Counting Il

* Topics not covered in the text
e Covered in section 6.5 of Rosen’s book
e Covered in section 1.4 of Grimaldi’s book



Permutations

A k-permutations of a set of n objects is the same
as a length-k lists. Here the order of the objects is
Important.

The number of k-permutations of n objects with
repetition is nk.
The number of k-permutation of n objects without

o, . . n!
repetition Is (n—h)!

We write P(n, k) = (nﬁlk)g



Permutations with indistinguishable
objects

 Example: How many permutations one can make by
reordering the letters of the word JESSEE ?

(JESSEE and SJESEE are two different lists (permutations))



Permutations with indistinguishable
objects

 Example: How many permutations one can make by
reordering the letters of the word JESSEE ?

(JESSEE and SJESEE are two different lists (permutations))

* First Method: We first indicate 3 Es as E1, E2, E3 and two
Ss as S, S2. Thus JESSEE can be written as JE1S1S?E2E3.



Permutations with indistinguishable
objects

 Example: How many permutations one can make by
reordering the letters of the word JESSEE ?

(JESSEE and SJESEE are two different lists (permutations))

* First Method: We first indicate 3 Es as E1, E2, E3 and two
Ss as S, S2. Thus JESSEE can be written as JE1S1S?E2E3.
— If three Es and two Ss are treated as distinct, the number of 6-
permutations is 6!.

— Note that JE1SIS?E2E3 and JE1S?SIEZE3 are the same if two Ss are
not distinct.
6!

3121

— The number of distinct permutations is



Permutations with indistinguishable
objects

 Example: How many permutations one can make by
reordering the letters of the word JESSEE ?

(JESSEE and SJESEE are two different lists (permutations))

 Second Method: The word JESSEE contains 3 Es, 2 Ss and
one J.



Permutations with indistinguishable
objects

 Example: How many permutations one can make by
reordering the letters of the word JESSEE ?

(JESSEE and SJESEE are two different lists (permutations))

 Second Method: The word JESSEE contains 3 Es, 2 Ss and
one J.
— We can place 3 Es in 6 places in C(6,3) different ways.



Permutations with indistinguishable
objects

 Example: How many permutations one can make by
reordering the letters of the word JESSEE ?

(JESSEE and SJESEE are two different lists (permutations))

 Second Method: The word JESSEE contains 3 Es, 2 Ss and
one J.
— We can place 3 Es in 6 places in C(6,3) different ways.
— There are three more positions to fill once Es are placed.



Permutations with indistinguishable
objects

 Example: How many permutations one can make by
reordering the letters of the word JESSEE ?

(JESSEE and SJESEE are two different lists (permutations))

 Second Method: The word JESSEE contains 3 Es, 2 Ss and
one J.
— We can place 3 Es in 6 places in C(6,3) different ways.
— There are three more positions to fill once Es are placed.
— In C(3,2) ways we can place 2Ss in three positions.
— After all these, J has one (C(1,1)) position to go.



Permutations with indistinguishable
objects

 Example: How many permutations one can make by
reordering the letters of the word JESSEE ?

(JESSEE and SJESEE are two different lists (permutations))

 Second Method: The word JESSEE contains 3 Es, 2 Ss and
one J.
— We can place 3 Es in 6 places in C(6,3) different ways.
— There are three more positions to fill once Es are placed.
— In C(3,2) ways we can place 2Ss in three positions.
— After all these, J has one (C(1,1)) position to go.
— The total number of permutations of the letters of JESSEE is

C(6,3).C(3,2).C(1,1) = 25 X 5171 X 11571 = 379177-



Permutations with indistinguishable
objects

* Theorem: The number of different permutations of n
objects where there are n, objects of Type 1 (non-
distinct), n, objects of Type 2 (non-distinct), ...., n, objects
of Type t (non-distinct), and 25:1 n;=n,is

n!




Combinations

* A k-combination of a set of n objects is an unordered
selection of k elements from the set. When the

elements are not repeated, a k-combination is a size-
k subset. We have seen that

C(n,k) = k!(:—!k)!'




Some important identities

C(n,k) = P(,':!’k)
C(n,k) =C(n,n—k)

C(n+1,k) =C(n,k—1)+C(n,k)




Combinations with repetitions

 We consider the case when an object is selected
repeatedly.

 Example: Consider a set A ={a,b,c,d}. We select two
objects from A.

— We now consider the following four cases.



* 4-permutations with repetitions: 4% = 16 possible cases.




* 4-permutations without repetitions: P(4,2) = 12 possible
cases.

ba

cd

da




* 4-combinations without repetitions: C(4,2) = 6 possible
cases.

ab | ac | ad

bc | bd




* 4-combinations with repetitions: C(5,3) = 10 possible
cases.

ac | ad
bc | bd
cc | cd

dd




* 4-combinations with repetitions: C(5,3) = 10 possible

cases.

ab | ac | ad
bb | bec | bd
cc | cd

dd

Note that
combinations with
repetitions do not
correspond to
subsets of a set.



Combinations with repetitions

* Consider the following problem known as distribution of
money.
— We have n pennies that we want to distribute to k kids. Each

child gets at least one penny. How many ways can we distribute
the money?



Combinations with repetitions

* Consider the following problem known as distribution of
money.

— We have n pennies that we want to distribute to k kids. Each
child gets at least one penny. How many ways can we distribute
the money?

— Kids are distinct, but pennies are not.
— For n=6 and k=3, (1,1,4), (2,3,1) are distinct ways.

— All solutions: (1,1,4), (1,2,3), (1,3,2), (1,4,1),(2,1,3), (2,2,2),
(2,3,1), (3,1,2), (3,2,1), (4,1,1)



Combinations with repetitions

* Consider the following problem known as distribution of
money.

— We have n pennies that we want to distribute to k kids. Each
child gets at least one penny. How many ways can we distribute
the money?

— Kids are distinct, but pennies are not.
— For n=6 and k=3, (1,1,4), (2,3,1) are distinct ways.

— All solutions: (1,1,4), (1,2,3), (1,3,2), (1,4,1),(2,1,3), (2,2,2),
(2,3,1), (3,1,2), (3,2,1), (4,1,1)

— There is only one way for kid 1 to get n, pennies, kid-2 to get
n, pennies, ..... and so on where

n,+n,+..+n.=n



Distribution of money

* We have n pennies that we want to distribute to k kids.
Each child gets at least one penny. How many ways can
we distribute the money?

— Let us consider the following experiment.
— Line up the pennies (all are the same), order doesn’t matter.
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

(n pennies)



Distribution of money

* We have n pennies that we want to distribute to k kids.
Each child gets at least one penny. How many ways can
we distribute the money?

— Let us consider the following experiment.
— Line up the pennies (all are the same), order doesn’t matter.
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(n pennies)

— Let the first child pick them from left to right. After a while we
stop the kid.

— XXXXXXXXXX | XXXXXXXXXXXXXXXXXXXXXX
(kid -1 gets these) (stop)



Distribution of money

— Line up the pennies (all are the same), order doesn’t matter.
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(n pennies)

— Let the first child pick them from left to right. After a while we
stop the kid.

XXXXXXXXXX [ XXXXXXXXXXXXXXXXXXXXXX
(kid -1 gets these) (stop)



Distribution of money

— Line up the pennies (all are the same), order doesn’t matter.
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(n pennies)

— Let the first child pick them from left to right. After a while we
stop the kid.

XXXXXXXXXX [ XXXXXXXXXXXXXXXXXXXXXX
(kid -1 gets these) (stop)

— Let the second child pick pennies starting from where kid-1
stopped.

XXXXXXXXXX [ XXXXXXXXXXX| XXXXXXXXXXX
(kid -1 gets these) (kid-2 gets these)



Distribution of money

— Line up the pennies (all are the same), order doesn’t matter.
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(n pennies)

— The distribution of money is determined by specifying where to
start with a new child.

— The first child starts from 1.
— The other k-1 kids can enter at position 2, 3, 4, ..., n-1.

— This means that there are C(n-1,k-1) ways to chose an entry
point.



Distribution of money

 There are C(n-1,k-1) ways to distribute n pennies to k kids
with the constraint that each kid gets at least one penny.



Distribution of money
(no restriction)

* Problem: Distribute n pennies to k kids with no restriction
on whether a kid gets a penny or not.

 We use the following trick:

— We borrow one penny from each kid, and then distribute (n+k)
pennies to k kids such that each kid gets at least one penny.

* There are C(n+k-1,k-1) ways to distribute n pennies to k
kids with no restriction.



Combinations with repetitions

* Given n distinct objects, select k objects where
repetitions are allowed and the order of selecting
objects is not important. (Note that k could be larger
than n.)

* Here kids are n objects, and pennies are the k objects
to be selected.

 The number of possible k-combinations is C(#kids +
#pennies -1, #kids -1) = C(k+n-1, n-1)



Permutations and combinations with

and without repetitions.

Type Repetition Allowed? Formula
k-permutations No P(n,k) = ( nf'k),
k-permutations Yes nk
k-combinations No C(n,k) 7l :_' Al
k-combinations Yes C(n+k—1,n—1)= rkL:




Number of integer solutions

Problem: Let x;, 1 <i < n be n nonnegative integer
variables. Determine all integer solutions to the
equation

X;+X,+..+x,=mwherex. 20forall1<i<n.

* Suppose n=4, and m=7
— X,=3, X,=3, x3=0, x,=1 is one solution to the equation.
— %=1, x,=0, x3=3, x,=3 is another different solution.

— A possible interpretation for the solution x,=3, x,=3, x;=0,
X,=1 is that we are distributing 7 pennies (identical) among
4 kids (distinct). We have given 3 pennies each to kid 1 and
kid 2, nothing to the third kid, and kid 4 gets one penny.



Number of integer solutions

Problem: Let x;, 1 <i < n be n nonnegative integer
variables. Determine all integer solutions to the

equation
X;+X,+..+x,=mwherex. 20forall1<i<n.

* m =# of pennies; n = # of kids; no restriction (i.e. a kid can get
no penny)

* Total number of integral solutions = C(n+m-1, n-1)



It is important to recognize the
equivalence of the following

* The number of integer solutions of the equation

X;+X,+..+X,=mwherex.20forall1<i<n.

* The number of choices, with repetitions, of size m from
a collection of n objects.

* The number of choices of distributing m pennies to n
kids with no restriction (i.e. a kid can get zero penny).

* The number of ways of placing m balls in n distinct bins.



Example

* A doughnut shop has plain doughnuts, cherry
doughnuts, chocolate doughnuts, almond

doughnuts, apple doughnuts, broccoli doughnuts.
How many ways are there to choose:

(a) a dozen doughnuts?



Example

* A doughnut shop has plain doughnuts, cherry
doughnuts, chocolate doughnuts, almond

doughnuts, apple doughnuts, broccoli doughnuts.
How many ways are there to choose:

(a) a dozen doughnuts?

12 indistinguishable balls and 6 bins, or 12 pennies and 6
kids

Ans: C(6+12-1,6-1) = C(17,5) = C(17, 12)



Example

* A doughnut shop has plain doughnuts, cherry
doughnuts, chocolate doughnuts, almond

doughnuts, apple doughnuts, broccoli doughnuts.
How many ways are there to choose:

(b) three dozen doughnuts?



Example

* A doughnut shop has plain doughnuts, cherry
doughnuts, chocolate doughnuts, almond

doughnuts, apple doughnuts, broccoli doughnuts.
How many ways are there to choose:

(b) three dozen doughnuts? 36 doughnut

36 indistinguishable balls and 6 bins, or 36 pennies and 6
kids

Ans: C(6+36-1,6-1) = C(41,5) = C(41,36)



Example

* A doughnut shop has plain doughnuts, cherry
doughnuts, chocolate doughnuts, almond

doughnuts, apple doughnuts, broccoli doughnuts.
How many ways are there to choose:

(c) two dozen doughnuts with at least two of each kind?



Example

* A doughnut shop has plain doughnuts, cherry
doughnuts, chocolate doughnuts, almond

doughnuts, apple doughnuts, broccoli doughnuts.
How many ways are there to choose:

(c) two dozen doughnuts with at least two of each kind?

Pick first two of each kind . Thus the number is the
number of ways of choosing the remaining dozen.

Same as question (a).



Example

* A doughnut shop has plain doughnuts, cherry
doughnuts, chocolate doughnuts, almond

doughnuts, apple doughnuts, broccoli doughnuts.
How many ways are there to choose:

(d) two dozen doughnuts with no more than two broccoli
doughnuts?



Example

* A doughnut shop has plain doughnuts, cherry
doughnuts, chocolate doughnuts, almond
doughnuts, apple doughnuts, broccoli doughnuts.
How many ways are there to choose:

(d) two dozen doughnuts with no more than two broccoli
doughnuts?

We will add up three cases: no broccoli doughnut, exactly
one broccoli doughnut, exactly two broccoli doughnuts.

These numbers are: C(5 + 24 -1, 5-1) (0 broccoli doughnut);

C(5+23-1, 5-1) (1 broccoli doughnut); C(5+22-1,5-1) (2
broccoli doughnuts)



Example

* A doughnut shop has plain doughnuts, cherry
doughnuts, chocolate doughnuts, almond

doughnuts, apple doughnuts, broccoli doughnuts.
How many ways are there to choose:

(e) two dozen doughnuts at least five chocolate doughnuts
and at least three almond doughnuts?



Example

* A doughnut shop has plain doughnuts, cherry
doughnuts, chocolate doughnuts, almond

doughnuts, apple doughnuts, broccoli doughnuts.
How many ways are there to choose:

(e) two dozen doughnuts at least five chocolate doughnuts
and at least three almond doughnuts?

We have already chosen the first 8, so need to select the
remaining 16. There are C(6+16-1,6-1) ways to do this.



* A doughnut shop
doughnuts, choco
apple doughnuts,

Example

nas plain doughnuts, cherry
ate doughnuts, almond doughnuts,
oroccoli doughnuts. How many ways

are there to choose:

(e) two dozen doughnuts with at least one plain, at least two
cherry, at least three chocolate, at least one almond, at least

two apple, no more

than three broccoli doughnuts?



* A doughnut shop
doughnuts, choco
apple doughnuts,

Example

has plain doughnuts, cherry
ate doughnuts, almond doughnuts,

oroccoli doughnuts. How many ways

are there to choose:

(e) two dozen doughnuts with at least one plain, at least two
cherry, at least three chocolate, at least one almond, at least

two apple, no more

than three broccoli doughnuts?

We have already chosen the first nine doughnuts. We need
determine the ways to distribute 15 doughnuts without

choosing more than

3 broccoli doughnuts. The answer is

C(5+15-1,5-1) + C(5+14-1,5-1) + C(5+13-1,5-1) + C(5+12-1, 5-1).



Example

* In bridge, the 52 cards are dealt to 4 players. How
many different ways to deal bridge hands?



Example

* In bridge, the 52 cards are dealt to 4 players. How
many different ways to deal bridge hands?

— The answer is: C(52,13)*C(39,13)*C(26,13)*C(13,13)



Example

* How many terms are there in the expansion of (w + x +
y + z)1007?



Example

How many terms are there in the expansion of (w + x +
y + z)1007?

— each term of in the expansion of (w + x +y + z)1% is of the
form w2 x°ycz9 where a +b + c + d =100 where a, b, ¢, d are
nonnegative integers.

— Therefore, the answer is C(4 + 100 -1, 4 —1).



Example: Consider the following programming piece

for i= 1 to 100 do
for j= 1 to 1 do
for k= 1 to j do
print (i*j+k)

How many times the print statement 1s executed?



Example: Consider the following programming piece

for i= 1 to 100 do
for j= 1 to 1 do
for k= 1 to j do
print (i*j+k)

How many times the print statement 1s executed?

This is equivalent to selecting three integers from the set {1,2, ...,
100} with repetitions. (Here pennies = 3; kids = 100)

The answer is C(3+100-1,100-1) = C(102,99).



Example

* Find the number of non-negative integer solutions to

X;+ X, +X3=20,X;,£6,%X,<7, X3 <8.



Example

* Find the number of non-negative integer solutions to
X, + X, +X3=20,%X,<6,%,<7,X;<8.

— U: set of integer solution with x;, > 0, for all i.

— A: a set of integer solutions with x, > 7.

— B: a set of integer solution with x, > 8.

— C: a set of integer solution with x; 2 9.

— A n B: aset of integer solution with x; 27, x, 2 8.

— A N C: aset of integer solution with x;, 27, x3 2 9.

— B N C: aset of integer solution with x, 2 8, x; 2 9.

— AN BN C: asetofinteger solution withx, 27, x,2>8,x;209.

 Answer: |U]|-|A|-|B|-|C|+|]AnB|+]|ANnC|+|BnC]|
-|An BN CJ|.



Example

* Find the number of non-negative integer solutions to
X, + X, +X3=20,%X,<6,%,<7,X;<8.

— U: set of integer solution with x, 2 0, for alli. |U| = C(3+20-1,3-1)

— A: aset of integer solutions with x, > 7. |A| = C(3+13-1,3-1)

— B: a set of integer solution with x, > 8. |B| = C(3+12-1, 3-1)

— C: a set of integer solution with x; 2 9. |C| = C(3+11-1,3-1)

— A n B: aset of integer solution with x; 27, x, 2 8.| AnB|=C(3+5-1,2)
— AN C: aset of integer solution with x, 27, x; 29.|AnC|=C(3+4-1,2)

— B n C: aset of integer solution with x, > 8, x; 29.|BNC|=C(3+3-1,2)

— AN BN C: asetofinteger solution with x;, 27, x,2>8,x;29. Empty

 Answer: |U]|-|A|-|B|-|C|+|]AnB|+]|ANnC|+|BnC]|
-lANBNC|=3




Example

Determine the number of integer solutions to the following:

(a) equationx; +x+x3=6,x; > 0,1 <1< 3.

(b) equation x; +xp +x3+x4+x5=15,x;, > 0,1 <i <3.

(¢c) equations x1+x2+x3=6andx; +x+x3+x4+x5=15,x, >0, 1<
1 <5.

(d) equations x;1 +x2+x3<6andx;+x2+x3+x4+x5 <15,x;, >0, 1<
i <S5.



Example

*¥**Four connecting rooms are to be painted with k district colors so that no
two adjacent rooms have the same color. Room A is connected to room B
(by door 1) and room C (by door 2). Room B is connected to room C (by
door 3). Room C is connected to room D by door 4. How many ways can
one paint the rooms so that no two adjacent rooms (shared by a door) cave
the same colour.




Example

{ Let D; be the painting schemes if the wall containing door i is removed.
D;ND; is set of the painting schemes coloring the rooms if the walls con-
taining i and j are removed. We can define similarly D; N D; N Dy and
D;ND;NDyNDy. Note that when all 4 walls containing doors are removed,
there are only k£ ways to paint one room. If there is no constraint on colors
of adjacent rooms, k* different ways we can paint four rooms. }




