Applications of Logic

e Logical circuits are built using =, A, v gates.
* NOT (—) gate

if: Aa=0
Then: a=1 _
A A
a N 4] 1
0 — o1 ———0H
if: Aa=1
Then: A=0 _
A A
a N 1 0
] ‘ | Yan
l#>‘ko —F O

OR (v) gate

l.
:
}
I,

1.
:
}
I,

AND (A) gate

X

O—.

O—.

O—.

l—.

1 —

0 —

1 —

Boolean Simplification

L —e

A

Bree

A + AB

A (same)

s

A + AB

= A

Boolean Simplification

(A + BY)(A + C) = A + BC

C A+C (same)

A A+B ||
B
(A+B) (A+C) B
A \

A / A
A + BC +—
- BC B
C

Distributive Law: pv(gar)=(pvag)a(pvr)

Boolean Simplification
(two equivalent circuits)

["\ AB

) D Q = AB + BC(B+C)
D— BC (B+C)

Boolean Simplification

(two equivalent circuits)
["\ AB

) D Q0 = AR + BC(B+C)
C
BC (B+C)

(AAB)Vv(BAC)A(BVC)=(AAB)Vv((BAC)AB)V((BAC)A B)
(AAB)v(BAC)v (BAC)
(

AAB)v(BAC) =BA(AvC()

DeMorgan’s Law

A — AB —
AB
B —

.. .Is equivalentto. ..

A

A ->o—
B ->)—_
B

Boolean Simplification
(two equivalent circuits)

A+BC

A /
A+BC
B
BC AR
C :% D Q = A+BC + AB

§
DTPE A+BC + AB

A

AB

Automated Theorem Proving

* Deals with the development of computer
programs that show that some statement is a
logical consequence of a set of statements.

An example

 Determine whether the following argument is
valid.

— She is a math major or cs major

— If she doesn’t know discrete math, she is not a
math major.

— If she knows discrete math, she is smart.
— She is not a ¢s major.

e = She is smart.

s : She is smart

pVvq
—.r:}—.p

N —=> S
—

An example

ne is a math major
ne is a CS major
ne knows discrete math

IS true
Is true
Is true

Is true

Therefore, s

Logical Inference (section 2.11)

* Suppose we know that the statementp=q is
true.

— This tells us whenever p is true, g is true.

— |t does not tell us whether p or g is true. (They
both could be false, or p is false and g is true.)

* Suppose in addition we know that p is true.
* |n this case we can infer that g is true.
* This is called logical inference.

Rules of Inference

Rules of inference

Name

p=q Modus ponens

P

.q

p=q Modus tollens

-q

S.Tp

p=q Transitivity (hypothetical syllogism)
q=r

S.p=r

pVgq Elimination (disjunctive syllogism)
-q

Ny

pAqg Simplification

Ny

p Conjunction

q

S.PAg

-p=F Contradiction

R 2

Theoretical Computer Science

* Problem SAT (Satisfiability problem)

— Given a formula involving n boolean variables,
determine if it is possible to make the formula
true by assigning truth values to the propositions.

Theoretical Computer Science

A Boolean variable is a variable that can have a value 1 or
0. Thus, Boolean variable is a proposition.

A term is a Boolean variable

A literal is a term or its negation

A clause is a disjunction of literals

A sentence in PL is a conjunction of clauses

Example of a formula
— (avbv-cv-da(=bvc)a(-avcvd)
A formula is satisfiable iff
— we can assign a truth value
— to each Boolean variables
— such that the sentence evaluates to true (i.e., holds)

Theoretical Computer Science

A Boolean variable is a variable that can have a value 1 or
0. Thus, Boolean variable is a proposition.

A term is a Boolean variable

A literal is a term or its negation

A clause is a disjunction of literals

A sentence in PL is a conjunction of clauses

Example of a formula This problem is
— (avbv-cv-dA(=bvc)a(-avcvd) extremely hard
A formula is satisfiable iff to solve

— we can assign a truth value
— to each Boolean variables
— such that the sentence evaluates to true (i.e., holds)

