
Supplementary Exercises- Mathematical Induction

Summations

• Prove by induction on positive n that
n

∑

i=1

1

i(i + 1)
=

n

n + 1
.

• Prove by induction that for all n ≥ 1,
n

∑

i=1

i3 =
n2(n + 1)2

4
.

• Using a proof by induction, show that
n

∑

i=1

(i)(i!) = (n + 1)! − 1, for all n ≥ 1.

• Prove that
n

∑

i=0

2i = 2n+1 − 1 for all n ≥ 0 by induction.

Divisibility

• Show that n3 + 2n is divisible by 3 for all n ≥ 1 by induction.

• Show that n4 − 4n2 is divisible by 3 for all n ≥ 2 by induction.

• Show that 7n − 1 is divisible by 6 for all n ≥ 1 by induction.

• Let a, b,m be positive integers such that m | (a− b). Prove by induction on k ≥ 0 that
m | (ak − bk).

Inequalities

• Prove that
n

∑

i=1

1√
i
≥

√
n for all n ≥ 1 by induction.

• Prove by induction that for n ∈ Z
+,

n
∑

i=1

1

i2
≤ 2 − 1

n
.

• Using induction, prove that 3n < n! for all n ≥ 7.

1



Sequences and Strong Induction

• Let F0 = F1 = 1 and Fn = Fn−1 + Fn−2 for all n ≥ 2. Prove for all n ≥ 0:

–

n
∑

i=0

Fi = Fn+2 − 1.

–

n
∑

i=0

(Fi)
2 = Fn · Fn+1.

–

⌊n/2⌋
∑

i=0

(

n − i

i

)

= Fn.

– gcd(Fn+1, Fn) = 1.

• Show that postage of 24 cents or more can be achieved by using only 5-cent and 7-cent
stamps.

• One way of generating the nth Fibonacci number is by using a recursive algorithm like
the following.

int fibonacci(int n) // generates Fn

if ((n = 0) OR (n = 1)) then

return 1;

else

return fibonacci(n-1) + fibonacci(n-2);

end if

end fibonacci;

Effectively, the algorithm mimics the definition of the Fibonacci sequence shown above.

In computing science, the efficiency of an algorithm is measured by the amount of
computing time expended as a function of the input. In this example, the input is the
integer n, so we will let Tn represent the amount of time expended to run fibonacci(n).

Note that this algorithm is recursive which means that it calls an instance of itself to
help solve the problem. Function calls are very costly time-wise, so we can measure Tn

by counting the total number of calls to fibonacci during execution.

For example, an initial call to fibonacci(3)will call fibonacci(2) and fibonacci(1).
fibonacci(2) will (in turn) call fibonacci(1) and fibonacci(0). There are a total
of 5 calls to fibonacci, which means T3 = 5. (Note also that T2 = 3.)

– Determine the values of T0 and T1.

– Write a recursive definition for Tn, for n ≥ 2, n ∈ N.

– Prove by induction that for all n ∈ N, Tn = 2Fn − 1.

2


