### **Applications of Logic**

- Logical circuits are built using ¬, ∧, ∨ gates.
- NOT (¬) gate



### OR (v) gate

















#### AND $(\land)$ gate



#### **Boolean Simplification**

A + AB = A



#### **Boolean Simplification**

(A + B) (A + C) = A + BC



Distributive Law:  $p \vee (q \wedge r) = (p \vee q) \wedge (p \vee r)$ 





 $(A \land B) \lor (B \land C) \land (B \lor C) = (A \land B) \lor ((B \land C) \land B) \lor ((B \land C) \land B)$  $= (A \land B) \lor (B \land C) \lor (B \land C)$  $= (A \land B) \lor (B \land C) = B \land (A \lor C)$ 

#### DeMorgan's Law



... is equivalent to ...



$$\overline{AB} = \overline{A} + \overline{B}$$

### Boolean Simplification (two equivalent circuits)





### Automated Theorem Proving

 Deals with the development of computer programs that show that some statement is a logical consequence of a set of statements.

### An example

- Determine whether the following argument is valid.
  - She is a math major or cs major
  - If she doesn't know discrete math, she is not a math major.
  - If she knows discrete math, she is smart.
  - She is not a cs major.
- $\Rightarrow$  She is smart.

#### An example

- p: She is a math major
- q: She is a cs major
- r : She knows discrete math
- s : She is smart
  - 1. p v q is true 2.  $\neg r \Rightarrow \neg p$  is true 3.  $r \implies s$  is true 4. ¬q is true
  - 5. Therefore, s

# Logical Inference (section 2.11)

- Suppose we know that the statement p ⇒ q is true.
  - This tells us whenever p is true, q is true.
  - It does not tell us whether p or q is true. (They both could be false, or p is false and q is true.)
- Suppose in addition we know that p is true.
- In this case we can infer that q is true.
- This is called **logical inference**.

### **Rules of Inference**

| Rules of inference                                                                   | Name                                  |
|--------------------------------------------------------------------------------------|---------------------------------------|
| $p \Rightarrow q$                                                                    | Modus ponens                          |
| p                                                                                    |                                       |
| $\therefore q$                                                                       |                                       |
| $p \Rightarrow q$                                                                    | Modus tollens                         |
| $\neg q$                                                                             |                                       |
| $\therefore \neg p$                                                                  |                                       |
| $p \Rightarrow q$                                                                    | Transitivity (hypothetical syllogism) |
| $q \Rightarrow r$                                                                    |                                       |
| $\therefore p \Rightarrow r$                                                         |                                       |
| $p \lor q$                                                                           | Elimination (disjunctive syllogism)   |
| $\neg q$                                                                             |                                       |
| $\therefore p$                                                                       |                                       |
| $p \wedge q$                                                                         | Simplification                        |
| $\therefore p$                                                                       |                                       |
| p                                                                                    | Conjunction                           |
| q                                                                                    |                                       |
| $\begin{array}{c c} \therefore p \land q \\ \hline \neg p \Rightarrow F \end{array}$ |                                       |
| $\neg p \Rightarrow F$                                                               | Contradiction                         |
| ∴ <i>p</i>                                                                           |                                       |

### **Theoretical Computer Science**

- Problem SAT (Satisfiability problem)
  - Given a formula involving n boolean variables, determine if it is possible to make the formula true by assigning truth values to the propositions.

# **Theoretical Computer Science**

- A <u>Boolean variable</u> is a variable that can have a value 1 or
  0. Thus, Boolean variable is a proposition.
- A <u>term</u> is a Boolean variable
- A literal is a term or its negation
- A <u>clause</u> is a disjunction of literals
- A <u>sentence</u> in PL is a conjunction of clauses
- Example of a formula
  - $(a \lor b \lor \neg c \lor \neg d) \land (\neg b \lor c) \land (\neg a \lor c \lor d)$
- A formula is <u>satisfiable</u> iff
  - we can assign a truth value
  - to each Boolean variables
  - such that the sentence evaluates to true (i.e., holds)

# **Theoretical Computer Science**

- A <u>Boolean variable</u> is a variable that can have a value 1 or
  0. Thus, Boolean variable is a proposition.
- A <u>term</u> is a Boolean variable
- A literal is a term or its negation
- A <u>clause</u> is a disjunction of literals
- A <u>sentence</u> in PL is a conjunction of clauses
- Example of a formula
  - $(a \lor b \lor \neg c \lor \neg d) \land (\neg b \lor c) \land (\neg a \lor c \lor d)$
- A formula is <u>satisfiable</u> iff
  - we can assign a truth value
  - to each Boolean variables
  - such that the sentence evaluates to true (i.e., holds)

This problem is extremely hard to solve