Applications of Logic



e Logical circuits are built using =, A, v gates.
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AND (A) gate
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Boolean Simplification
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Boolean Simplification

(A + BY)(A + C) = A + BC

C A+C (same)
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Distributive Law: pv(gar)=(pvag)a(pvr)



Boolean Simplification
(two equivalent circuits)
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Boolean Simplification

(two equivalent circuits)
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DeMorgan’s Law
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Boolean Simplification
(two equivalent circuits)
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Automated Theorem Proving

* Deals with the development of computer
programs that show that some statement is a
logical consequence of a set of statements.



An example

 Determine whether the following argument is
valid.

— She is a math major or cs major

— If she doesn’t know discrete math, she is not a
math major.

— If she knows discrete math, she is smart.
— She is not a ¢s major.

e = She is smart.



s : She is smart
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An example

ne is a math major
ne is a CS major
ne knows discrete math

IS true
Is true
Is true

Is true

Therefore, s



Logical Inference (section 2.11)

* Suppose we know that the statementp=q is
true.

— This tells us whenever p is true, g is true.

— |t does not tell us whether p or g is true. (They
both could be false, or p is false and g is true.)

* Suppose in addition we know that p is true.
* |n this case we can infer that g is true.
* This is called logical inference.



Rules of Inference

Rules of inference

Name

p=q Modus ponens

P

.q

p=q Modus tollens
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p=q Transitivity (hypothetical syllogism)
q=r

S.p=r

pVgq Elimination (disjunctive syllogism)
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p Conjunction
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-p=F Contradiction
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Theoretical Computer Science

* Problem SAT (Satisfiability problem)

— Given a formula involving n boolean variables,
determine if it is possible to make the formula
true by assigning truth values to the propositions.



Theoretical Computer Science

A Boolean variable is a variable that can have a value 1 or
0. Thus, Boolean variable is a proposition.

A term is a Boolean variable

A literal is a term or its negation

A clause is a disjunction of literals

A sentence in PL is a conjunction of clauses

Example of a formula
— (avbv-cv-da(=bvc)a(-avcvd)
A formula is satisfiable iff
— we can assign a truth value
— to each Boolean variables
— such that the sentence evaluates to true (i.e., holds)




Theoretical Computer Science

A Boolean variable is a variable that can have a value 1 or
0. Thus, Boolean variable is a proposition.

A term is a Boolean variable

A literal is a term or its negation

A clause is a disjunction of literals

A sentence in PL is a conjunction of clauses

Example of a formula This problem is
— (avbv-cv-dA(=bvc)a(-avcvd) extremely hard
A formula is satisfiable iff to solve

— we can assign a truth value
— to each Boolean variables
— such that the sentence evaluates to true (i.e., holds)



