Midterm 2 (MACM101-D1) March 10, 2014. Test duration: 50 minutes Total: 35 points The bonus question is worth 5 points.

- 1. (8 points) Our universe is \mathbb{Z}^+ .
 - (a) Prove that the largest number you cannot write as the sum of 5 or 9 is 31?

Ans: Let $S(n) : n \in \mathbb{Z}^+$ can be written as n = 5a + 9b where $a, b \in \mathbb{N}$. Since there do not exist $a, b \in \mathbb{N}$ such that 31 = 5a + 9b, S(31) is false. Using the principle of strong induction we now show that S(n) is true $\forall n \geq 32$.

Basis: We can show that S(32), S(33), S(34), S(35), S(36) are true. **Induction hypothesis:** Suppose for arbitrary $k \ge 36$, $S(32) \land S(33) \land S(34) \land \ldots \land S(k)$ is true.

Now we need to show that S(k+1) is true.

We notice that $k + 1 - 5 \ge 32$ since $k \ge 36$. Thus S(k + 1 - 5) is true by the induction hypothesis. Therefore, k + 1 can be written as the sum of 5 or 9. By the principle of strong induction we can conclude that S(n) is true $\forall n \ge 32$.

Therefore, the largest number that cannot be written as the sum of 5 or 9 is 31.

(b) Disprove that there exists a largest number you cannot write as the sum of 6 or 8.

Ans: Note that 2 is a common factor (greatest common divisor) of 6 and 8. Therefore, 6a + 8b is an even integer for any $a, b \in \mathbb{N}$. This means that any odd positive integer cannot be written as the sum of 6 or 8. The claim that there does not exist a largest finite number you cannot write as the sum of 6 or 8 is proved by contradiction as follows. Suppose there is such a largest number α . If α is even, $\alpha + 1 > \alpha$ and $\alpha + 1$ is odd. Therefore, $\alpha + 1$ cannot be written as the sum of 6 or 8 – a contradiction. If α is odd, $\alpha + 2 > \alpha$ and $\alpha + 2$ is odd. Therefore, $\alpha + 2$ cannot be written as the sum of 6 or 8 – a contradiction.

2. (5 points) Prove by contradiction that $\sqrt{5}$ is an irrational number.

Ans: The answer is very similar to that of question Part B, Q.1 of homework 4.

3. (7 points) A sequence of numbers a_1, a_2, \ldots is defined by

$$a_1 = 1$$
 $a_2 = 2$ $a_n = a_{n-1} + a_{n-2}, n \ge 3.$

(a) Determine the values of a_3, a_4, a_5, a_6 and a_7 .

Ans: $a_3 = a_2 + a_1 = 3$; $a_4 = 5$; $a_5 = 8$; $a_6 = 13$; $a_7 = 21$.

(b) Prove that for all $n \ge 1, a_n < (\frac{7}{4})^n$.

Ans: Let $S(n) : a_n < (\frac{7}{4})^n$. We will use the principle of strong induction. **Basis:** S(1) is true since $a_1 = 1 < (\frac{7}{4})$. S(2) is also true since $a_2 = 2 < (\frac{7}{4})^2$.

Induction hypothesis: Suppose $S(1) \wedge S(2) \wedge \ldots \wedge S(k)$ is true for an arbitrary $k \geq 2$.

We now show that S(k+1) is true, i.e. we need to show that $a_{k+1} < (\frac{7}{4})^{k+1}$. We will use the direct proof method.

$$a_{k+1} = a_k + a_{k-1}$$

$$< (\frac{7}{4})^k + (\frac{7}{4})^{k-1} \text{ by the induction hypothesis.}$$

$$= (\frac{7}{4})^{k-1}(1 + \frac{7}{4})$$

$$< (\frac{7}{4})^{k-1}(\frac{7}{4})^2 \text{ since } (1 + \frac{7}{4}) < (\frac{7}{4})^2$$

$$= (\frac{7}{4})^{k+1}.$$

Thus S(k+1) is true. Therefore, by the principle of strong induction, $\forall n S(n)$ is true.

- 4. (5 points) Using proof by cases, show that for any $n \in \mathbb{N}^+ \{1\}$,
 - (a) $n = \lfloor \frac{n}{2} \rfloor + \lceil \frac{n}{2} \rceil$.

Ans: $n \in \mathbb{N}$ is either

• even : $n = 2k, k \in \mathbb{N}$

In this case we need to show that $2k = \lfloor \frac{2k}{2} \rfloor + \lceil \frac{2k}{2} \rceil = k + k$.

• odd: $n = 2k + 1, k \in \mathbb{N}$

In this case $2k + 1 = \lfloor \frac{2k+1}{2} \rfloor + \lceil \frac{2k+1}{2} \rceil = k + k + 1.$

Thus the statement $n = \lfloor \frac{n}{2} \rfloor + \lceil \frac{n}{2} \rceil$ is true $\forall n \in \mathbb{N}$.

(b) (Bonus) $\lceil \log_2 n \rceil = \lfloor \log_2(n-1) \rfloor + 1.$

Ans: $n \in \mathbb{N} - \{0, 1\}$ is either

• n is a perfect power of 2, i.e $n = 2^k, k \in \mathbb{N}$

In this case $\lceil \log_2 2^k \rceil = k$ and $\lfloor \log_2 (2^k - 1) \rfloor = k - 1$.

Therefore, $\lceil \log_2 n \rceil = \lfloor \log_2(n-1) \rfloor + 1$ is true for any $n \in \mathbb{N} - \{0, 1\}$ which is a perfect power of 2.

• n is not a perfect power of 2, i.e $2^{k-1} < n < 2^k$, for some $k \in \mathbb{N}$

In this case $\lceil \log_2 n \rceil = k$; and $\lfloor \log_2(n-1) \rfloor = k-1$. Therefore, $\lceil \log_2 n \rceil = \lfloor \log_2(n-1) \rfloor + 1$ is true any $n \in \mathbb{N} - \{0, 1\}$ which is not a perfect power of 2.

Thus the statement $\lceil \log_2 n \rceil = \lfloor \log_2(n-1) \rfloor + 1$ is true $\forall n \in \mathbb{N} - \{0, 1\}$.

- 5. (5 points) Let A, B and C are subsets of the universal set U. Using the properties of union, intersection and complement and known set laws, simplify the following
 - (a) $\overline{(A \cup B) \cap C} \cup \overline{B}$. Ans:

$$\overline{(A \cup B) \cap C} \cup \overline{B} = \overline{(A \cup B) \cap C \cap B}$$
 DeMorgan's Laws
$$= (A \cup B) \cap C \cap B$$
 Laws of Double Complement
$$= (A \cup B) \cap B \cap C$$
 Commutative Laws
$$= B \cap C$$
 Absorption Laws

6. (5 point) If two integers are selected at random and without replacement from {1, 2, 3, ..., 99, 100}, what is the probability the two selected integers are consecutive?

Ans: Here the sample space has $\binom{100}{2}$ elements. Each element of the sample space is a 2-tuple $(i, j), 1 \le i < j \le 100$. Of these $\binom{100}{2}$ elements, 99 elements are of the type $(i, i + 1), 1 \le i \le 99$. Therefore, the probability of selecting two consecutive integers is $\frac{99}{\binom{100}{2}}$ which is $\frac{1}{50}$.