Placing balls in bins

Problem of balls in bins

- Count the number of ways to place a collection A of m ≥ 1 balls into a collection B of n bins, n ≥ 1.
- Balls are labeled (distinguishable) or unlabeled (indistinguishable)
- Bins are labeled (distinguishable) or unlabeled (indistinguishable)
- Placement is either unrestricted, injective (one-to-one) or surjective (onto)
- We thus have 12 cases. However, we will ignore the situation when both the balls and the bins are unlabeled. Thus, effectively we will consider the other 9 case.

What do we know from our earlier studies?

• The number of integer solutions to $x_1+x_2+.....+x_n=m$ when

```
• \forall 1 \le i \le n, x_i \ge 0 : \mathbf{ans}: \binom{n+m-1}{n-1}
```

•
$$\forall 1 \leq i \leq n, x_i \geq 1 : \mathbf{ans:} \binom{m-1}{n-1}$$

- C(n+m-1,n-1) is also the number of combinations of selecting m elements with repetitions from a set of n objects.
- This is the same problems as the problem of distributing m pennies to n kids.

What do we know from our earlier studies?

The four types of functions f: A → B where |A|=m
& |B|=n:

Figure 1

9 cases

A: m labeled balls; B: n labeled bins; Unrestricted placements

• Interpretations:

- Count the number of functions f: A \rightarrow B.
- We get one-to-one matching of ball plcements and function f by placing ball i into bin j if f(i)=j.

Formula

- Let g(m,n) denote the number of placements. Then $g(m,n)=n^m$.
- When n=2, $g(m,n)=2^m$. This number is the same as the number of binary strings of length m.

A: m labeled balls; B: n labeled bins; oneto-one placements

Interpretations:

– Count the number of injective functions f: A \rightarrow B.

Formula

- Let g(m,n) denote the number of placements. Then g(m,n)=n(n-1)(n-2)....(n-m+1)=P(m,n).
- When m > n, g(m,n)=0.

Additional comments:

- g(m,n)=n! when |A|=|B|. This function f on A is called a permutation.
- The Pigeonhole Principle states that there is no injection if m > n: for any function in such a case, there must be at least one bin (pigeonhole) with at least two balls (pigeons).

A: m labeled balls; B: n labeled bins; onto placements

- Interpretations:
 - Count the number of surjective functions f: A \rightarrow B.
- Formula
 - Let $\hat{S}(m,n)$ denote the number of placements. Then

$$\hat{S}(m,n) = n^m - \binom{n}{n-1} \hat{S}(m,n-1) - \binom{n}{n-2} \hat{S}(m,n-1) - \binom{n}{n-2}$$

- Additional comments:
 - Why does this work? n^m is the number of functions. We then remove the number of onto functions whose range has n-1 elements; n-2 elements; etc.

A: m unlabeled balls; B: n labeled bins; unrestricted placements

- Interpretations:
 - The number of integer solutions to x_1 + ... + x_n =m, x_i ≥ 0.
 - Distributing n pennies to m kids, a kid may get 0 penny
- Let g(m,n) denote the number of placements. Then

$$g(m,n) = \binom{m+n-1}{n-1}$$

A: m unlabeled balls; B: n labeled bins; one-to-one placements

- Interpretations:
 - Counts the number of subsets of {1,2, ..., n} of size m.
- Let g(m,n) denote the number of placements. Then $g(m,n) = \binom{n}{m}$ or C(n,m)

A: m unlabeled balls; B: n labeled bins; onto placements

- Interpretations:
 - The number of integer solutions to x_1 + ... + x_n =m, x_i ≥ 1.
 - Distributing n pennies to m kids, a kid may get at least 1 penny
 - Counts the number of ways of writing m as a sum of n positive integers where different orderings are counted as different.
- Let g(m,n) denote the number of placements. Then $g(m,n) = {m-1 \choose m-n}$ or ${m-1 \choose n-1}$.

A: m labeled balls; B: n unlabeled bins; unrestricted placements

• Interpretations:

Consider the four functions defined in Figure 1. The functions can be written as follows:

```
Surjective - Injective: f = \{(a, 2), (b, 1), (c, 3)\}
```

Surjective – Not injective:
$$f = \{(a, 2), (b, 1), (c, 2)\}$$

Not surjective – Injective:
$$f = \{(a, 2), (b, 1)\}$$

Not surjective – Not injective:
$$f = \{(a, 2), (b, 1), (c, 2)\}$$

Consider another set of functions $f:A\to B$. Draw a figure similar to Figure 1.

```
Surjective - Injective: f = \{(a, 1), (b, 2), (c, 3)\}
```

Surjective – Not injective:
$$f = \{(a, 1), (b, 2), (c, 1)\}$$

Not surjective – Injective:
$$f = \{(a, 1), (b, 2)\}$$

Not surjective – Not injective:
$$f = \{(a, 1), (b, 2), (c, 1)\}$$

A: m labeled balls; B: n unlabeled bins; unrestricted placements (contd)

Interpretations (continued):

Note that the two sets of functions are the same when the bins are not labeled. When the bins are unlabeled, what we get is a partition of m elements as follows (for both the cases):

Surjective – **Injective**: The sets are $\{\{a\}, \{b\}, \{c\}\}\}$

Surjective – Not injective: The sets are $\{\{b\}, \{a, b\}\}$

Not surjective – Injective: The sets are $\{\{a\}, \{b\}\}\$

Not surjective – Not injective: The sets are $\{\{b\}, \{a, c\}\}$

However, these two sets of functions are different if the bins are considered labeled.

A: m labeled balls; B: n unlabeled bins; unrestricted placements (contd)

Formula:

We have used $\hat{S}(m,n)$ to indicate the number of onto functions from A to B. Therefore, the number of partitions of m elements nto exactly n blocks is $\frac{\hat{S}(m,n)}{n!}$. In the text S(m,n) is used to indicate the number $\frac{\hat{S}(m,n)}{n!}$. S(m,n) is thus used in the text to indicate the number of partitions of $\{1,2,...,n\}$ into at most n blocks, and S(m,n) is called Stirling numbers of the second kind.

Therefore, the number of partitions of A into at most n blocks is

$$\frac{\hat{S}(m,1)}{1!} + \frac{\hat{S}(m,2)}{2!} + \ldots + \frac{\hat{S}(m,n)}{n!}$$
, or $S(m,1) + S(m,2) + \ldots + S(m,n)$.

A: m labeled balls; B: n unlabeled bins; one-to-one placements (contd)

- Interpretation: Either you can do it (when m ≤ n) or you cannot do it when m > n.
- Count = 1 when m ≤ n, otherwise it is zero

A: m labeled balls; B: n unlabeled bins; onto placements

- Interpretations:
 - Counts the number of partitions of {1,2, ..., m} into exactly n nonempty blocks.
- Formula: $S(m,n) = \frac{\hat{S}(m,n)}{n!}$