), (b, 2), (c, 3)\}$. Function, injective.
- $g = \{(a, 1), (a, 2), (b, 3), (c, 3)\}$. Not a function.
- $h = \{(a, 2), (b, 2), (c, 2)\}$. Function, **not** injective.
- $j = \{(a, 3), (b, 1), (c, 2)\}$. Function, injective.

Which of the following are functions? Of those, which are injective?

• $j: \mathbb{N} \to \mathbb{N}, j(x) = x^2$.

• Let's consider the function $f(x) = x^2$ on \mathbb{Z} Is it injective?

Yes! on \mathbb{N}

Injective functions One-to-one functions

Which of the following are functions from $A = \{a, b, c\}$ to $B = \{1, 2, 3\}$? Of those, which are injective?

- $f = \{(a, 1), (b, 2), (c, 3)\}$. Function, injective.
- $g = \{(a, 1), (a, 2), (b, 3), (c, 3)\}$. Not a function.
- $h = \{(a, 2), (b, 2), (c, 2)\}$. Function, **not** injective.
- $j = \{(a, 3), (b, 1), (c, 2)\}$. Function, injective.

Which of the following are functions? Of those, which are injective?

- $f : \mathbb{Z} \to \mathbb{Z}$, $f(x) = x^2$. Function, **not** injective; f(-2) = f(2).
- $g : \mathbb{N} \to \mathbb{Z}$, $g(x) = x^2$. Function, injective.
- $h: \mathbb{Z} \to \mathbb{N}$, $h(x) = x^2$. Not a function; f(0) is not defined.
- $j : \mathbb{N} \to \mathbb{N}, j(x) = x^2$. Function, injective.

• Recall:

Definition 12.4 A function $f: A \rightarrow B$ is:

- 1. **injective** (or one-to-one) if for every $x, y \in A$, $x \neq y$ implies $f(x) \neq f(y)$;
- 2. **surjective** (or onto) if for every $b \in B$ there is an $a \in A$ with f(a) = b;
- 3. **bijective** if *f* is both injective and surjective.

Surjective functions Onto functions range(f) = codomain(f)

Suppose $A = \{a, b, c, d\}$.

Surjective functions Onto functions

Which of the following functions from $A = \{a, b, c\}$ to $B = \{1, 2, 3\}$ are surjective?

- $f = \{(a, 1), (b, 2), (c, 3)\}.$
- $h = \{(a, 1), (b, 2), (c, 2)\}.$
- $j = \{(a, 3), (b, 1), (c, 2)\}.$

Which of the following functions are surjective?

•
$$f: \mathbb{Z} \to \mathbb{Z}, f(x) = x^2$$
.

- $g: \mathbb{N} \to \mathbb{Z}, g(x) = x^2$.
- $j: \mathbb{N} \to \mathbb{N}, j(x) = x^2$.

Surjective functions Onto functions

Which of the following functions from $A = \{a, b, c\}$ to $B = \{1, 2, 3\}$ are surjective?

- $f = \{(a, 1), (b, 2), (c, 3)\}$. Surjective.
- $h = \{(a, 1), (b, 2), (c, 2)\}$. Not surjective.
- $j = \{(a, 3), (b, 1), (c, 2)\}$. Surjective.

Which of the following functions are surjective?

How to show a function f: $A \rightarrow B$ is surjective?

Suppose $b \in B$. [Prove there exists $a \in A$ for which f(a) = b.]

 \forall b \in B [\exists a \in A (f(a) = b)]

Surjective functions Onto functions

Which of the following functions from $A = \{a, b, c\}$ to $B = \{1, 2, 3\}$ are surjective?

- $f = \{(a, 1), (b, 2), (c, 3)\}$. Surjective.
- $h = \{(a, 1), (b, 2), (c, 2)\}$. Not surjective.
- $j = \{(a, 3), (b, 1), (c, 2)\}$. Surjective.

Which of the following functions are surjective?

• $f: \mathbb{Z} \to \mathbb{Z}$, $f(x) = x^2$. Not surjective; no x for which f(x) = -2.

• $g : \mathbb{N} \to \mathbb{Z}$, $g(x) = x^2$. Not surjective; no x for which f(x) = -2.

• $j : \mathbb{N} \to \mathbb{N}, j(x) = x^2$. Not surjective (but injective)

Bijections

A function f is a one-to-one correspondence, or a bijection, if it is both one-to-one and onto.

If there is a bijection from a set A to a set B, then these sets in a certain sense are equal or identical.
Bijections (cntd)

- Numerical functions:
 - f(x) = x + 1 is a bijection on \mathbb{Z} , \mathbb{Q} , \mathbb{R} , but not on \mathbb{N}
 - $f(x) = x^2$ is a bijection on \mathbb{R}^+ , but is not on any other numerical set
- A bijection from a set A to the same set A is called a permutation of A

The identity function on a set A is the function $i_A: A \rightarrow A$, where $i_A(x) = x$

Examples of different types of correspondences

Exercise 1

• Let $f: Z \rightarrow Z$ be defined by

f(x) = 2x - 3

- What is the domain, codomain, range of f?
- Is f one-to-one (injective)?
- Is f onto (surjective)?
- Clearly, domain(f)=Z.
- To see what the range is, note that:

 $b \in range(f) \implies b=2a-3, \text{ for some } a \in Z$ $\implies b=2(a-2)+1$ $\implies b \text{ is odd}$

Exercise 1 (cont'd)

- Thus, the range is the set of all odd integers
- Since the range and the codomain are different (i.e., range(f) ≠ Z), we can conclude that f is not onto (surjective)
- However, f is one-to-one injective.
 (Contrapositive approach)

– For x, y \in Z , we can write

 $f(x) = f(y) \Rightarrow 2x - 3 = 2y - 3 \Rightarrow x = y.$ QED

Exercise 2

• Let f be as before

f(x) = 2x - 3

but now we define $f: N \rightarrow N$

- What is the domain and range of f?
- Is f onto (surjective)?
- Is f one-to-one (injective)?
- By changing the domain and codomain of *f*, *f* is not even a function anymore. Indeed, *f*(1)=2·1-3=-1∉N

Exercise 3

- Let $f:Z \rightarrow Z$ be defined by $f(x) = x^2 - 5x + 5$
- Is this function
 - One-to-one?
 - Onto?

Exercise 3: Answer

• It is not one-to-one (injective) $f(x_1)=f(x_2) \Rightarrow x_1^2 - 5x_1 + 5 = x_2^2 - 5x_2 + 5 \Rightarrow x_1^2 - 5x_1 = x_2^2 - 5x_2$ $\Rightarrow x_1^2 - x_2^2 = 5x_1 - 5x_2 \Rightarrow (x_1 - x_2)(x_1 + x_2) = 5(x_1 - x_2)$ $\Rightarrow (x_1 + x_2) = 5$

Many $x_1, x_2 \in \mathbb{Z}$ satisfy this equality. There are thus an infinite number of solutions. In particular, f(2)=f(3)=-1

• It is also not onto (surjective).

The function is a parabola with a global minimum at (5/2,-5/4). Therefore, the function fails to map to any integer less than -1

 What would happen if we changed the domain/ codomain?

Exercise 3: Answer

• It is not one-to-one (injective)

 $f(x_1)=f(x_2) \Rightarrow x_1^2 - 5x_1 + 5 = x_2^2 - 5x_2 + 5 \Rightarrow x_1^2 - 5x_1 = x_2^2 - 5x_2$ $\Rightarrow x_1^2 - x_2^2 = 5x_1 - 5x_2 \Rightarrow (x_1 - x_2)(x_1 + x_2) = 5(x_1 - x_2)$ $\Rightarrow (x_1 + x_2) = 5$

Many $x_1, x_2 \in Z$ satisfy this equality. There are thus an infinite number of solutions. In particular, f(2)=f(3)=-1

• It is also not onto (surjective).

The function is a parabola with a global minimum at (5/2, -5/4). Therefore, the function fails to map to any integer less than -1

- What would happen if we changed the domain/codomain?
- The function is one-to-one and onto when domain(f) = {x ∈ R | x > 4}; codomain(f) = {y ∈ R | y > 0}

Exercise 4

- Let $f:Z \rightarrow Z$ be defined by $f(x) = 2x^2 + 7x$
- Is this function
 - One-to-one (injective)?
 - Onto (surjective)?
- Again, this is a parabola, it cannot be onto.

Exercise 4: Answer

• f(x) is one-to-one! Indeed:

 $f(x_1)=f(x_2) \Rightarrow 2x_1^2 + 7x_1 = 2x_2^2 + 7x_2 \Rightarrow 2x_1^2 - 2x_2^2 = 7x_2 - 7x_1$ $\Rightarrow 2(x_1 - x_2)(x_1 + x_2) = 7(x_2 - x_1) \Rightarrow 2(x_1 + x_2) = -7 \Rightarrow$ $(x_1 + x_2) = -7$ $\Rightarrow (x_1 + x_2) = -7/2$

But $-7/2 \notin Z$. Therefore it must be the case that $x_1 = x_2$. It follows that f is a one-to-one function. QED

• f(x) is not surjective because f(x)=1 does not exist

 $2x^2 + 7x = 1 \implies x(2x + 7) = 1$ the product of two integers is 1 if both integers are 1 or -1

 $x=1 \Rightarrow (2x+7)=1 \Rightarrow 9=1$, impossible

 $x=-1 \implies -1(-2+7)=1 \implies -5=1$, impossible

Exercise 5

- Let $f:Z \rightarrow Z$ be defined by $f(x) = 3x^3 - x$
- Is this function
 - One-to-one (injective)?
 - Onto (surjective)?

Exercise 5: f is one-to-one

 To check if f is one-to-one, again we suppose that for $x_1, x_2 \in \mathbb{Z}$ we have $f(x_1) = f(x_2)$ $f(x_1)=f(x_2) \implies 3x_1^3-x_1=3x_2^3-x_2$ $\Rightarrow 3x_1^3 - 3x_2^3 = x_1 - x_2$ \Rightarrow 3 (x₁ - x₂)(x₁² + x₁x₂ + x₂²) = (x₁ - x₂) \Rightarrow (x₁² +x₁x₂+x₂²)= 1/3 which is impossible because $x_1, x_2 \in \mathbb{Z}$ thus, f is one-to-one

Exercise 5: f is not onto

- Consider the counterexample f(a)=1
- If this were true, we would have $3a^3 - a = 1 \Rightarrow a(3a^2 - 1) = 1$ where a and $(3a^2 - 1) \in \mathbb{Z}$
- The only time we can have the product of two integers equal to 1 is when they are both equal to 1 or -1
- Neither 1 nor -1 satisfy the above equality
 - Thus, we have identified 1∈Z that does not have an antecedent and f is not onto (surjective)

Practice Problems

- Section 12.1: 1, 2, 3, 6, 7, 11
- Section 12.2: 1, 2, 4, 5, 9, 10, 13, 15, 17

Composition (Section 12.4)

- Definition:
 - Suppose $f : A \rightarrow B$ and $g : B \rightarrow C$ are functions with the property that the codomain(f) equals the domain(g).
 - The composition of f and g is another function, denoted as $g \circ f$ and defined as follows: If $x \in A$, then $g \circ f(x) = g(f(x))$. This function g(f(x)) sends (maps) elements of A to elements of C, so $g \circ f: A \rightarrow C$.

Figure 12.5. Composition of two functions

Composition: Example 1

- Let f, g be two functions on $R \rightarrow R$ defined by f(x) = 2x - 3 $g(x) = x^2 + 1$
- What are $f \circ g$ and $g \circ f$?

Composition: Example 1 (cont'd)

- Given f(x) = 2x 3 and $g(x) = x^2 + 1$
- $(f \circ g)(x) = f(g(x)) = f(x^2+1) = 2(x^2+1)-3$ = $2x^2 - 1$
- $(g \circ f)(x) = g(f(x)) = g(2x-3) = (2x-3)^2 + 1$ = $4x^2 - 12x + 10$

Thus the composition of functions is not commutative.

Associativity

• Lemma: The composition of functions is an associative operation, that is

 $(f \circ g) \circ h = f \circ (g \circ h)$

Composition: Injection and Surjection

• Theorem:

Suppose f: A \rightarrow B and g: B \rightarrow C. If both f and g are injective then g of is injective. If both f and g are surjective, g of is also surjective.

Proof of:

Suppose f: A \rightarrow B and g: B \rightarrow C. If both f and g are injective then g o f is injective.

- Here both f and g are injective.
- To see that g f is injective, we must show that g(f(x)) = g(f(y)) implies x = y.
- Suppose g(f(x)) = g(f(y)).
- Since g is injective, f(x) = f(y).
- Since f(x) = f(y), and f is injective, x = y.
- Hence g(f(x)) = g(f(y)) implies x = y.
- Therefore, g f is injective.

Conversely,

- Suppose $f: X \rightarrow Y$ and $g: Y \rightarrow Z$.
- If the composition g of of two functions is bijective, we can only say that f is injective and g is surjective.

• Definition: Given a relation R from A to B, the **inverse** relation of R is the relation from B to A defined as $R^{-1} = \{(y,x): (x,y) \in R\}.$

• f is function, but f⁻¹ is also a function.

• Definition: Given a relation R from A to B, the **inverse** relation of R is the relation from B to A defined as $R^{-1} = \{(y,x): (x,y) \in R\}.$

• g is function, but g^{-1} is not a function.

Inverse Functions

• The identity function on a set A is the function $i_A: A \rightarrow A$, where $i_A(x) = x$

Definition: Suppose f : A → B is bijective. The inverse function of f is the th function that assigns to each element b ∈ B, an element (preimage) a ∈ A such that f(a) = b. We denote the inverse function f⁻¹: B → A and can write

$$f^{-1}(b) = a$$
 when $f(a) = b$.

- $f^{-1} \circ f = i_A$
- f o f⁻¹ = i_B

• f o f⁻¹ = {(1,1), (2,2), (3,3)}

Example

- Find the inverse of the function f : R → R defined as f(x) = x³ + 1, if it exists.
- We first show that f is bijective.
 - f is one-to-one:
 - $f(x) = f(y) \text{ implies } (x^3 + 1) = (y^3 + 1)$
 - i.e (x-y)($x^2 + xy + y^2$) = 0.
 - Since $(x^2 + xy + y^2)$ is not zero for any x ≠ y, therefore f(x) = f(y) implies x = y.
 - Therefore, f is one-to-one.

Example

- Find the inverse of the function f : R → R defined as f(x) = x³ + 1, if it exists.
- We first show that f is bijective.
 - f is one-to-one:
 - We now show that f is onto.
 - For any y of R, we need to find x such that f(x) = y.
 - i.e. find x such that $x^3 + 1 = y$, i.e x = $(y-1)^{1/3}$. Thus we see that $f((y-1)^{1/3}) = y$ for any y.
 - Therefore, f is onto.
 - Thus f is bijective

Example

- Find the inverse of the function f : R → R defined as f(x) = x³ + 1, if it exists.
- We now find $f^{-1}(x)$.
 - We are interested in computing y such that $f^{-1}(x) = y$.
 - i.e. computing y such that f(y) = x.
 - i.e. computing y such that $y^3 + 1 = x$.
 - i.e. y = $(x 1)^{1/3}$.
 - Thus $f^{-1}(x) = (x 1)^{1/3}$.
 - Note that $f^{-1}(f(x)) = f(f^{-1}(x)) = x$.

Another Example

- Consider the function g: Z x Z → X x Z defined by g(m,n) = (m+n, m + 2n). g is bijective (show that). Find its inverse.
- We want to find (x,y) ∈ Z x Z such that g⁻¹(m,n) = (x,y).
 - i.e. (m,n) = g(x,y)
 - i.e. (m,n) = (x +y, x + 2y)
 - i.e. m = x+y and n = x+ 2y
 - i.e. x = 2m n and y = n m.
 - Thus $g^{-1}(m,n) = (2m n, n-m)$.

Important Functions: Absolute Value

 Definition: The <u>absolute value</u> function, denoted |x|, f : R→ {y ∈R | y ≥ 0}. Its value is defined by

$$|\mathbf{x}| = \begin{cases} \mathbf{x} & \text{if } \mathbf{x} \ge \mathbf{0} \\ \\ -\mathbf{x} & \text{if } \mathbf{x} \le \mathbf{0} \end{cases}$$

Important Functions: Floor & Ceiling

- Definitions:
 - The <u>floor function</u>, denoted [x], is a function
 R→Z. Its values is the <u>largest integer</u> that is less than or equal to x
 - The ceiling function, denoted $\lceil x \rceil$, is a function $R \rightarrow Z$. Its values is the <u>smallest integer</u> that is greater than or equal to x.

Important Functions: Floor

Important Functions: Ceiling

Important Function: Factorial

- The factorial function gives us the number of permutations (that is, uniquely ordered arrangements) of a collection of n objects
- **Definition**: The <u>factorial</u> function, denoted n!, is a function $N \rightarrow N^+$. Its value is the <u>product</u> of the n positive integers

$$n! = \prod_{i=1}^{i=n} i = 1 \cdot 2 \cdot 3 \cdot \ldots \cdot (n-1) \cdot n$$

Summary

- Definitions & terminology
 - function, domain, co-domain, image, preimage, range, image of a set
- Properties
 - One-to-one (injective), onto (surjective), one-to-one correspondence (bijective)
- Operators
 - Composition
- Inverse functions
- Important functions
 - identity, absolute value, floor, ceiling, factorial

Practice Problems

- Section 12.4: 2, 5, 6, 7, 8, 10
- Section 12.5: 1, 2, 3, 6, 9
- Section 12.6: 2, 3, 4, 5