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***How many ways can the 11 distinct horses be lined up in a row?

Solution : 11!
**How many ways can the 11 distinct horses be lined up in a cycle?
Solution : Note that (in case of 3 horses) < a, b, c > cyclic order is
the same as < b, c , a > and < c , a, b >. In this case, there is no
position 1, position 2 or position 3 in the order. We need to scale
11! to accommodate this. The correct answer is 11!/11 which is
10!
***How many ways can the 11 identical horses on a cycle be
painted so that three are brown, three are white and five are black?
Solution: We have 10! ways to place 11 horses in a circle. For the
3 brown horses, we do not distinguish their order. Similar situation
to the 3 white horses and 5 black horses. Thus the solution is
10!/(3! ∗ 3! ∗ 5!)
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***Make up a word problem in English whose answer is

Q(a) C (25, 7) ∗ C (10, 3)
Solution : How many ways can we built a team of 7 boys and 3
girls out of a class of 25 boys and 10 girls
Q(b) 2n − 2
Solution : How many n bit binary strings that have at least one 1
and at least one 0
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***Use binomial theorem to prove the following
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Section 4

Use the method of direct proof to prove the following statements.

Q 6: Suppose x , y , z ∈ Z. If a|b and a|c, then a|(b + c)
Proof:
Soppose a|b and a|c
By definition of divisibility, this means b = ak1 for some integer k1
and c = ak2 for some integer k2
Add both equation produces b + c = ak1 + ak2 which is
b + c = (k1 + k2)a
By definition of divisibility, this means a|(b + c)
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Section 4

Use the method of direct proof to prove the following statements.

Q 20: Suppose n ∈ N , then the numbers n! + 2, n! + 3, ...n! + n
are all composite (i.e. has at least two factors other than 1 and the
number itself). (Thus for any n ≥ 2, one can find n consecutive
composite numbers. This means there are arbitrarily large ”gaps”
between prime numbers)
Proof:
Suppose n ≥ 2.
For any other value of n ≥ 2, 2 will always be a factor of n!, since
n! = n ∗ (n − 1) ∗ ... ∗ 2 ∗ 1.
n, n − 1, ..., 3 are also factors of n!.
Any number n! + k is a composite number since
n! + k = k[(n× (n− 1)× ...× (k + 1)× (k − 1)× ...× 3× 2) + 1].
Since each term in the sequence n! + 2, n! + 3, ...n! + n is a
product of two factors (other than 1 or itself), each term is a
composite number for any value of n.
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Section 4

Use the method of direct proof to prove the following statements.

Q 28: If a, b, c ∈ Z, c × gcd(a, b) ≤ gcd(ca, cb)
Proof:
Suppose gcd(a, b) = k . Note that gcd(a, b) ≥ 0 for any a, b ∈ Z.
We consider the cases: c = 0 and c 6= 0.
Case 1: (c = 0) In this case, 0.gcd(a, b) is equal to gcd(0, 0) = 0.
Case 2: (c 6= 0)
By the definition of divisibility, since k is a divisor of both a and b,
we have a = kx and b = ky for integers x and y .
ca = ckx , cb = cky thus the greatest divisor is at least |ck |.
Thus the result follows.
Consider an example where a = 2, b = 4, c = −1.
gcd(2, 4) = gcd(−2,−4) = 2,
−1 ∗ gcd(2, 4) = −2 < gcd(−2,−4) = 2.
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