MACM 101 (Homework 4) February 24, 2014 Date Due: March 3, 2014.

- **Part A:** Practice questions. You are strongly encouraged to work on these problems. You are not required to hand in the solutions to these problems.
 - 1. Problems from the text.
 - (a) Section 3.1: 8, 10, 17, 18
 - (b) Section 3.2: 6(bc), 8, 14(c)
 - (c) Section 3.3: 4, 6
 - (d) Section 3.4: 6, 8, 10, 16
 - 2. Use the method of contrapositive proof to prove the following statements. (Try first the direct proof. You will notice that contrapositive proof is easier.)
 - (a) $\forall a, b \in Z$: If $a^2(b^2 2b)$ is odd, then a and b are odd.
 - (b) $\forall a, b, c \in Z$: If a does not divide bc, then a does not divide b.
 - 3. Use the fact that any odd number is of the form $8k \pm 1$ or $8k \pm 3$ (k is an integer) in order to give a direct proof of the claim that the square of any odd number leaves remainder 1 upon division by 8. Use this to show that 2001 is not the sum of three odd numbers.
 - 4. Let s be a positive integer. Prove that the closed interval [s, 2s] contains a power of 2.

{Hints: Use proof by cases. Consider two cases: (a) s is a perfect power of 2, and (b) s is not a perfect power of 2, i.e. $2^k < s < 2^{k+1}$ for some integer k.}

- 5. Suppose A, B and C are subsets of the universe U. Prove that
 - (a) if $A \subseteq B$ then $A \cap C \subseteq B \cap C$.
 - (b) if $A \subset B$ then $\overline{B} \subseteq \overline{A}$.
 - (c) if $A \subset C$ and $B \subseteq C$ then $A \cup B \subseteq C$.
- 6. Determine if the following statements are true or false:
 - (a) A and B A are disjoint.
 - (b) $(A \subseteq \overline{B} \land \overline{A} \subseteq \overline{B}) \Rightarrow B = \Phi.$

Part B: Homework questions.

1. Prove, by arguing by contradiction, that $\sqrt{3}$ is an irrational number. **Ans:** Let $p : \sqrt{3}$ is irrational. We assume $\neg p$ (i.e. $\sqrt{3}$ is rational). Therefore, there exist two integers a and b, not both even, otherwise we simplify, such that $\sqrt{3} = \frac{a}{b}$. Squaring we get $a^2 = 3b^2$. We notice that both a and b have to be odd. Why? If b is even, b^2 is even. If b^2 is even, $3b^2$ is even. If $3b^2$ is even, a is even. This is a contradiction, since both a and b can't be even.

Thus we have both a and b odd. Therefore, we can write a = 2k + 1 and b = 2k' + 1 for some integer k and k'. Thus

$$0 = a^{2} - 3b^{2}$$

$$0 = (2k+1)^{2} - 3(2k'+1)^{2}$$

$$0 = 4k^{2} + 4k - 12k'^{2} - 12k' - 2$$

$$0 = 2(k^{2} + k - 6k'^{2} - 6k') - 1$$

The right hand side is an odd non-zero number - it is a contradiction. Thus, $\sqrt{3}$ is a rational number leads to a contradiction. Therefore, $\sqrt{3}$ is an irrational number.

2. Prove, by arguing by contradiction, that there are no integers, *a*, *b*, *c*, *d* such that

$$x^{4} + 2x^{2} + 2x + 2 = (x^{2} + ax + b)(x^{2} + cx + d)$$

Ans:

$$x^{4} + 2x^{2} + 2x + 2 = (x^{2} + ax + b)(x^{2} + cx + d)$$

= $x^{4} + (a + c)x^{3} + (d + b + ac)x^{2} + (ad + bc)x + bd$

Thus

$$bd = 2, ad + bc = 2, d + b + bc = 2, a + c = 0$$

Assume a, b, c, d are integers which satisfy the above identities. Since bd = 2, b and d must be of opposite parity (one odd, the other even). But then d + b must be odd, and since d + b + bc = 2, bc must be odd, meaning that both b and c are odd. Therefore, d is even. This means that ad is even. Therefore, ad + bc is odd. But we notice that ad + bc = 2 which says that ad + bc is even. Thus we arrive at a contradiction: ad + bc is both odd and even. Hence a, b, c, d can't be all integers.

3. Use the method of contrapositive proof to prove the following statements. (Try first the direct proof. You will notice that contrapositive proof is easier.) (a) $\forall n \in \mathbb{Z}$. If n^2 is even, then n is even.

Ans: Consider the open statements $p(n) : n^2$ is even, and q(n) : n is even. The contrapositive of the above statement is $\forall n \neg q(n) \rightarrow \neg p(n)$. If $\neg q(n)$ is true, i.e. n is odd, clearly n^2 is odd. Therefore $\neg p(n)$ is true.

- (b) $\forall x \in R : \text{If } x^3 x > 0 \text{ then } x > -1.$ **Ans:** Consider the open statements $p(x) : x^3 - x > 0 \text{ and } q(x) : x > -1.$ The contrapositive of the above statement is $\forall x \neg q(x) \rightarrow \neg p(x)$ Clearly, $x \leq -1(\neg q(x) \text{ is true})$ implies that $x^3 - x \leq 0 (\neg p(x) \text{ is true})$. The contraposition formula is very easy to prove here. You should select the proof method that is appropriate for the problem at hand.
- 4. Describe each of the following sets in the format $\{x | \text{property of } x\}$.
 - (a) $A = \{ 0, 2, 4, 6, 8, ... \}$ Ans: $A = \{ 2x \mid x \in N \}$
 - (b) $B = \{1, 5, 9, 13, ...\}$ Ans: $B = \{ 4x + 1 | x \in N \}$
 - (c) $C = \{1, 1/2, 1/3, 1/4, ...\}$ Ans: $C = \{ \frac{1}{x} \mid x \in N^+ \}$
- 5. Let U be the universal set and let $A, B, C \subseteq U$. Using the properties of union, intersection and complement and known set laws, simplify the followin:

(a)
$$\overline{A \cap U} \cup \overline{A}$$

Ans: $\overline{A \cap U} \cup \overline{A} = \overline{A} \cup \overline{A} = \overline{A}$.

(b) $(A \cap B) \cap \overline{A}$. **Ans:** $(A \cap B) \cap \overline{A} = \overline{\overline{A \cap B} \cup A} = \overline{\overline{A} \cup \overline{B} \cup A} = \overline{\overline{U} \cup \overline{B}} = \overline{\overline{U}} = \Phi$.