Class notes on sections 4.2, 5.1, 5.2 and 5.3

- Topics covered:
 - Recursive definition
 - Rudimentary discussion on relations
 - Functions: injective, surjective and bijective

Recursive Definitions

- Recursively defined sequence
 - Consider the Fibonacci sequence:

$$\{F_n\} = 1, 1, 2, 3, 5,$$

Here
$$F_1=1$$
, $F_2=1$, $F_3=2$,

Recursive Definition of {F_n}

- Initialization: $F_1 = 1$, $F_2 = 2$
- Recursion $F_n = F_{n-1} + F_{n-2}, n >= 3$

- Recursively defined functions
 - Consider the factorial function:

$$n! = 1.2.3....(n-2)(n-1)n$$

Here 0!=0, 1!=1, 2!=2

Recursive Definition of n!

• Initialization: 1! = 1

• Recursion n! = n.(n-1)!, n >= 2

• Recursively defined functions

- Consider the binomial function:

$$C(n,k) = \binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Recursive definition of C(n, k)

$$C(n, k) = 0 \text{ if } k < 0 \text{ or } k > n.$$

$$C(n,k) = 1 \text{ if } k = 0; n = 0$$

$$C(n,k) = C(n-1,k) + C(n-1,k-1)$$
, otherwise.

- Recursively defined mathematical notations
 - Consider the sum

$$S_n = a_1 + a_2 + \dots + a_n$$

Here $S_0 = 0$, $S_1 = a_1$, $S_2 = a_2$

Recursive Definition of S_n

- Initialization: $S_1 = a_1$
- Recursion $S_n = S_{n-1} + a_n$, n >= 2
- Similar definitions can be described for the product

$$P_n = a_1 a_2 a_n$$
 where $P_1 = a_1$

- Recursively defined sets (defining the elements of a set recursively)
 - Consider the set S of prices (cents) payable using quarters and dimes.

Recursive Definition of S

• Initialization: $0 \in S$

• Recursion If $x \in S$, $x+10 \in S$ and $x+25 \in S$.

Note that only the distinct elements of S are kept.

- Recursive defn. of +ve and –ve powers of 2
 - Initialization: 1εT
 - IF x ε T, 2x ε T and x/2 ε T.

- Recursively defined sets (defining the elements of a set recursively)
 - Consider the power set of A.

$$\mathcal{P}(A) = \{\{\}\} \text{ when } A = \{\}$$

 $\mathcal{P}(A) = \mathcal{P}(A-\{x\}) \cup \mathcal{P}(X \cup \{x\} | X \in \mathcal{P}(A-\{x\}) \text{ when } A$ is not empty.

- Recursively defined character strings
 - Defn: A string is a finite sequence of 0 (null string) or more letters of alphabet Σ.

For binary strings the alphabet set $\Sigma = \{0,1\}$.

Defining binary strings B recursively:

- Initialization: {} ε Β
- IF u ε B, u || '0' ε B and u || '1' ε B.

Here | | indicates concatenation.

Recursive Definitions

- Factorial
- Fibonacci sequence
- Binomial Coefficients
 "n-choose-k"
- Addition of nonnegative integers
- Summation Notation
- Product Notation

$$n! = \begin{cases} 1, & \text{if } n = 0 \\ n(n-1)!, & \text{if } n \ge 1 \end{cases}$$

$$f(n) = \begin{cases} n, & \text{if } k = 0 \text{ or } 1 \\ f(n-2) + f(n-1), & \text{if } k \ge 2 \end{cases}$$

$$C(n,k) = \begin{cases} 0, & \text{if } k < 0 \text{ or } k > n \end{cases}$$

$$C(n,k) = \begin{cases} 0, & \text{if } k = n = 0 \\ C(n-1,k-1) + C(n-1,k), & \text{otherwise} \end{cases}$$

$$m + n = \begin{cases} m, & \text{if } n = 0 \\ m+1, & \text{if } n = 1 \\ (m+(n-1))+1, & \text{if } n > 1 \end{cases}$$

$$\sum_{i=1}^{n} a_i = \begin{cases} 0, & \text{if } n = 0 \\ \sum_{i=1}^{n-1} a_i + a_n, & \text{if } n > 0 \end{cases}$$

$$\prod_{i=1}^{n} a_i = \begin{cases} 1, & \text{if } n = 0 \\ \prod_{i=1}^{n-1} a_i \end{pmatrix} \cdot a_n, & \text{if } n > 0 \end{cases}$$

Applications of Recursions

- Example: Find the recurrence for the number of n digit binary sequences with no pair of consecutive 1's.
 - Let A(n) denote the number of n digit binary sequences with no pair of consecutive 1s.
 - To write A(n) we condition on the last digit. If it is 0, the number of such sequence is A(n-1). If it is 1, the penultimate digit must be 0, and the number of such sequences sought is A(n-2).
 - Thus A(n) = A(n-1)+A(n-2) (inductive step)
 - Basis step: A(1) = 2; A(2) = 3

Relations

(sections 5.1)

- Let A and B are sets; A x B = {(a,b) | a ε A and b ε B};
 (a,b) are ordered pairs, also known as 2-tuple.
- The universes of A and B could be different.
- R x R = $\{(x,y) \mid x,y \in R\}$ is the two-dimensional real plane.
- Binary relation:
 - For sets A and B, any subset of AxB is a binary relation from A to B. Any subset of A x A is called binary relation on A.
 - $-A = Z^+$; {(x,y)| x <= y} is a relation on A.

Relations

(sections 5.1)

- Let A_1 , A_2 , ..., A_n be sets. An n-ary relation on these sets (in this order) is a subset of $A_1 \times A_2 \times ... \times A_n$.
- Most of the times we consider n = 2.

Relations as Subsets

A: Siblinghood. *A* = {people}

Because relations are just subsets, all the usual set theoretic operations are defined between relations which belong to the same Cartesian product.

- Q: Suppose we have relations on $\{1,2\}$ given by $R = \{(1,1), (2,2)\}$, $S = \{(1,1), (1,2)\}$. Find:
- 1. The union *R* US
- 2. The intersection $R \cap S$
- 3. The symmetric difference $R \oplus S$
- 4. The difference *R-S*
- 5. The complement of *R*

Relations as Subsets

A:
$$R = \{(1,1),(2,2)\}, S = \{(1,1),(1,2)\}$$

1.
$$R \cup S = \{(1,1),(1,2),(2,2)\}$$

2.
$$R \cap S = \{(1,1)\}$$

3.
$$R \oplus S = \{(1,2),(2,2)\}.$$

4.
$$R-S = \{(2,2)\}.$$

5.
$$R = \{(1,2),(2,1)\}$$

Functions (5.1,5.2,5.3)

- For non-empty sets A and B, a function (mapping) f from A to B (f: A → B) is a relation f (a subset of AxB) from A to B in which every element a ε A, the relation f contains exactly one pair of the form (a,b). The element (a,b) ε f is abbreviated as f(a) = b.
- A is the domain of f
 - B is the codomain of f
 - if f(a) = b, b is the image of a; a is the preimage of b
 - f is treated as a set
 - The range of f is the set $\{f(a): a \in A\} = \{b \mid (a,b) \in f\}$. The range is the set of all possible "output values" for f.

Example

- f(a) = z
- the image of d is z
- the domain of f is A = {a, b, c, d}
- the codomain is B = {x, y, z}
- $f(A) = \{y, z\}$
- the preimage of y is b
- the preimages of z are a, c and d
- $f(\{c,d\}) = \{z\}$
- The range of f is {y,z}

Functions

- f: $A \rightarrow B$ means
 - all a ε A have an image b ε B
 - some b ε B may not have a preimage a ε V
 - some b ε B may have more than one preimages a ε B
- f(A) denotes the subset X ⊆ B such that for any x ε X, there exists an element a ε A such that f(a) = x, and for any y ε B-X, there does not exist any a ε A such that f(a) = y.
 - X is called the range of f.

Functions

- Three things:
 - A function can be viewed as sending (mapping) elements from one set A to another set B.
 - Such a function can be regarded as a relation from
 A → B.
 - For every input value a (of A), there is exactly one output value f(a). (Vertical line test)

Some useful functions

- floor functions: real R → integer Z
 - floor(x) = greatest integer ≤ x
 = [x]
- ceiling functions: real R → integer Z
 - ceiling(x) = least integer ≥ x

$$= [x]$$

- |3.5| = 3; $|\pi| = 3$; |-3.5| = -4
- [3.5] = 4; $[\pi] = 4$; [-3.5] = -3

Some examples

- g: Z x Z \rightarrow Z which is defined as g((m,n)) = g(m,n) = 6m 9n.
 - Note that $g = \{((m,n),6m-9n) \mid (m,n) \in Z \times Z\}$
 - Domain is Z x Z
 - Codomain is Z
 - Range is $\{3x : x \in Z\}$ (why? Discussed in the class)
- A = {p,q,r,s}; B = {0,1,2};f = {(p,0), (q,1), (r,2), (s,2)}
 - f is a function with domain A, codomain B and range B.

Equality of functions

- Two functions f:A → B and g:C → D are equal if A=C, B=D and f(x)=g(x) for all x ε A.
- Caution: f:Z \rightarrow N and g:Z \rightarrow Z, f(x) = |x| +2, and g(x) = |x| +2 are technically not equal.

Injective (one-to-one) Surjective (onto) functions

- A function f: A \rightarrow B is:
 - Injective (one-to-one) if for every x,y ε A, x ≠ y, $f(x) \neq f(y)$. Equivalently:

$$\forall x, y \in A, x \neq y \rightarrow f(x) \neq f(y)$$

Contraposition: $\forall x, y \in A, f(x) = f(y) \rightarrow x = y$

– Surjective (onto) if for every b ϵ B, there is an element a ϵ such that f(a) = b.

$$\forall b \in B \ \exists a \in A \ f(a) = b$$

 Bijective (one-to-one and onto) if f is injective and bijective.

one-to-one (injective) functions

- f: $Z^+ \rightarrow Z^+$ where f(a) = a^2 is one-to-one
- f: Z \rightarrow Z⁺ where f(a) = a² is not one-to-one
- floor and ceiling function is not one-to-one.

onto (surjective) functions

- f:Z \rightarrow Z, f(x) = x + 1 is onto.
- |.|: $R \rightarrow Z$ is onto, but not one-to-one
- [.]: $R \rightarrow Z$ is onto, but not one-to-one

one-to-one and onto (bijection)

- f: R \rightarrow R, f(x) = x + 1 is one-to-one correspondence
- f: $[0,1] \rightarrow [0,1/3]$, f(x) = x/3 is one-to-one and onto.
- f: R \rightarrow R⁺, f(x) = x² is not one-to-one, but onto.
- f: R \rightarrow R, f(x) = x³ is injective and surjective.

How to show a function f: A → B is injective?

- Direct approach: $\forall x, y \in A, x \neq y \rightarrow f(x) \neq f(y)$
 - Consider arbitrary x,y ε A; x ≠ y
 - Reduction steps with the goal to show that $f(x) \neq f(y)$
- Contraposition approach:

$$\forall x, y \in A, f(x) = f(y) \rightarrow x = y$$

- Suppose x,y ϵ A; f(x) = f(y) Reduction steps with the goal to show that x=y.
- Often contrapositive approach is easy when f is an algebraic function

How to show a function f: A → B is surjective?

• f is surjective if for all b ε B, there exists a ε A such that f(a) = b. That is

f is surjective if $\forall b \in B \ \exists a \in A \ f(a) = b$

Contrapositive approach:

not ($\forall b \in B \ \exists a \in A \ f(a) = b \rightarrow f$ is not surjective i.e. $\exists b \in B \ \forall a \in A \ f(a) \neq b \rightarrow f$ is not surjective

How to show a function f: A → B is surjective?

- f: $R \{0\} \rightarrow R \{0\}$, f(x) = 1/x + 1. Is it surjective?
 - Let b ε B be an arbitrary element. Let f(x) = b for some x ∈ A. This means that

$$1/x + 1 = b$$

i.e. x = 1/(b-1). Now x is not defined if b=1. Therefore f, as defined above, is not an onto function.

Show that g : Z x Z → Z x Z, g(m,n)=(m+n,m+2n)
 is bijective. (Discussed in the class)