Homework #2 Solutions

Section 1.4

- **1.** Let $x_i, 1 \leq i \leq 5$, denote the amounts given to the five children.
 - (a) The number of integer solutions of $x_1 + \ldots + x_5 = 10, \ 0 \le x_i, \ 1 \le i \le 5$, is $\binom{5+10-1}{10} = \binom{14}{10}$. Here n = 5, r = 10.
 - (b) Giving each child one dime results in the equation $x_1 + \ldots + x_5 = 5, 0 \le x_i, 1 \le i \le 5$. There are $\binom{5+5-1}{5} = \binom{9}{5}$ ways to distribute the remaining five dimes.
 - (c) Let x_5 denote the amount for the oldest child. The number of solutions to $x_1 + \ldots + x_5 = 10, 0 \le x_i, 1 \le i \le 4, 2 \le x_5$ is the number of solutions to $y_1 + \ldots + y_5 = 8, 0 \le y_i, 1 \le i \le 5$, which is $\binom{5+8-1}{8} = \binom{12}{8}$.
- 8. For the chocolate donuts there are $\binom{3+5-1}{5} = \binom{7}{5}$ distributions. There are $\binom{3+4-1}{4} = \binom{6}{4}$ ways to distribute the jelly donuts. By the rule of product there are $\binom{7}{5}\binom{6}{4}$ ways to distribute the donuts as specified.
- 10. Here we want the number of integer solutions for $x_1 + \ldots + x_6 = 100, x_i \ge 3, 1 \le i \le 6$. (For $1 \le i \le 6, x_i$ counts the number of times the face with *i* dots is rolled.) This is equal to the number of nonnegative integer solutions there are to $y_1 + \ldots + y_6 = 82, y_i \ge 0, 1 \le i \le 6$. Consequently the answer is $\binom{6+82-1}{82} = \binom{87}{82}$.
- 14. (a) $\binom{8}{2,4,1,0,1}(3)^2(2)^4$
 - (b) The terms in the expansion have the form $v^a w^b x^c y^d z^e$ where a, b, c, d, e are nonnegative integers that sum to 8. There are $\binom{5+8-1}{8} = \binom{12}{8}$ terms.
- 19. Here there are r = 4 nested for loops, so $1 \le m \le k \le j \le i \le 20$. We are making selections, with repetition, of size r = 4 from a collection of size n = 20. Hence the **print** statement is executed $\binom{20+4-1}{4} = \binom{23}{4}$ times.
- **20.** Here there are r = 3 nested for loops and $1 \le m \le k \le j \le i \le 15$. So we are making selections, with repetition, of size r = 3 from a collection of size n = 15. Therefore the statement

counter := counter + 1

is executed $\binom{15+3-1}{3} = \binom{17}{3}$ times, and the final value of the variable *counter* is $10 + \binom{17}{3} = 690$.

Section 2.1

4.
$$(a)r \to q$$
 $(b)q \to p$ $(c)(s \land r) \to q$

- 5. (a) If triangle ABC is equilateral, then it is isosceles.
 - (b) If triangle ABC is not isosceles, then it is not equilateral.
 - (c) Triangle ABC is equilateral if and only if it is equiangular.
 - (d) Triangle ABC is isosceles but it is not equilateral.
 - (e) If triangle ABC is equiangular, then it is isosceles.

Г	p	q	p	19	(a) $\neg (p \lor \neg q)$	$\rightarrow \neg p$	$p \rightarrow q \mid q \rightarrow p \mid (d) (p \rightarrow q) -$			$\rightarrow (q \rightarrow p)$
F	0	0	0		1		1	1	1	
	0	1	1		1		1	0	C	
1	1	0	1		1		0			
L	1	1	1		1	1	1	1 1 1		
r	T	0000				7.77		<u></u>	(0) 1 ()]	
H	p	<u>q</u>	<u>p</u> -	$\rightarrow q$	$p \land (p \rightarrow q)$	(e) p/	$(p \rightarrow q)$	$()] \rightarrow q$	(\mathbf{f}) (\mathbf{g})	
	0	0			U		1			
	1	1			0		1			
	1	1		1	1		1			
L	-1	-		l					<u>. </u>	
ſ	p	9	r	$q \rightarrow$	r (b) $p \rightarrow$	$(q \rightarrow r)$	$p \rightarrow q$	q (c) (1	$p \rightarrow q) \rightarrow r$	(h)
	0	0	0	1	1		1		0	1
1	0	0	1	1	1		1	1	1	1
1	0	1	0	0	1		1		0	1
1	1	1	1	1			1			1
1	1	0	0	1			0			1
1	1	1	0	0			1	1		1
1	i	1	1	1	1		1 1		1	i
8. L					a a construction of the second				a contract to the second	ليت
		Т					<u>, </u>			T
	F	2	q	r	$p \rightarrow (q \cdot$	$\rightarrow r)$	(p -	+ q) -	$+(p \rightarrow r)$	$s \rightarrow t$
	0 0 0		0	1		1			1	
	0 0 1		1		1			1		
	0	1	1	0	1		1		1	
	0		1	1	1		1		1	
				1						
				1						
	1		0		1					
	1		1	0	0		0)	1
			1			1 1				

12. (a) $[(p \land q) \land r] \rightarrow (s \lor t)$ is false (0) when $(p \land q) \land r$ is true (1) and $s \lor t$ is false (0). Hence p, q, and r must be true (1) while s and t must be false (0).

(b) $[p \land (q \land r)] \rightarrow (s \lor t)$ is false (0) when $p \land (q \land r)$ is true (1) and $s \lor t$ is false (0). Hence p, q, and r must be true (1) while s and t must have the same truth value.

Section 2.2

2.

p	q	$p \wedge q$	$p \lor (p \land q)$
0	0	0	0
0	1	0	0
1	0	0	1
1	1	1	1

- 4. (1) $[(p \land q) \land r] \lor [(p \land q) \land \neg r] \Leftrightarrow (p \land q) \land (r \lor \neg r) \Leftrightarrow (p \land q) \land T_0 \Leftrightarrow p \land q.$ (2) $[(p \land q) \lor \neg q] \Leftrightarrow (p \lor \neg q) \land (q \lor \neg q) \Leftrightarrow (p \lor \neg q) \land T_0 \Leftrightarrow (p \lor \neg q).$ Therefore, the given statement simplifies to $(p \lor \neg q) \rightarrow s$ or $(q \rightarrow p) \rightarrow s.$
- $\begin{aligned} \mathbf{6.} & (\mathbf{a}) \neg [p \land (q \lor r) \land (\neg p \lor \neg q \lor r)] \Leftrightarrow \neg p \lor (\neg q \land \neg r) \lor (p \land q \land \neg r) \Leftrightarrow (\neg q \land \neg r) \lor [\neg p \lor (p \land q \land \neg r)] \Leftrightarrow (\neg q \land \neg r) \lor [T_0 \land (\neg p \lor (q \land \neg r))] \Leftrightarrow (\neg q \land \neg r) \lor [\neg p \lor (q \land \neg r)] \Leftrightarrow \\ \neg p \lor [(\neg q \lor q) \land \neg r] \Leftrightarrow \neg p \lor \neg r. \\ & (\mathbf{b}) \neg [(p \land q) \to r] \Leftrightarrow \neg [\neg (p \land q) \lor r] \Leftrightarrow (p \land q) \land \neg r. \\ & (\mathbf{c}) p \land (q \lor \neg r) \\ & (\mathbf{d}) \neg p \land \neg q \land \neg r \end{aligned}$

14. (a)

p	9	$p \wedge q$	$q \rightarrow (p \wedge q)$	$p \to [q \to (p \land q)]$
0	0	0	1	1
0	1	0	0	1
1	0	0	1	1
1	1	1	1	1

(b)Replace each occurrence of p by $p \lor q$. Then we have the tautology $(p \lor q) \to [q \to [p \lor q) \land q]]$ by the first substitution rule. Since $(p \lor q) \land q \Leftrightarrow q$, by the absorption laws, it follows that $(p \lor q) \to [q \to q] \Leftrightarrow T_0$.

p	q	$p \lor q$	$p \wedge q$	$q \rightarrow (p \land q)$	$(p \lor q) \to [q \to (p \land q)]$
0	0	0	0	1	1
0	1	1	0	0	0
1	0	1	0	1	1
1	1	1	1	1	1

So the given statement is not a tautology. If we try to apply the second substitution rule to the result in part (a) we would replace the first occurrence of p by $p \lor q$. But this does not result in a tautology because it is not a valid application of this substitution rule - for p is not logically equivalent to $p \lor q$.

16. (a)
$$\neg p \Leftrightarrow (p \downarrow p)$$

(b) $p \lor q \Leftrightarrow \neg \neg (p \lor q) \Leftrightarrow \neg (p \downarrow q) \Leftrightarrow (p \downarrow q) \downarrow (p \downarrow q)$ (c) $p \land q \Leftrightarrow \neg \neg p \land \neg \neg q \Leftrightarrow (\neg p \downarrow \neg q) \Leftrightarrow (p \downarrow p) \downarrow (q \downarrow q)$ (d) $p \rightarrow q \Leftrightarrow \neg p \lor q \Leftrightarrow (\neg p \downarrow q) \downarrow (\neg p \downarrow q) \Leftrightarrow [(p \downarrow p) \downarrow q] \downarrow [(p \downarrow p) \downarrow q]$ (e) $p \leftrightarrow q \Leftrightarrow (r \downarrow r) \downarrow (s \downarrow s)$ where r stands for $[(p \downarrow p) \downarrow q] \downarrow [(p \downarrow p) \downarrow q]$ and s for $[(q \downarrow q) \downarrow p] \downarrow [(q \downarrow q) \downarrow p]$

18.

Reasons
Distributive Law of \lor over \land
$q \wedge \neg q \Leftrightarrow F_0$ (Inverse Law)
$p \lor F_0 \Leftrightarrow p \text{ (Identity Law)}$
Beasons
Absorbtion Law (and the Commutative Law of \lor)
$p \to q \Leftrightarrow \neg p \lor q$
Commutative Law of \wedge
Distributive Law of \land over \lor
Inverse Law
Identity Law
DeMorgan's Law
Demorgan's Law

Problem: Rephrase problem 17 (page 66) using only the not, or, and connectives.

(a)
$$\neg(\neg(p \lor q)) \Leftrightarrow \neg(\neg p \land \neg q)$$

(b) $\neg(\neg(p \land q)) \Leftrightarrow \neg(\neg p \lor \neg q)$