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Counting

Sections 1.1,1.2,1.3,1.4



Permutations and combinations

 Combinatorics, the study of arrangements of
objects, is an important part of discrete
mathematics.

e Combinatorics are used in

— Discrete probability: What is the probability to
guess a 6-symbols password in the first attempt?

— Analysis of algorithms: Why a comparison-based
sorting algorithm cannot be more efficient than
cnlogn for any constant c.



The Rule of Sum

* If the first task can be performed in m ways, while a second
task can be performed in n ways, and the two tasks cannot
be performed simultaneously, performing either task can
be accomplished in any one of m + n ways.

 Example: A deck of cards.
— How many ways can | draw a heart? (13 ways)

— How many ways can | draw a heart and a spade? (13 + 13 =26
ways)

— .... a heart or a king of spade? (13 hearts and 1 king = 14 ways.)
— ....aking? (4 ways)
— ....a heart or a king? (13 hearts (includes 1 king) + 3 other kings)



The Rule of Product

e |If a procedure can be broken down into n stages and
second stages, and if there are m possible outcomes for
the first stage and if, for each of these outcomes, there
are n possible outcomes, the total procedure can be
carried out, in the designated order, in m.n ways.

 Example: A new company with two employees rents a
floor of a building with 12 offices. How many ways are
there to assign different offices to these two employees?

— The office to the first employee can be done in 12 ways.

— After the first assignment, the office to the second employee
can be assigned in 11 ways. By the product rule, there are 12.11
= 132 ways to assign 12 offices to two employees.



Permutations

@ Example: In how many ways can we select 3 students from a
group of 5 student to stand in a line for a picture?

@ Solution: First, note that the order in which we select students
matters. There are 5 ways to select the first student. Once the first
one is selected we are left with 4 ways to select the second student.
After selecting the first 2 students there are 3 ways to select the third
one _ - a i
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By the rule of product, there are 5-4 -3 =60 ways to select
students.




Permutations

@ Given a collection of n distinct objects, any (linear) arrangement
of these objects is called a permutation of the collection.
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@ A permutation of size r (0 sr=n) is any (linear)
arrangement of r distinct objects from the collection

T R




The Number of Permutations

@ Similar to the example on the previous slide, the number P(n,r) of
permutations of size r from a collection of n objects can be found
as follows:

We choose r elements outof n and the order matters.
There are n ways to choose the first element,
there are n—1 ways to choose the second element

there are n—r+1 ways to choose element number r

By the rule of product, P(n,r)=n-(n-1)-(n-2)-...-(n-r+1)
@ Recallthat n'=1-2-3-...-(n-1)-n
@ Therefore And the number of permutations

P(n,r) = (n[’r)! P(n,n) = n!



Example

@ Example: How many permutations of the letters ABCDEFGH
contain the string ABC?

@ Solution: Because the letters ABC must occur as a block, we
can find the answer by finding the number of permutations of six
objects, namely, the block ABC and the individual letters D, E, F,
G, and H. Since these six objects can occur in any order, there are

P(6,6) = 6! =720

permutations of the letters ABCDEFGH in which ABC occurs as a
block.



Permutations with Repetitions

@ How many different 4-letter words (not necessarily meaningful) can
be built permuting the letters of the word COOL?

@ [f all letters were distinct then the answer would be the number of
all permutations of a 4-element set. However, in words we build we
do not distinguish two O.

@ So, words O.CLO, and O,CLO. are equal. Foreach of the
words we are interested in, there are two words in which the two O’s
are distinguished.

@ Therefore the answer is 3!=12



Permutations with Repetitions

@ Theorem.
If there are n objects with n, indistinguishable objects of a first
type, n, indistinguishable objects of a second type, ..., and n,

indistinguishable objects of a type r, where n, +n, +...+n, =n,
then there are

n!
n,!n,...n !

(linear) arrangements of the given n objects.

@ Each arrangement of this type is called a permutation with repetitions



Example

@ Determine the number of (staircase) paths in the xy-plane from
(0,0) to (6,4), where each such path is made up of individual steps

going one unit to the right (R) or one unit upward (U).
y A

*

@ Every path like this can be
encoded as a sequence of R's
and U's
@ For example, the path on the
. »  picture is encoded as

2 3 4 5 % X RUURRRURRU

@ Therefore, the number of paths equals to the number of
permutations with repetitions: 6 R's and 4 U’s:

10!
6141 = 210

- N W




Combinations

* How many committees of three students can
be formed from a group of four students?

* Solution: To answer this question, we need
only to find the number of subsets with three
elements from the set containing four
elements. As is easily seen, there are four such
subsets. Note that order in which these
students are chosen does not matter.



Combinations

@ An r-combination of elements of a set is an unordered selection
of r elements from the set. Thus, an r-combination is simply a
subset of the set with r elements.

@ The number of r-combinations of a set with n distinct elements is
denoted by C(n,r). Note that C(n,r) is often denoted by Errﬁ and is

/LA, i r
called a binomial coefficient. /



Example

@ Reconsider the example with paths in the plain

]
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@ To get from (0,0) to (6,4) we need to make 10 steps. Among them 4
steps are upward and the rest to the right.

@ Therefore every path corresponds to a selection from steps 1,2,...,10
four steps upward.

@ Thus, the number of steps equals C(10,4) = A1 (1})01 H- i%" =210



Combinations with Repetitions

@ How many ways are there to select four pieces of fruit from a bowl
containing apples, oranges, and pears if the order in which the pieces
are selected does not matter, only the type of fruit and not the
individual piece matter, and there are at least four pieces of each type
of fruit in the bowl?

@ Solution (brute force): List all possibilities

4 apples 4 oranges 4 pears

3 apples, 1 orange 3 apples, 1 pear 3 oranges, 1 apple
3 oranges, 1 pear 3 pears, 1 apple 3 pears, 1 orange
2 apples, 2 oranges 2 apples, 2 pears 2 oranges, 2 pears

2 apples, 1 orange, 1 pear 2 oranges, 1 apple,1 pear 2 pears, 1 apple,
1 orange



Combinations with Repetitions

@ A better way:

four pieces of fruit
A
' | N
) e
apples oranges pear

@ Every choice of fruits corresponds to an arrangement of 4 stars
and 2 bars.

We have six positions to place a symbol, and two of them must be
bars. Therefore the number we are looking for is

_ 6 _65_
C62=26-21" 12~ 1



Combinations with Repetitions

Theorem: There are C(n+r-1,n-1) r-combinations
from a set with n elements when repetitions of
elements are allowed.

This is equivalent to placing r balls
(indistinguishable) into n bins.



Example

@ How many solutions does the equation
x+ty+z=11
have, where X, y, and z are nonnegative integers?

(In other words, in how many ways can we represent 11 as the
sum of 3 nonnegative summands?)

@ Solution:

A solution corresponds to a way of selecting 11 items from a set
with three elements so that x items of type one, y items of type
two, and z items of type three are chosen.

Hence, the number of solutions is equal to the number of 11-
combinations with repetitions from a set with 3 elements

CE+11-13-1)=CA32) =, /1> =112 =78



Example: Consider the set {a, b, c, d}. Suppose we
select two letters from these four. Depending on our
interpretation, we may obtain the following answers.

* Permutations with repetitions. The order is important,
repetitions allowed. In this case there are 4 x 4 = 16 possible
selections.

aa | ab | ac | ad

ba | bb | bec | bd

ca | ch | cc | ed

da | db | dec | dd




Example: Consider the set {a, b, c, d}. Suppose we
select two letters from these four. Depending on our
interpretation, we may obtain the following answers.

* Permutations without repetitions. The order is important,
repetitions are not allowed. In this case thereare 4 x 3 =12
possible selections.

ba

cd

da




Example: Consider the set {a, b, c, d}. Suppose we
select two letters from these four. Depending on our
interpretation, we may obtain the following answers.

 Combinations with repetitions. The order is not important,
repetitions are allowed. In this case there are4x3/2 +4 =10
possible selections.

aa lab | ac | ad

bb | be | bd

dd




Example: Consider the set {a, b, c, d}. Suppose we
select two letters from these four. Depending on our
interpretation, we may obtain the following answers.

 Combinations without repetitions. The order is not important,
repetitions are not allowed. In this case there are4x3/2 =6
possible selections.

ab | ac | ad

be | bd

cd




Fundamentals of Logic

Sections 2.1, 2.2, 2.3, 2.4



Logic

A proposition is a statement that is either
true or false. Atomic propositions p,q,r...
are combined to form compound

propositions using the following logical
connectives :



Logical Connectives
Operator Symbol | Usage

Negation - not

Conjunction and

Disjunction or

Conditional if,then

A
v
Exclusive or @ Xor
—
<>

Iff

Biconditional




Web Search

W

Use the form below and your advanced search will appear here

Find web pages that have... .
I'lady tiger

all these words:
this exact wording or phrase: | the other room
OR | Sign OR|

one or more of these words: I door

But don't show pages that have...

any of these unwanted words:

@ (lady a tiger) A (the other room) A (door v sign) A = insane



Truth Tables

Logical operators/connectives are defined by truth

tables:
. . P -p
* Negation truth table (unary):
F T
T F

* Binary truth tables:

p d | pAg

m M - —
m — m -
M m T -




Logically Equivalent

 Two statements s and s’ are logically equivalent,
s < s, when s is true if and only if " is true and s is
false if and only if " is false.

e The truth value columns of s and s’ are the same.



Contrapositive vs. Converse

Given an implication p —q
* the converse isq —p
* the contrapositive is -q —-p



Logical Proofs

There are two basic techniques for proving
tautologies and logical equivalences:
 Build a truth table. Verify that...
— last column is all TRUE for tautology

— relevant columns equal for equivalence

 Using tables on next, derive...
— TRUE starting from supposed tautology
— 15t proposition from 2"d



Tables of Logical Equivalences

|ldentity laws
Like adding O

Domination laws —
Like multiplying by O

ldempotent laws —
Delete redundancies

Double negation ——
“I don’t like you, not”

Commutativity
Like “x+y = y+x”

Associativity ———
Like “(x+y)+z = y+(x+2)”

Distributivity —
Like “(x+y)z = xz+yz”

De Morgan ——

p. 17, Rosen

TABLE S Logical Equivalences.

Eqﬁivalenée Name

pN\NT < p Identity laws

pVF & p

pVT &< T Domination laws
p/\F & F

pNVp < p Idempotent laws

P D> p

—(qp) <= p Double negation law
pVqg <= q\Vp Commutative laws

(rVVr < P\ (g7
P NANQQNr < pAN\(g/\r)

Associative laws

pV@g/N\r) = (pNv9 NP\
pN\@g\Vvr) <= (pANg@\/(p/\r)

Distributive laws

-(p/\q) & —p\/ g
“(pVq < p/A\-gq

De Morgan’s laws




Quantifiers

e Existential Quantifier
“J” reads “there exists”

* Universal Quantifier
“¥” reads “for all”

 Order matters:

dy VxR (x,y) and Vxdy R (x,y ) may not be
logically equivalent.



DeMorgan Identities

 “Not all true iff one is false.”
— Conjunctional version:
= (p,ApyA...Ap,) < (mpv-p,V..Vop,)
— Universal quantifier version:
- VxP(x)< dx -P(x)
* “Not one is true iff all are false.”
— Disjunctional version:
—(pvp,V...vp,) < (=p A= pPyA.. A=)
— Existential quantifier version:
- AxP(x) = Vx —-P(x)



Translating English statements into
symbolic form

Every integer that is not odd is even.
VneZ,~(nisodd )=>(niseven), or VneZ,~O0n)=En).

There is an integer that is not even.
dneZ,~E(n).

For every real number x, there is a real number y for which y3 =x«.
VxeRAyeR, y° =x.

Given any two rational numbers a and b, it follows that ab is rational.
Va,beQ,abeq.



Goldbach’s conjecture

 Conjecture: Every integer greater than 2 is the sum
of two primes.

This can be translated in the following way,
where P is the set of prime numbers and

S={4,6,8,10, ....} is the set of even integers

greater than 2. Both the translations are
equivalent.

(nES)z(EIp,qEP,n:p+q)
VneS,dp,geP,n=p+q



Proofs

Section 2.5,4.1,5.5



Definition

e Theorem: A theorem is a statement that is
true and has been proved to be true.

e Lemma: A lemma is a theorem whose main
purpose is to help prove another theorem.

* Corollary: A corollary is a result that is an
immediate consequence of a theorem.



Proof Methods

e Exhaustive method

@ The simplest method is the method of exhaustion:

To prove that Vx P(x), just verify that P(a) is true for all values a
from the universe.

To prove that 3x P(x), by checking all the values in the universe
find a value a such that P(a) is true

“Everycarinlot Cis red”

“There is a blue carin lot C”



Direct Proofs

@ Direct proofs are used when we need to proof statements like
Vx (P(x) — Q(x))

@ Main steps
Our goal is to prove that P(a) — Q(a) is a tautology for a generic
value a.

1. Assume that P(a) is true

2. Using axioms, previous theorems etc. prove that Q(a) is true

3. Conclude that P(a) — Q(a) is true

4. Use the rule of universal generalization to infer
Vx (P(x) — Q(x))



Direct Proofs

Proposition If x is odd, then x2 is odd.

Proof. Suppose x is odd.

Then x =2a +1 for some a € Z, by definition of an odd number.
Thus x* = (2a+1)? = 4a® + 4a + 1 = 2(2a* + 2a) + 1.

So x? =2b+1 where b is the integer b = 2a* + 2a.

Thus x* =2b+1 for an integer b.

Therefore x? is odd, by definition of an odd number.




Proof by cases

* In proving a statement is true, we sometimes have
to examine multiple case before showing the
statement is true in all possible scenarios.

Proposition IfneN, then 1+(-1)"(2n—-1) is a multiple of 4.

Proof. Suppose n € N.
Then n is either even or odd. Let’s consider these two cases separately.

Case 1. Suppose n is even. Then n =2k for some 2€ Z, and (-1)" =1.
Thus 1+(-1)"(2n—-1) =1+(1)(2-2k —1) = 4k, which is a multiple of 4.

Case 2. Suppose n is odd. Then n =2k +1 for some k€ Z, and (-1)" = -1.
Thus 1+(-1)"(2n—-1) =1-(2(2k +1)-1) = —4k, which is a multiple of 4.

These cases show that 1+(-1)"(2n - 1) is always a multiple of 4. |



Proof by Contraposition

@ Sometimes direct proofs do not work

@ Definition: »n is even ifand only if thereis k£ such that n = 2k

@ Provethatif 3n+ 2 iseven, then n is also even
Thatis Vx (E(3x +2) — E(x))
@ Let us try the direct approach:

As for the generic value n the number 3x + 2 is even, for some
k we have 3n + 2 =2k. Therefore 3n=2(k+ 1).

Now what?

@ Whatifinstead of Vx (E(3x + 2) — E(x)) we prove the
contrapositive, Vx (=E(x) — -E(3x+2)) ?



Proof by Contraposition (contd.)

@ Soassumethat n is 0dd, thatisthereis k suchthat n =2k + 1.

@ Then 3n+2=3R2k+1)+2=6k+5=23k+2)+ 1.
Thatis 3n + 2 is odd.

@ We have proved that —=E(3# + 2) is true, and therefore the
contraposition Vx (-E(x) — =E(3x + 2)) is true.

Finally, we conclude that the theorem Vx (E(3x + 2) — E(x)) is also
true.



Proof by Contraposition (contd.)

@ Main steps

Our goal is to prove that P(a) — Q(a) is a tautology for a generic
value a.

Instead we prove the contrapositive —Q(a) — -P(a)
1. Assume that = Q(a) is true
2. Using axioms, previous theorems etc. prove that = P(a) is true
3. Conclude that =Q(a) — —P(a) is true
4. Conclude that P(a) — Q(a) is true

5. Use the rule of universal generalization to infer
Vx (P(x) = Q(x))



Example

Proposition Suppose x,yeZ. If 5/xy, then 5/x and 51y.

Proof. (Contrapositive) Suppose it is not true that 5/x and 51y.
By DeMorgan’s law, it is not true that 5/x or it is not true that 51y.
Therefore 5|x or 5| y. We consider these possibilities separately.
Case 1. Suppose 5|x. Then x =5a for some a € Z.

From this we get xy=>5(ay), and that means 5| xy.

Case 2. Suppose 5|y. Then y=>5a for some a € Z.

From this we get xy =5(ax), and that means 5| xy.

The above cases show that 5|xy, so it is not true that 51xy.



Proof by Contradiction

Proofs by contradiction use the Rule of Contradiction

o p
Can be used to prove statements of any form

Main steps
1. Assume =p.
2. Using axioms, previous theorems etc. infer a contradiction
3. Conclude p.

Usually the contradiction has the form  3x (Q(x) A = Q(x))



Example

* The following problems have been solved using the
proof by contradiction method.

1. Show that square-root(2) is irrational
2. Show that there are infinitely many primes.
3. For any integer a, if a?is even, then a is even.



Outline for Proving a Conditional
Statement with Contradiction

Proposition If P, then Q.

Proof. Suppose P and ~ Q.

Therefore C A ~C.




Some words of advice

* |tis best to use proof by contradiction when
the direct and the contrapositive approaches
do not seem to work.



Proving Existential Statements

@ How to prove 3x P(x).
@ Constructive proofs: find or construct a value a such that P(a) is
true.
Prove that there is a grey car...
My car is grey!

@ Pure proofs of existence:
Assume that ¥x =P(x).
Using axioms, previous theorems etc. infer a contradiction
Thus, this is a proof by contradiction.



Set Theory

Sections 3.1, 3.2, 3.3



Set Theory

A set is an unordered collection of objects.
The objects in a set are called elements.

One way to describe a set is to list its elements
{0,1,2,3,4,5, 6,7, 8, 9} —the set of digits

(3, b, ...., X, ¥, X} — the alphabet set
A set can be element of another set

{{a,b, ...}, {0,1,2, ...., 9}, ... ,{o, B, ....}, ....} = set of
all alphabets



Set builder

@ Big sets can be described using set bullder:
{x| P(x)}, the setofall x such that P(x)

{x | there is y suchthat x = 2y}, the set of even numbers
I

{x]3Jy (x=2y)}
{x| x is a black cow}
N ={0,1,2,3,...}, the set of natural numbers

Z.={..,2-101,23,..}, the set of integers
Q={p/q| p,q areintegersand q = 0}, the set of rationals

/2" ,Q" the sets of positive integers and positive rationals
R, the set of real numbers
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Some illustrations of set-builder
notation

. {n:n is a prime number} =1{2,3,5,7,11,13,17,...}
. {n€eN:n is prime} ={2,3,5,7,11,13,17,...}

. {n%:nez}={0,1,4,9,16,25,...}

: {xER:x2—2=O}:{\/§,—\/§}

: {xEZ:x2—2:0}=¢
{xeZ:|xl<4}={-8,-2,-1,0,1,2,3}

. {2x:x€Z,|x| <4} ={-6,-4,-2,0,2,4,6}

: {xEZ:|2x|<4}:{—1,0,1}



Special sets

The empty set: @ ={}
The natural numbers: N={1,2,3,4,5,...}
The integers: z=4...,-8,-2,-1,0,1,2,3,4,5,...}

The rational numbers: Q={x : x = ™ where m,neZ and n # 0}
n

The real numbers: R  (the set of all real numbers on the number line)



Universe

@ Although, in theory, elements of sets can be anything, in practice, it
Is not very convenient to allow such diversity. Say, if we are talking
about numbers, all sets we can encounter have numbers as
elements. If we work in propositional logic, then we are dealing with
sets of statements, etc.

@ This is why we usually have some sort of a universal sef or a
universe in mind, that contains all objects we may need.

@ Example
{x]| 1sx=<10} What is this set?
{(xeZ| 1=x=<10} the set of all integers from 1 to 10
{xeQ| 1=x=<10} the setof all rationals from 1 to 10



Equality of Sets, Subsets

 Two sets are equal if they have the same
elements.

e |f Bis asubset of A, every element of B is an
element of A. We write BCA



Equality of Sets, Subsets (contd.)

{1,3} £ {1,3,5}

¢ £¢
< ¢
Q+

Z" Q € R
@ Set B isnot asubset ofaset A if

X (XxEBAXEA)

There is an element in B that is not an element of A

@ Another way to say that two sets are equal: each of themis a
subset of the other



Equality of Sets, Subsets (contd.)

A set B is a proper subset of a set A, if it is a subset A
and is not equal to A (BCA).

If Ais a subset of Band B is a subset of C, A is a subset
of C. (Transitive relation)

Empty set has no element, denoted by &
— How many elements does the set {J}contain?

Theorem. Foranyset A, () GCA, and (i) ACA.
Cardinality of a set: It is the number of elements in the
set. The cardinality of A: |A|=n.

— A set with finite number of elements is called a finite set.

— A set with infinite number of elements is called an infinite set.
— Sets N, Z, Q, R are infinite.



Power set of a set

e Given a set A, the power set of A, P(A), is the
set of all subsets of A.

* Theorem: If A is finite, |P(A)| = 2!Al.



Venn Diagram

* |tis often used to visualize the various
relations between the sets.

universe

),

)

set

B is a subset of A



Intersection

* The intersection of sets A and B, denoted by A
B,N; the set that contains those elements in
both A and B.




Union

 The union of sets A and B, denoted by AU B,
is the set that contains those elements that
are in either A or B.




Disjoint Sets and Principle of

Inclusion-Exclusion

@ Sets A and B are said to be disjointif ANB=@.

Sets {Mon,Tue,Wed,Thu,Fri} and {Sat,Sun} are disjoint.
@ Principle of inclusion-exclusion. For any finite sets A and B
|AUB| = |A]+|B|-[ANB]

00

To count elements in A U B we first count elements of A, then
elements of B. Elements of A M B are counted twice, so, we

subtract the number of such elements
@ If A and B aredisjoint,then |AUB| = |A|+|B]|




Symmetric Difference

@ The symmetric difference of sets A and B, denotedby AAB, is
the set that contains those elements that are eitherin A orin B,
but not in both.

@ AAB={x| xeA®xeB}

\—
AAB

@ Example
{Jan.,Feb.,Mar.} A {Dec.,Jan.,Feb.} = {Dec.,Mar.}



Complement

@ Let A beasetand U auniverse, ACU. The complement of

A, denoted by A, is the set that comprises all elements of U that
do not belong to A.

A={x|xeU and x&&A} = {x|x&A}

@ l_\
@ Let the universe be the set of all integers, and A={x|3dy x=2y}
Then A isthe set of all odd numbers




Difference

@ The difference of sets A and B (or relative complement of B in
A), denoted by A- B, is the set containing those elements that are
in A, butnotin B.

A-B={x|xEeA Ax&B}.

/

A-B

@ {1,3,5}-{1,23}={5}
@ Clearly, A=U-A



Sets and Logic

@ If we look closer at the second proof, we notice that there is a very
tight connection between set operations and logic connectives

-~ corresponds to complement

v corresponds to union U
A corresponds to intersection N

@ corresponds to symmetric difference A
0 (false) corresponds to the empty set &
1 (truth)  corresponds to the universe U



Laws of Set Theory

ANB=AUB

AU =A

AAU =A |dentity laws
AUU =U Domination laws
AN =

AUA =A Idempotent laws
ANA =A

(A) = A Complementation law
AUB =BUA Commutative laws
ANB =BNA

AU (BUC) - AUB)UC  aqsociative laws

ANBNC)=(ANB)NC



More Laws of Set Theory

AN(BUC)=(ANB)U(ANC)

Distributive laws
AUBNC)=(AUB NAUC

ANB=AUB Y .
AUB=ANB e Morgan's laws
ANRUB)=A Absorption laws
AUANB)=A

AUA=U

ANA=0C Complement laws



Inclusion-Exclusion (revisit)

e 2sets:

IAUB | = |A|+|B |- |ANB |
* 3sets:

AUBUC| = |4|+|B|+|C|-|ANB|-|ANC|-|BNC|+| ANBNC]
* n-sets:

| AUAU---U4 | =

|4 [+ Ay [++] 4, ]
_|A10A2|_|A10A3|_“'
+|ANANA|+|4NANA |+

+(=D""4N4N---NA |



Proof involving sets

 Some important definitions; Let A and B be sets.

AxB = {(x,y):x€A, yeB},
AUB = {x:(xeA)V(xeB)},
AnB = {x:(xeA)A(xeB)},
A-B = {x:(xe A)A(x¢B)},

A = U-A.



Proof involving sets

How to show ac {x:P(x)}

Show that P(a) is true.

How to show ac {xeS:P(x)}

1. Verify that a € S.
2. Show that P(a) is true.




Proof involving sets

How to Prove AcB How to Prove AcB
(Direct approach) (Contrapositive approach)

Proof. Suppose a € A. Proof. Suppose a ¢ B.

Therefore a € B.

R Therefore a ¢ A.
Thus a € A implies a € B, Th B imol; A
so it follows that AcB. ® us a € 5 1mplies a € A,

so it follows that A < B. |




Proof involving sets

How to Prove A=B

Proof.
[Prove that A < B.]
[Prove that BC A.]

Therefore, since AcB and BS A,
it follows that A =B. u




Probability Theory

Section 3.4 and 3.5



Sample space

* Experiment: tossing a coin, rolling a die, selecting
subjects from a group at random

* The set of all possible outcomes of an experiment is
called a sample space.

* Under the assumption of equal likelihood, let S be
the sample space for an experiment E. Each subset of
S, including empty set, is called an event. Each
element of S determines an outcome, so if |S| =n
andaeS,ACS, then
— Pr({a}) = Pr(a) = [{a}|/[S] = 1/n
— Pr(A) = |A[/n



Axioms of Probability

 LetS be the sample space for an experiment E. If A
and B are any events —thatis @ C A, BC S, then
— Pr(A)=20
—  Pr(S)=1
— if A, B are disjoint (or, mutually disjoint) the Pr(A U B) =
Pr(A) + Pr(B).

 The Rule of Complement: Pr(A)=1-Pr(A)



Examples of sample space

1. Tossing a fair (unbiased) coin: Sample space S = {H,T'}, and Pr({H}) =
Pr({T}) =3

2. Tossing a fair coin three times: Here S = {(t1,12,13)|t; € {H,T}}. Here
t; is the outcome of the i** toss. The probability of each outcome, such as
1

(H,T,T), is g. If we toss the coin n times, the size of the sample space is 2",

and each point having probability 2%

3. Rolling two distinguishable dice (one red, one blue): The sample
space is S = {(i,7) : 1 <1i,j < 6}. There are 36 elements in the sample space.
Each of the outcomes has equal probability, %.



Examples of sample space

4. Rolling two indistinguishable dice (both red): The sample space here
is S ={{i,j}:1<i<j<6}. An outcome of one die 3 and the other 5
is written as {3,5} with the smaller one first. There are 21 elements in the
sample space. Now the probability of each sample point is not the same. The
probability of an outcome of the form {7,7} is 5;. However the probability of
an outcome {i,7}, i # j, is 2 (why?).

5. Card shuffling: The deck of cards has 52 cards. Shuflle a deck of cards.
The sample space consists of 52! permutations of the deck, each with equal
probability %

6. Poker hands: The sample space consists of all possibe five-card hands. The

sample space has (552) elements, each with probability ﬁ
5



Examples of sample space

7. Balls and bins with distinguishable balls: Bins (there are k£ such bins)
are distinguishable and the balls (there are n such balls) are distinguishable.
An outcome is (by, by, . . . b,) where b; is the bin number ball ¢ lies. The sample
space has k™ n-tuples, each with equal probability kin

8. Balls and bins with indistinguishable balls: Bins (there are k such bins)
are distinguishable and the balls (there are n such balls) are indistinguishable.
After throwing the balls, we see only the number of balls that landed in
each bin. Each outcome is a k-tuple (mq,my, ..., mg) where m; denotes the
number of balls in bin 7. The number of sample points is therefore (”ﬁ;l)
The probalities of sample points are not the same. Why?



Mathematical Induction



Mathematical Induction
(section 4.1)

 Mathematical induction is a rigorous method
that proves statements with absolute
certainty.



Mathematical Induction

* |tis a powerful proof techniques.

The Simple Idea Behind Mathematical Induction

S Ss S3 Sy S5 Se| - Sk | (Sk+1| [Sks2| [Sk+3| [Skag|

Statements are lined up like dominoes.

S1/|s2 S3 Sy S5 Sg| - Sk | ISes1| [Skea| [Sk+3| [Skadq|

(1) Suppose the first statement falls (i.e. is proved true);

N
\

St/ [Sesq] [Spso| [Shss| [Shad| -

(2) Suppose the k" falling always causes the (% + 1) to fall;

Then all must fall (i.e. all statements are proved true).




Principle of Mathematical Induction

e Let S(n) denote a mathematical statement for
all positive integers n. In order to prove S(n) is
true for all positive integers n, we complete
two steps:

— Basis step: We verify that S(1) is true.

— Inductive step: We show that, given any integer
k > 1, conditional statement S(k) =2 S(k + 1) is true

— It follows by mathematical induction that every
S(n) is true.

* Symbolically
(S(1)* V(k = 1) (S(k) = S(k+1))) = V(n = 1) S(n)




Example: Suppose a1, a9, ..., a, are n integers, where n >
2. If p is prime and p|(a; X ag X ... X a,), then p|a; for at
least one of the a;.

Proof: The proof is on induction on n.

e The basis step involves n = 2. Suppose p|aias. We have
seen that either pla; or plas.

e Suppose that £ > 2 and p|(a; X ag X ... X a) implies
then pla; for some a;. (Inductive hypothesis)

e Now let pl(a; X ag X ... X ag X ags1). Then p|((a1 X
as X ... X ag) X ag+1). By what we proved in the basis
step, it follows that p|(a; X ag X ... X ag) or plag,1. This
and the inductive hypothesis imply that p divides one of
the a;.



Principle of Strong Mathematical
Induction

* Sometimes mathematical induction is not enough.

* |In order to prove that S(n) is true for all positive integer
n 2 n, we complete two steps:
— Basis step: We verify that S(n,), S(n,+1), ..., S(n,) are true.

— Inductive step: We show that conditional statement (S(n,)*
S(ng+1)N ....A S(k)) = S(k + 1) for all positive integers k > n,.

— It follows by mathematical induction that every S(n), n2n,
Is true.

* Symbolically
(S(ng)™ S(ng+1)" ...AS(n )N VK(S(n+1)N ...~ S(k)) = V(n2 ng) S(n)



The Well-Ordering Principle

* The proofs of principle of induction and proof
of strong induction use the well-ordering
principle.

(Principle)
— Every non-empty subset of N, set of nonnegative

integers, contains a smallest element. ( We often
express this by saying that N is well-ordered.

— Note that sets of all integers, rational numbers,
real numbers do not have this property. (Why?)



Why Induction Works

@ Suppose that mathematical induction is not valid.
Then there is a predicate P(n) such that P(1) is true,
Vk (P(k) = P(k + 1)) is true, but there is n such that P(n) is false
Let TC N bethe setofall n suchthat P(n) is false.
By the principle of well-ordering T contains the least element a
As P(1) istrue, a= 1.

We have P(a-1) is true. However, since P(a-1) — P(a), we get
a contradiction



Summation

@ Prove that the sum of the first n natural numbers equals n(n2+ D
that is 1+2+3+...+n=”("+1)
2

@ P(n): "the sum of the first n natural numbers ...
@ Basis step: P(1) means 1=1(1;'1)

@ Inductive step: Make the mductlve h)ypothesns P(k) is true, i.e.
1+2+3+--+k=

2
Prove P(k + 1): 1+2+3+---+k+(k+1)=(k+1)((';+1)+1)
1+2+3+--+k+(k+1) = k(k2+1)+(k+1)

=k(k+1)+2(k+1)= k+DKk+2)
2 2



More Summation

@ Provethat 1+2+2%+---4+2" =21 _1

@ Let P(n) be the statement 1+2 + 2% +---+2" = 2"*' —1' for the
integer n

@ Basis step: P(0) is true, as 2° =1=2"" -1
@ Inductive step: We assume the inductive hypothesis
1+2+2% +.-42F =281 1
and prove P(k + 1), thatis
1+2+2% 4428 420 okl 1 _ok+2
We have 1+2+2% +..-+2F 4251 = (2% 1) 4 2k
=2-2¢1 1
— 2k+2 -1



Problems

. Show that 43 is the largest number you
cannot write as the sum of 6, 9 or 20.

2. Show that p(x): x=3a+8b for all x > 14 is true.
3. Show that 3|(5%" -1) for all non-negative

Integers n.



Class notes on sections 4.2, 5.1, 5.2
and 5.3

* Topics covered:
— Recursive definition
— Rudimentary discussion on relations

— Functions: injective, surjective and bijective



Recursive Definitions

e Recursively defined sequence

— Consider the Fibonacci sequence:
{F.}1=1,1,2,3,5, ...
Here F,=1, F,=1, F;=2, .....
Recursive Definition of {F,}
* Initialization:  F; =1, F,=2

* Recursion F.=F, ,+F ., n>=3

n-27



Recursive Definitions (contd.)

* Recursively defined functions
— Consider the factorial function:
nl=1.2.3. ..(n-2)(n-1)n
Here 0!=0, 1!=1, 2!=2

Recursive Definition of n!
* |nitialization: 11=1

e Recursion n! =n.(n-1)!, n>=2



Recursive Definitions (contd.)

e Recursively defined functions

— Consider the binomial function:

Cn k) = (}) = mowy

Recursive definition of C(n, k)
C(n,k)=0if k <0or k> n.
C(n,k)=1itk=0;n=0

C(n,k)=C(n—1,k)+C(n—1,k — 1), otherwise.



Recursive Definitions (contd.)

* Recursively defined mathematical notations
— Consider the sum
S, =a;+a,+ ... +a,
Here $,=0, S, = a,, S,=a,
Recursive Definition of S
* |nitialization: S, =43,
* Recursion S=S,,+a,n>=2

— Similar definitions can be described for the
product

P.=a;a,...a, whereP, =a;



Recursive Definitions (contd.)

* Recursively defined sets (defining the
elements of a set recursively)

— Consider the set S of prices (cents) payable using
qguarters and dimes.

Recursive Definition of S
* |Initialization: 0¢€S
e Recursion If x €S, x+10 € S and x+25 € S.
Note that only the distinct elements of S are kept.

— Recursive defn. of +ve and —ve powers of 2
* |nitialization: 1T
e IFxeT,2xeTandx/2eT.



Recursive Definitions (contd.)

* Recursively defined sets (defining the
elements of a set recursively)

— Consider the power set of A.

P(A) =11}) when A= {}

P(A) = P(A-{x}) UP(XU{x}|X € P(A —{x}) when A

1s not empty.



Recursive Definitions (contd.)

* Recursively defined character strings

— Defn: A string is a finite sequence of O (null
string) or more letters of alphabet 2.

For binary strings the alphabet set 2 = {0,1}.

Defining binary strings B recursively:
* |nitialization: {} € B
e [FueB,u||’'0’eBandu|]|’1" €B.

Here | | indicates concatenation.



Recursive Definitions

{1, if n=0
n!'=

Factorial
Fibonacci sequence

Binomial Coefficients
“n-choose-k”

Addition of non-
negative integers

Summation Notation

Product Notation

Sf(n) =

C(n,k) = <

m+n=<

nn-1)!, ifn=1

(n, if k=0 or 1

| f(n=2)+ f(n-1), if k=2
(0, if k<0 or k>n

Lif k=n=0
C(n-1,k-1)+C(n-1k), otherwise
(m, if n=0

m+1, if n=1

(m+(n-1))+1, if n>1
(0, if n=0

if n>0




Applications of Recursions

 Example: Find the recurrence for the number of n digit
binary sequences with no pair of consecutive 1’s.

— Let A(n) denote the number of n digit binary
sequences with no pair of consecutive 1s.

— To write A(n) we condition on the last digit. If it is O,
the number of such sequence is A(n-1). If it is 1, the
penultimate digit must be 0, and the number of such
sequences sought is A(n-2).

— Thus A(n) = A(n-1)+A(n-2) (inductive step)

— Basis step: A(1) =2; A(2) =3



Relations
(sections 5.1)

Let Aand B aresets; AxB={(a,b) | ae Aandb e B};
(a,b) are ordered pairs, also known as 2-tuple.

The universes of A and B could be different.

Rx R ={(x,y)| x,y € R} is the two-dimensional real plane.

Binary relation:

— For sets A and B, any subset of AxB is a binary relation from A
to B. Any subset of A x A is called binary relation on A.

— A=7%{(x,y)| x <= y}is arelation on A.



Relations
(sections 5.1)

* LetA, A, ..., A besets. An n-ary relation on these
sets (in this order) is a subset of A xA,x ... xA_.

e Most of the times we consider n = 2.



Relations as Subsets

A: Siblinghood. A = {people}

Because relations are just subsets, all the usual set
theoretic operations are defined between relations
which belong to the same Cartesian product.

Q: Suppose we have relations on {1,2} given by R = {(1,1),
(2,2)}, $=1{(1,1),(1,2)}. Find:

The union R US

The intersection RM S

The symmetric difference R @S
The difference R-S

The complement of R

Al S



Relations as Subsets

A:R={(1,1),(2,2)}, $={(1,1),(1,2)}
RUS ={(1,1),(1,2),(2,2)}
RNS ={(1,1)}

R®S ={(1,2),(2,2)}.

R-S = {(2,2)}.

R ={(1,2),(2,1)}

Al



Functions (5.1,5.2,5.3)

* For non-empty sets A and B, a function (mapping) f
from A to B (f: A 2 B) is a relation f (a subset of AxB)
from A to B in which every element a € A, the
relation f contains exactly one pair of the form (a,b).
The element (a,b) € f is abbreviated as f(a) = b.

* Aisthe domain of f
— B is the codomain of f
— if f(a) = b, b is the image of a; a is the preimage of b
— fis treated as a set

— The range of fis the set {f(a): a € A} = {b|(a,b) € f}. The
range is the set of all possible “output values” for f.



Example

e f(a) =z

e theimage of disz

e the domainof fisA={a, b, c, d}
e the codomainis B ={x, v, z}

o f(A) =1y, z}
e the preimage of yisb

A
O

e the preimages of zarea, cand d G\;,
O”

e f({c,d}) = {z}
* The range of fis {y,z}




Functions

* f: A= B means
—allae Ahaveanimageb eB
— some b € B may not have a preimage a €V
— some b € B may have more than one preimages a € B
* f(A) denotes the subset X C B such that for any x
€ X, there exists an element a € A such that

f(a) = x, and for any y € B-X, there does not exist
any a € A such that f(a) =vy.

— Xis called the range of f.



Functions

* Three things:

— A function can be viewed as sending (mapping)
elements from one set A to another set B.

— Such a function can be regarded as a relation from
A - B.

— For every input value a (of A), there is exactly one
output value f(a). (Vertical line test)



Some useful functions

floor functions: real R = integer Z
— floor(x) = greatest integer < x

[x]

ceiling functions: real R = integer Z

— ceiling(x) = least integer > x

3.5
3.5

:3"

’

-T[_

4: [t

[x]
= 3.
= .

3.5
-3.5°

=-4
= -3



Some examples

e g:7ZxZ > Zwhich is defined as
g((m,n)) =g(m,n) =6m —9n.
— Note that g = {((m,n),6m-9n) | (m,n) € Z x Z}
— DomainisZxZ

— Codomainis Z
— Rangeis { 3x : x € Z} (why? Discussed in the class)

* A={p,q,r,s}; B=10,1,2};

f={(p,0), (g,1), (r,2), (s,2)}
— fis a function with domain A, codomain B and
range B.



Equality of functions

* Two functions f:A - B and g:C = D are equal
if A=C, B=D and f(x)=g(x) for all x € A.

e Caution: f:Z-> Nand g:Z =2 Z, f(x) = | x| +2,
and g(x) = | x| +2 are technically not equal.



Injective (one-to-one)
Surjective (onto) functions

e Afunctionf: A= Bis:

— Injective (one-to-one) if for every x,y € A, x # y,
f(x) # f(y). Equivalently:
Vr,y € A,z #y— f(x) # f(y)
Contraposition: Vx,y € A, f(x) = fly) >z =y

— Surjective (onto) if for every b € B, there is an
element a € such that f(a) = b.

Vbe Bda€ A f(a) =10

— Bijective (one-to-one and onto) if f is injective and
bijective.



one-to-one (injective) functions

o f:7Z* > Z* where f(a) = a% is one-to-one
e f:Z > Z*where f(a) = a% is not one-to-one
* floor and ceiling function is not one-to-one.



onto (surjective) functions

e f:2 227, f(x)=x+1isonto.
* |.[: R=> Zis onto, but not one-to-one

 [.]: R > Zis onto, but not one-to-one



one-to-one and onto (bijection)

R 2 R, f(x) =x+ 1 is one-to-one correspondence
0,1] = [0,1/3], f(x) = x/3 is one-to-one and onto.
R =2 R, f(x) = x? is not one-to-one, but onto.

R 2 R, f(x) = x3is injective and surjective.



How to show a function f: A 2> B is
injective?

 Direct approach: vz,yc A,z #y — f(z) # f(y)
— Consider arbitrary x,y e A; x 2y
.... Reduction steps with the goal to show that
f(x) # f(y)
 Contraposition approach:
Vo,y € A, f(z) = fly) >z =y
— Suppose x,y € A; f(x) = f(y)
..... Reduction steps with the goal to show that x=y.

* Often contrapositive approach is easy when f
is an algebraic function



How to show a function f: A 2 B is
surjective?
* fissurjective if for all b € B, there existsa € A
such that f(a) = b. That is
fis surjectiveif vbe B3Iac A f(a)=b

 Contrapositive approach:

not( Vbec B3ac A f(a) =02 fis not surjective

i.e. 3beBVac A f(a)#b =2 fisnotsurjective



How to show a function f: A 2 B is
surjective?
 f:R—{0} 2> R—{0}, f(x) = 1/x +1. Is it surjective?

— Let b € B be an arbitrary element. Let f(x) = b for some
X € A. This means that

1/x+1=b

i.e. x =1/(b-1). Now x is not defined if b=1.
Therefore f, as defined above, is not an onto function.

e Showthatg:ZxZ 2> ZxZ, g(m,n)=(m+n,m+2n)
is bijective. (Discussed in the class)



Section 5.6
Composition and inverse function



Composition functions

Composition
Suppose f : A — B and g : B — C are functions with the property that

the codomain of f is the domain of g. go f : A — C is the function called the
composition of f with g. Here g o f(x) = g(f(z). Thus go f sends elements of A

to elements of C.

A B C
N A> g [
1 -"‘ 2 "‘a

gof

quik W
qcaxrim

Notice that the composition g o f also makes sense if the range of f is a subset

of the domain of g.



Composition functions (contd)

Notice that the composition g o f also makes sense if the range of f is a subset
of the domain of g.

Example Let f : R — R be defined as f(z) = 2 + z, and g : R — R be defined
as g(x) =z + 1. Then go f : R — R is the defined by g o f(z) = g(f(z)) =
g(x?+z) =22+ + 1.

Since the domains and the codomains of g and f are the same, f o g is also
defined. In this case f o g(z) = f(g(z)) = f(x +1) = (z +1)* + (z + 1). Note
that f o g and g o f are not the same. This says that function composition is
not commutative. However, the function composition is associative. That is if

f:A—B,g:B—C,and h:C — D, then ho(go f) = (hog)o f show this).

(f °g)a)

_ fts@) A diagram of compositions of
two functions. There is a nice
diagram in the text, page 281.




Composition functions (contd)

We can also show that
Theorem: Suppose f : A — B and g : B — C are both injective, the g o f is
injective. If both f and g are surjective, the g o f is also surjective.

Problems from the text: Section 5.6: 3, 4, 7

Other problems:

1. Consider the function f,g: R — R defined as f(z) = (z + 1)% and g(z) = z°.
Find the formulas for go f and f o g.

2. Consider the functions f, g :Z X Z — Z x Z defined as f(m,n) = (mn, m?)
and g(m,n) = (m+ 1,m + n). Find the formulas for go f and f o g.

3. Suppose A = {1,2,3}. Let f : A — Abethe function f = {(1,2),(2,2),(3,1)},
and let g : A — A be the function g = {(1,3),(2,1),(3,1)}. Find go f and
fog



Important functions

Identity function
Let A be a set. The function f : A — A is said to be an identity function on A if
Ve € A, f(z) =x. f is also known as i4.

Constant function A K/ A

The function f : A — B 1s said to be a constant tunction if Va € A, f(a) = y where
y € B is a unique element.




Inverse functions

Definition: Let R C A x B be a relation. The inverse relation R~ C B x A is
the inverse relation where R~! = {(y, z) : (z,y) € R}. Alternately, the inverse
relation R~! of R is obtained by reversing the elements in every 2-tuple in R.

A B A B

A B A B
B b

f=1{@,2),,3),(c,)}  f1={2,0),(8,0),1,0)} £=1{@,2,,3),(c,3}  g"={20),3,b),3,0}

Note that in the second case g~! is not a function. However f~! is a function.
We can show that that

Theorem: A function f: A — B is invertible (has an inverse) if and only if f is
bijective. (Theorem 5.8 of the text)

Definition: If f : A — B is bijective then its inverse is the function f~!: B — A.
Functions f and f~! have the following properties:

1. f1o f =1ia (ia is the identity function on A), and

2. fo f~1 =1ip (ip is the identity function on B).



Definition: f: A — B is a function.
o If X C A (image of X) f(X)={f(x):z€ X} CB.

o IfY C B, (pre-image of Y) f{(Y)={z € A: f(X) =
Y} CA

Example: Suppose f : {s,t,u,v,w,z,y,z} — {0,1,2,3,4,5,6,7,8,9}.

Let f={(s,4),(t,8), (v, 1), (w,2), (z,4), (y,6), (2,4)}.
Show that

1. f({s,t,u,z}) ={8,4}
2 [({s,2,2}) = {4}
3. f({s,v,w,y}) ={1,2,4,6}
_1({4}) = {s,z,2}
({4,9)) = {8 z,z}.
({9}) =
~1({1,4,8}) = {s,t,u,v,z, 2}




Theorem: Let f: A— B. Let W, X C Aand Y, Z C B.
Show that



Exercises

1. Consider the function f : R — R defined as f(z) =
z? + 3. Find f([-3,5]) and f~([12,19]).
Ans: f([-3,5]) = [3,28], f7([12,19]) = [-4,-3] U
3, 4]

2. Consider the function f : {1,2,3,4,5,6,7} — {0,1,23,4}.
How many such functions have the property that | f~1({3})| =
37
Ans: 44 (;)

3. Problem from the text (Section 5.6).

(a) Example 5.63 (page 285)
(b) (page 288) 3, 9(a), 13, 17



Pigeonhole Principle
Section 5.4

Homework #7
Date due: April 2, 2014



The pigeonhole principle (PHP)

If m pigeons occupy n pigeonholes, and m > n, then at least
one pigeonhole has two or more pigeons roosting in it.

The PHP is a powerful tool to solve combinatorial problems.

The next slide discusses the main theorem and its proof. We
will list a host of problems, categorized into two parts.

Part A problems are for your practice.
The homework questions are listed in Part B section.



Generalized pigeonhole principle

* |f m objects are placed into n boxes, then
there is at least one box containing [m/n]
objects

— Proof by contradiction. Suppose each box contains
less than [m/n] objects, and there are m objects
in total in n boxes. In this case the total number of
objects n boxes can hold is at most ([m/n]-1)*n
which is less than (((m/n)+1)-1)*n, since [x] < x+1
always. This implies that there are less than m
pigeons in n boxes. This is a contradiction.




Examples

* Given 9 integers whose prime factors lie in {2, 3, 7}, prove
that there must be two whose product is a square.

— All such integers can be expressed as 223°7¢
— Let two such integers be 223b7¢ and 22'3k'7¢
— Their product is a square implies a+a’, b+b’ and c+c’ are even.

— Each exponent is either odd or even. Therefore, there are 23 =8
different ways the three exponents of a number may appear.
These triplets are (even,even,even), (odd, odd,odd),
(even,even,odd) ....

— Each triplet is considered a group (bag).

— If we select 9 integers, we get nine triplets. Two of these triplets
must be in the same bag (Pigeonhole principle).

— The corresponding two integers when multiplied will result in a
perfect square.



Examples

* How many times must we roll a single die in order
to get the same score (a) at least twice? (b) at least
thrice? (c) at least n times?

— A die has six sides. We need to throw 7 times to get the

same score twice; need to throw 13 times to get the
same score thrice; need to throw 6 (n-1) + 1, n > 0.



Examples

* During the first 6 weeks of his senior year in college, Brace
sends out at least one resume each day, but no more than 60
resumes in total. Show that there is a period of consecutive
days during which he sends out exactly 23 resumes.

— Let x,, i=1, 2, ..., 42 denote the number of resumes Brace has sent
out from the start of his senior year to the end of the i-th day.
Then 1 <x,<x,<....<X4, <60. We can write 1 + 23 < x, +23 <
X,2+23 < .... <X4,+23 £ 60 +23. Thus we have 42 distict numbers x,,
X,, ..., X4 @and 42 distinct numbers x,+23, x,+23, ..., X,,+23. These
84 numbers can take values from 1 and 83 (inclusive).

— By the pigeonhole principle, at least two of them must be equal.
— We can then conclude that there existiand j, 1 <j<i<42 such

that x;= x; + 23, i.e. x; — x; = 23. Hence, from the start of day j+1 to
the end of day i, Brace will send exactly 23 resumes.



PART A

Let S C Z*, where |S|=12. Then S contains two elements that have the
same remainder upon division by 11. (Discussed in the class)

Example 5.45 of the text is discussed in the class.

19 darts are thrown onto a dartboard which is shaped as a regular
hexagon with side length of 1 unit. Show that there are 4 darts within

distance (V3)/3.

Show that among 200 people, there are at least 17 people who are born
on the same month

How many students in a class must there be to ensure that 10 students
get the same grade (one of A, B, C, D, F, or N)?



PART A (contd.)

6. Suppose that there are 50 people in the room. Some of them are
acquainted with each other, while some are not. Assume that each
person has at least one acquaintance. Show that there are two persons
in the room who have equal number of acquaintances.

(Hints: Each individual can have acquaintances in the range [1 .. 49].
Why?)

7. Problem from the text:
— Section 5.5: 4, 5(a), 7(a), 8(a), (b), 10, 14, 20
— Supplementary problem: 14, 24



PART A (contd.)

Consider n distinct numbers a,, a,, ..., a,,. Let m=min {a,, a,, ..., a,} and
M =max {a,, a,, ..., a,}. We define the gap of of two elements a; and a; to
be |a; —a,| if there does not exist any other element a, with a3, < a, < a,
otherwise it is 0. Show that there exist two elementsin {a,, a,, ..., a,}
whose gap is at least (M-m)/(n+1).

m M
*’ M
d a
4 2 ag aj ac a,

The gap between a, and a, is the largest; the gap between a, and a; is zero,
since a, lies in between a,and a..

(Hint: Partition the interval [m .. M] into n+1 small sub-intervals, each of
length (M-m)/(n+1).)

Discussed in the class.



PART B

Seven darts are thrown onto a circular dartboard of radius 10 units. Show
that there will be two darts which are at most 10 units apart.

6 computers on a network are connected to at least 1 other computer.

Show there are at least two computers that have the same number of
connections




PART B (contd.)

3. Consider 5 distinct points (x, y;) with integer values, wherej=1, 2, 3, 4, 5.
Show that the midpoint of at least one pair of these five points also has
integer coordinates.

— (Hints: We are looking for the midpoint of a segment from (a,b) to (c,d).
The midpoint is ( (a+c)/2, (b+d)/2 ). Note that the midpoint will be
integers if a and ¢ have the same parity: are either both even or both
odd. The same is true for b and d.)

4. Suppose 49 points are placed, in a random way, into a square of side 1
unit. Prove that 4 of these points can be covered by a circle of radius %.
(Hints: The square should create 16 holes.)

5. Given m positive integers a,, a,, ..., a,,, show that there exists k and | with O
<k<l<msuchthat a,,, +a,,,+ ... +3a,is divisible by m.



Relations

Sections 7.1,7.2,7.3,7.4



Relations

* LetA, A, ..., A besets. An n-ary relation on these
sets (in this order) is a subset of A xA,x ... xA_.

* Most of the time we consider n = 2 in which case
have a binary relation and also say the the relation is

“from A;to A,”.

* With this terminology, all functions are relations,
but not vice versa.



Relations

binary relations R defined on a set A
RCAxA:n=2

RC RxR:real plane

R € R* x R*: Interior of the first quadrant
(a,b) € Ris an element of R.

— In the text infix notation aRb is also used.



Relations as Subsets

Question : Suppose we have relations on {1,2} given
by R ={(1,1), (2,2)}, $ ={(1,1),(1,2)}. Find:

ne union R US

ne intersection RM' S

ne symmetric difference R @S
ne difference R-S

ne complement of R

[
—4 4 4 4 -



Relations as Subsets

Answer: (R=1{(1,1),(2,2)}, S=1{(1,1),(1,2)})

* RUS={(1,1),(1,2),(2,2)}
* RNS={(1,1)}

* R®S={(1,2),(2,2)}

* R-S={(2,2)}

* R={(1,2),(2,1)}




Composing Relations

 If Ris arelation from A to B, and S is a relation
from B to C then the composite of R and S is the
relation R S (or just SR ) from A to C defined by

setting (a,c) € (R *S) if and only if there is some
b such that (a,b) e R and (b,c) € S.

* Notation is weird because generalizing
functional composition: f *g (x) = f (g (x)).



Representing Binary Relations

-(0-1) Boolean Matrices

* Represent binary relations using (0,1)Boolean
matrices, i.e. 2 dimensional tables consisting
of 0’'s and 1’s.

* For arelation R from A to B define matrix M,
by:
— Rows —one for each element of A
— Columns —one for each element of B
— Value ati™row and j " column is
— 1ifithelement of A is related to j t" element of B
— 0 otherwise



Representing Binary Relations
-Boolean Matrices

Crumb 1
Pigeon 1 Crumb 2
Pigeon 2 Crumb 3
Pigeon 3 Crumb 4
Crumb
(0O 0O O 1 1)
MR= |1 0 0 1 0
\O O 0 O O/




Digraph Representation

The another way of representing a relation R
on a set A is with a digraph which stands
for “directed graph”. The set A is
represented by nodes (or vertices) and
whenever (a,b) e R occurs, a directed
edge (or arrow) a—=>b is created. Self

pointing edges (or loops) are used to
represent (a,a) € R.



Digraph Representation




Properties of Binary Relations

* Let R be a binary relationon A (i.,e. RC AxA)
— R is reflexive if for all a € A, (a,a) € R.
— R is symmetric if (a,b) € R, (b,a) € R.
— Ris transitive if (a,b) € R, (b,c) € R, then (3,c) € R.
— R is antisymmetric if (a,b) e Rand (b,a) € R, a = b.
* Arelation R defined on A is an equivalence
relation if R is reflexive, symmetric and transitive.

 Arelation Ris a partial order on A if R is reflexive,
antisymmetric and transitive.



Spotting various properties of a
relation from its diagram

A relation is there is a

1. | reflexive if °Xx (O»x
. loop at x:

for each point x ...

A relation i
relation 18 ...there is also

symmetric if an arrow from
. \'%
2. | whenever thereisan xe o) Xo e

back to x:
arrow from x to y ... Y *
A relation is there is al
transitive if Y - LACTe 15 also Y

and y to z ...
(If x = z, this means y ...there is also
that if there are O a loop from

arrows from x to y x back to x.)

and from y to x ... X

an arrow from
whenever there are
arrows from x to % to z:
X L0y x z X z
y




Properties of Binary Relations

Let R be arelation on Z™*. The following table summarizes
the properties of R when R € {<, <, =, |, not(|),#}

Relationon ZT | < | <=| = | | not(|) | #
reflexive NIY |[Y'Y| N [N
symmetric N/ N I|Y Nl N |Y
transitive Y'Y |[Y|Y| N [N




Visualizing the Properties

For relations R on a set A.

Q: What does M,, look like when when R is
reflexive?



Visualizing the Properties

A: Reflexive. Upper-Left corner to Lower-
Right corner diagonal is all 1’s. EG:

Mg =

Q: How about if R is symmetric?



Visualizing the Properties

A: A symmetric matrix. i.e., flipping across
diagonal does not change matrix. EG:




Equivalence classes and partition

Equivalence Classes: Suppose R is an equivalence rela-
tion on A. Given an a € A, the equivalence classes containing

a, [a] ={x € A|(x,a) € R}.

Theorem 7.6 (page 368 of the text): Suppose R is an
equivalence relation on a set A. Suppose also that a,b € A.
Then [a| = [b] if and only if (a,b) € R.



Equivalence classes and partition
Risdefinedon A=1{-1, 1, 2, 3, 4}

Relation R Diagram Equivalence classes
(see next page)

“is equal to” (=) QL Y Y {-1}, {1}, {2},

R1={(-1,-1),(1,1),(2,2),(3,3),(4,4)} D A {3}, {4}

“has same parity as” Q9 @

K—7 -1,1,8}, {24

Rz ={(-1,-1),(1,1),(2,2),(3,3),(4,4), ‘. . {-1,1,3}, {2,4}
(-1,1),(1,-1),(-1,3),(3,-1), X X

(1,3),(3,1),(2,4),(4,2)}

“has same sign as”

R3={(-1,-1),(1,1),(2,2),(3,3),(4,4),
(1,2),(2,1),(1,3),(3,1),(1,4),(4,1),
(2,3),(3,2),(2,4),(4,2),(1,3),(3,1)}

{-1}, {1,2,8,4}

“has same parity and sign as” @)
@ . {-1} {13}, {24}
Ry = {(—1, -1),(1,1),(2,2),(3,3),(4,4),
(1,3),(3,1),(2,4),(4,2)} O




Partition of a Set

* Given aset A, a collection {A, A,, ..., A} of non-
empty, pair-wise disjoint subsets of A is a partition of
A if the union of sets A, A,, ..., A is A.

— Z =set of integers; Z_,.. = set of even integers

even

Z. 44 = Set of odd integers.
Clearly, {Z, e

 Theorem 7.7 (text page 369): If A is a set, then

— any equivalence relation R on A partitions A into disjoint
subsets {[a]: a € A}.

— Any partition of A gives rise to an equivalence relation R
on A.

Z.4q4) IS @ partition of Z.



Partition of a Set

 Example: Consider R= ‘mod 3’ relation on the set of
integers Z. We have shown in the class that R is an
equivalence relation. The equivalence classes give

the following partition of Z:
{...,-3,0,3,6,9, ..},{...,-2,1,4,7,...} {..., -1,2,5,8, ...}}

* We can write more compactly as {[0], [1], [2]}.



Partial Orders : Hasse Diagrams

Definition: Let R be a binary relation on a nonempty set
A. R is a partial ordering if R is a reflexive, antisymmetric
and transitive relation.

Example: If X is a set, then C relation (R) on X is a par-
tial ordering on the subsets of X (P(X)).

Proof: Let A, B be two arbitrary elements of P(X). Then
R is

e reflexive: since A is a subset of itself, i.e. A C A.

e antisymmetric: since A C B and B C A implies A = B.

e is transitive: easy to see

Thus (P(X), C) is a poset.



Partial Orders : Hasse Diagrams

 The Hasse diagram of the poset, (P(X), €), is shown
below where X ={0,1,2}. In Hasse diagram, x is drawn

below vy if (x,y) € R; all the reflexive and transitive arcs
are not included; the direction of the arcs are ignored

(knowing that arcs are always pointed upwards).
{0, 1, 2}

\><><|
\\/



Partial Orders : Hasse Diagrams

 The Hasse diagram of the poset ({0,1,2,3, ..., 11,12}, ‘|’) below
shows how the elements of the set are related.

\\,//

 Apathfrom1to0, say, <1,3,6,12,0> indicates that the
elements on the path are related, i.e. for any a, b on the path,
either (a,b) e Ror (b,a) € R. Here R is the relation ‘|’.

* |faand b lie on two different paths (say 8 and 12), neither
(a,b) nor (b,a) is in R.




Partial Orders : Hasse Diagrams

* Consider the posets (N, <=) and (Z,<=). Note that for any
two elements a and b of N or Z, either (a <=b) or (b<=a).
Therefore, elements a and b are related. The Hasse
diagram of these posets looks like

iE

L
® 1
2
N e¢0 L :
poset(N,<=) poset(Z,<=)

* These posets realize total order of the elements of N and
Z.



Minimal and Maximal |
) _q\_z_ixmial elements

|
\ i— incomparable

_--":\-..:_-.:/.-
6 9 "
| = comparable

1

8
maximal elements =

minimal element —

—— 1 — the least element

Elements a,b are said to be comparable if (a,b) €ER or (b,a) ER
Otherwise they are called incomparable

Element a is minimal ifforany b if (b,a) ER then a=b
Element a is maximal ifforany b if (a,b) ER then a=b
Element a is called the least element if forany b, (a,b) ER
Element a is called the greatest element if forany b, (b,a) €ER



Number Theory

Section 4.3,4.4,4.5



Importance of Number Theory

 Before the dawn of computers, many viewed
number theory as last bastion of “pure math”
which could not be useful and must be enjoyed only

for its aesthetic beauty.
 Number theory is crucial for encryption algorithms.



Divisors

Let a, b and c be integers such thata =b -c.

— b and c are factors of a, while a is said to be a
multiple of b (as well as of c).

— The pipe symbol “|” denotes “divides” so the
situation is summarized by:

bla Ac]|a.



Divisors.
Examples

77 | 7: false bigger number can’ t divide smaller
positive number

7| 77: true because 77 =7 - 11

24 | 24: true because 24=24 -1

0 | 24: false, only O is divisible by O

24)| 0: true, O is divisible by every number (0 = 24
-0

Question: How many positive multiples of 15 are
less than 1007?



Divisor Theorem

Theorem: Leta, b, and ¢ be integers. Then:
* alb A alc 2 al(b+c)
* alb > al|bc

* alb A b|lc =2 alc

e Letx=y+zforsome integers x, yand z.

— If a divides two of the three integers, a divides the third
integer.

* IfalbaAb|c = a|sb+tcforallintegerssand t.
— sb +tcis known as the linear combination of aand b



Prime Numbers

e Definition: A number n = 2 prime if it is only
divisible by 1 and itself.

* Anumbern =2 whichisn tprimeis called
composite.

e Question: Which of the following are prime?
0,1,2,3,4,5,6,7,8,9,10

— Note that 0 and 1 are not prime.



Fundamental Theorem of
Arithmetic

Theorem:

Any number n > 1 is expressible as a unique
product of 1 or more prime numbers.



Primality testing

* Prime numbers are very important in
encryption. Essential to be able to verify if a

number is prime or not.
* Testing if nis a prime.
— Consider all integers greater than 1 and less than
n to see if nis a composite.

— Don’t try number bigger than \/;
— After trying 2, don’t try any other even numbers.
— In general try only smaller prime numbers.



Division

* Theorem: Let a be an integer, and b be a positive
integer. There are unique integers q, r withr €
{0,1,2,...,b-1} satisfying

a=qgb+r

* aiscalled the dividend; g is called the quotient and r
is called the remainder.

* The theorem is called the division algorithm.



Greatest Common Divisor
Relatively Prime

* Definition: Let a,b be integers, not both zero. The
greatest common divisor of a and b (or gcd(a,b) )

is the biggest number d which divides both a and
b.

e Equivalently: gcd(a,b) is smallest number which
divisibly by any x dividing both a and b.

* Definition: a and b are said to be relatively prime
if gcd(a,b) = 1, so no prime common divisors.



Greatest Common Divisor

Question: Find the following gcd’ s
—gcd(11,77)
—gcd(33,77)
— gcd(24,36)
— gcd(24,25)
—gcd(12,0)
—gcd(77,33)



Greatest Common Divisor

Theorem: For all a,b € Z™, there exists a unique ¢ € Z*
that is the greatest common divisor of a and b.

Proof: Theorem 4.6 of the text (page 231).

Lemma: Let a,b € Z* where a = gb+ r where g and r are
integers, and 0 < r < b. Show that gcd(a,b) = ged(b, ).
Proof

e Let d|a and d|b. Then d|(a — bq). Therefore, d|r. Thus

any divisor of a and b is also a divisor of r.

o Let d|b and d|r. Thus d|(bq + r). Therefore, d|a. Thus

any divisor of b and r is also a divisor of a.

Therefore, ged(a, b) = ged(b, ).



Greatest Common Divisor Algorithm

@ Let a and b be positive integers with a=b. Set ry=a and r, =b
Successively apply the division algorithm until the remainder is 0

o =N Okt O<n <T

k1 = NG
@ Eventually, the remainder is zero, because the sequence of

remainders a=ry,>r >r, >...=0 cannot contain more than a
elements.

@ Furthermore, gcd(a,b) = gcd(ry,r) =---=gcd(r_,,h_1)
= ged(rc_q,f) = ged(r ,0) =1,
@ Hence gcd(a,b) is the last nonzero remainder in the sequence



Greatest Common Divisor
Relatively Prime

* Pairwise relatively prime: the numbers a, b,
c,d, ... are said to be pairwise relatively

prime if any two distinct numbers in the list
are relatively prime.

* Q: Find a maximal pairwise relatively prime
subset of

{44, 28, 21, 15, 169, 17 }
— {17, 169, 28, 15} is one answer.
— {17, 169, 44, 15} is another answer.



