
mu-grind: A Framework for Dynamically Instrumenting

HLS-Generated RTL

Parmida Vahdatniya, Amirali Sharifian, Reza Hojabr, Arrvindh Shriraman
School of Computing Sciences, Simon Fraser University

https://github.com/sfu-arch/muir-lib
Canada

{parmida_vahdatniya,amiralis,shojabro,ashriram}@cs.sfu.ca

Abstract
High-level synthesis compilers (HLS) enable the rapid creation of

accelerator circuits. Unfortunately, compiler generated RTL (H-RTL)
is inconsistent in terms of quality, hard to comprehend, and tends
to be brittle [28, 41]. This paper develops a framework to help HLS
compiler architects inspect and profile H-RTL. Prior state-of-the-art
tools [23, 57] have predominantly focused on tracing. Tracing requires
massive amount of on-chip buffering, limits the H-RTL design size,
and only support post-mortem analysis at the end of the execution.

We propose `grind1, a dynamic instrumentation framework for
H-RTL. The key technique is guards, additional logic that we auto-
inject into the output of HLS compilers (H-RTL). Guards perform two
tasks: i) they run analysis functions on the values fed from the H-RTL
signal, and ii) patch values into the H-RTL during live execution.
Guards can either be mapped onto the FPGA or can be co-simulated
along with the H-RTL. `grind can remove them once the H-RTL is
finalized. Leveraging `grind, we create a novel tool, H-RTL checker,
that precisely identifies the erring signal and cycle without any user
involvement. Compared to prior art, `grind requires 2—10⇥ less
SRAM, supports 5⇥ larger H-RTL circuits (upto 98% of the FPGA)
and completes checks in <24 hours (including FPGA synthesis time).
We also develop two additional tools: i) H-RTL faulty, which deploys
heterogeneous guards to study circuit resilience, and ii) H-RTL pro-
filer, which creates detailed execution histograms. We save between
200-35000X DRAM traffic compared to prior art, by avoiding traces.
CCS Concepts
• Computer systems organization ! Architectures; • Hardware
! Hardware-software codesign.
Keywords
Debuggers, High-level synthesis, FPGAs, Hardware instrumentation,
Dynamic instrumentation
ACM Reference Format:
Parmida Vahdatniya, Amirali Sharifian, Reza Hojabr, Arrvindh Shriraman.
2022. mu-grind: A Framework for Dynamically Instrumenting HLS-Generated
RTL. In ,. ACM, New York, NY, USA, 13 pages. https://doi.org/https://doi.
org/10.1145/3559009.3569671

1The name is inspired by binary instrumentation tool Valgrind.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
PACT ’22, October 10–12, 2022, Chicago, IL, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9868-8/22/10. . . $15.00
https://doi.org/https://doi.org/10.1145/3559009.3569671

1 Introduction
High-level synthesis research and development is error prone. Soft-

ware design is comparatively straightforward....with mature debug-
ging tools. — Andrew Canis, CTO, Legup HLS [15, Page 8]

Our ApproachState-of-the-Art
(e.g., Legup, Vivado)

C++ and
Pragmas

Intermediate
Representation

Verilog
Netlist

HLS Com
piler

Simulator
(e.g., Verilator)

waveform Verilog netlist
w/ Guards

HLS
Compiler

µgrind
inst. pass

C++ and
Pragmas

Simulator

FPGA

Guard
Report

Trace
Chisel

`grind Tools
H-RTL Checker
Check

Patch

H-RTL Faulty

Faults

H-RTL Profiler
Analyze

Figure 1: Overview of `grind toolflow.

The last few years has seen a surge in research into high-level-
synthesis compilers (HLS) that auto-translate high-level languages
into RTL [5, 19, 33, 34, 43, 46, 48, 51–53]. Today, computer architects
actively develop HLS compilers and deploy it for creating custom IP
targetting both FPGAs [1] and ASICs [38]. It is widely acknowledged
that the key impediment in HLS is the opaqueness of the compiled or
generated RTL (H-RTL) [41]; even industry-standard HLS break the
H-RTL in eccentric ways [28].

A leading HLS expert cites the lack of mature tools to inspect HLS
generated output (H-RTL) as being a key hindrance [15, Page 8] [41].
Multiple tools exist (e.g., valgrind, Dynamorio, gcc -p) to analyze the
output of software compilers (i.e., binaries). However, HLS compilers
lack such a framework. The question we answer in this paper: how
can we help the HLS compiler developers instrument the gener-
ated RTL with low-effort and in a flexible manner to understand
the dynamic execution of hardware (see Figure 1). Our goals are

PACT ’22, October 10–12, 2022, Chicago, IL, USA Parmida Vahdatniya, Amirali Sharifian, Reza Hojabr, Arrvindh Shriraman

three-fold i) low-effort instrumentation i.e., the designer should be
able to read, analyze and write H-RTL signals without needing to edit
the H-RTL manually or knowing a hardware language. ii) flexible
instrumentation i.e., we need a configurable framework that adds in
additional logic and SRAM only for the signals instrumented in the
H-RTL. Conversely, it should be easy to remove the instrumenta-
tion entirely from the H-RTL, once the accelerator is analyzed. iii)
dynamic instrumentation i.e., the instrumentation should be able to
analyze and modify signals during the execution. We demonstrate
that live execution analysis is essential to creating checker tools that
avoid muddled-up logs.

Waveforms are the most prevalent approach [3]. This requires the
user to inspect a verbose H-RTL netlist across potentially millions of
simulation cycles [39]. State-of-the-art tools help annotate waveforms
with additional information [12, 24, 27, 31, 57]. However, this leaves
open the question of how can a user know which portion of the
opaque H-RTL to focus on. Some works have provided a gdb-like
environment [11, 13, 14, 25, 32] to inject kill switches. The kill
switches are similar to asserts and stop the circuit [50]). They do not
support analysis of the live execution.
Our Approach

We propose `grind, a framework for dynamically instrumenting
HLS generated RTL (Figure 1). The key technique is guards, circuitry
that we mix into the H-RTL to tail any register, memory entry, and
signal. `grind builds on modern RTL toolchains (Chisel [30]) to add
and remove guards. Guards get mapped onto the FPGA prototype with
H-RTL; they can also be co-simulated in verilator. During execution,
guards can dynamically extract, run analysis logic, and modify (or
patch) the H-RTL’s signals. This eliminates the need to trace a verbose
dump of signals to the DRAM for post-execution analysis. Guards
only write post-analysis data to the DRAM. This saves DRAM traffic,
reduces on-chip SRAM, and enables larger circuits to be analyze.
Finally, patching prevents the unfettered propagation of erroneous
signals during debug runs (unlike asserts), enabling us to converge
rapidly on region of analysis. Guards run concurrently which reduces
the overhead typically associated with instrumentation. The dynamic

term refers to the fact that: i) we can analyze internal hardware signals
during runtime (a first), and ii) we can turn off the instrumentation at
runtime.

We create three tools to demonstrate `grind. a) H-RTL Checker:
a novel checker, that pinpoints the statements and cycles in which
the H-RTL deviated from the software behavior. We exploit the key
observation that during the checking stage the majority of the H-
RTL circuit typically functions correctly. It uses a smaller H-RTL
circuit to rapidly eliminate false guards. Once we have narrowed
down the guard’s region of interest, we scale up the design-under-
test to 90% of the FPGA. This way we can check complete real
accelerators in <24hrs. We also study two other tools: a) H-RTL
Faulty : leverages guards to check circuit resiliency. It injects a variety
of faults (e.g,. struck control) into specific H-RTL signals, while
simultaneously monitoring the circuit. c) H-RTL Profiler : a tool that
builds into hardware the logic for histograming and summarizing
H-RTL activities.

• We are the first to propose techniques for hardware instru-
mentation. `grind enables a tool to extract H-RTL signals
and attach user-defined analysis functions. FPGA prototyping
demonstrates that instrumentation imposes limited overhead,
10—15% extra logic and ' 5% Mhz penalty.

• We develop a novel tool to find bugs in H-RTL and automati-
cally refine regions of inspection. Compared to state-of-the-art,
we find bugs in RTL 5⇥ larger, in under 24hrs (including FPGA
synthesis).

• We demonstrate that iterative approach to debugging is prac-
tical. For accelerator circuits, we can narrow down bug site
within a few iterations (3-4 iterations 16-24hr) and we can
study designs up to 90% of FPGA (prior state-of-the-art re-
stricted to 20% of FPGA).

• Compared to prior trace tools, we demonstrate that dynamic
instrumentation can save 200—35000× DRAM traffic and
2—10× of on-chip SRAM.

Load
in[0]

Load
hist[in[0]]

hist[in[0]] + wgt[0] store
hist[in[0]]

Load
in[1]

Load hist[in[1]] - cache miss

Load
in[2]

Load
in[3]

#pragma pipeline parallel
for (i=0; i<N; i++) {

hist[in[i]] = hist[in[i]] + wgt[i];
}

// Predecessors: start, loop
loop:
 %i = phi i32 [0, %0], [%11, %2]
 %x_reg = load *x, [%i]
 %wgt_reg = load *wght, [%i]
 %hist_reg = load *hist, [%x_reg]
 %hist_accum = add %hist_reg, %wgt_reg
 store i32 %hist_accum, *hist, [%x_reg]
 %i_plus_1 = add i32 %i, 1
 %cond = icmp set-less-than %i_plus_1, N
 br %cond, label loop, label exit

LLVM Intermediate
Representation

C-Program

Merge

Load in[i]

Store hist[in[i]]

Spawn

Spawn

Load
hist[in[i]]

Load wgt[i]
<

1

Branch

pipeline
register

Exit

HLS-generated Accelerator RTL

i = 0 i plus
1

i=0

i=1

i=2

i=3

ite
ra

tio
n

Load
in[0]

Load
hist[in[0]]

hist[in[0]] + wgt[0] store
hist[in[0]]

Load
in[1]

Load
hist[in[1]]

hist[in[1]] + wgt[1] store
hist[in[1]]

Load
in[2]

Load
hist[in[2]]

hist[in[2]] + wgt[2] store
hist[in[2]]

Load
in[3]

Load
hist[in[3]]

hist[in[3]] + wgt[3] store
hist[in[3]]

RAW Dependency

1 2 3 4 5 6 7 8 9 10 11
Timing with pipeline dependency

Timing with cache miss

Load
hist[in[2]] hist[in[2]] + wgt[2]

store
hist[in[2]]

Load
hist[in[3]]

hist[in[3]] + wgt[3] store
hist[in[3]]

i=0

i=1

i=2

i=3

1 2 3 4 5 6 7 8 9 10 11

Cycles

Figure 2: Overview of HLS translating histogram kernel [35, 53]. Left: HLS inputs. C program and SSA IR. Mid: HLS Output and
Accelerator H-RTL. Right: Dynamic schedules and execution pipeline.

mu-grind: A Framework for Dynamically Instrumenting HLS-Generated RTL PACT ’22, October 10–12, 2022, Chicago, IL, USA

2 Motivation and Scope
First, we provide an overview of an HLS compiler and H-RTL

(Figure 2). State-of-the-art HLS compilers [35, 53] translate C/C++
to a token-based dataflow circuit. Here we show a histogam kernel.
The execution is dynamically-scheduled i.e., the nodes and operations
are triggered as dependencies are satisfied, and no centralized FSM
(finite state machine) is required. The pipeline diagram illustrates the
timing. Within the loop, a data dependency may exist between the load
of hist[in[i+1]] and the store to hist[in[i]] of a prior
iteration, depending on the contents of in[]. When the dependency
does not occur, the dynamic schedule initiates a new iteration each
cycle. When a dependency does occur, the dynamic schedule stalls the
pipeline to satisfy read-after-write dependency. Loop iterations can
complete in arbitrary order. When the underlying loads and stores are
connected to a cache it leads to non-determinism in the latency and
the timing of memory operations. For instance the add operation in
iteration 2 is stalled until the load of hist[2] from cache completes.
In the meanwhile, the third iteration starts and completes.
2.1 H-RTL instrumentation vs. Binary instrumentation

HLS compiler developers cite the lack of fixed state as to why H-
RTL requires new techniques to binaries [10, 42]. i) Executable (bi-
nary) vs. Structural (H-RTL): A binary runs on existing hardware.
The instrumentation reads and writes ISA-visible registers/memory
and runs on same hardware as the binary. The state is accessed via the
processor instructions. H-RTL describes a microarchitecture structure
and accelerators are based on dataflow. We have to create functions
units, bind operations, and physically route values. Only recently RTL
toolchains have made it possible to programmatically edit H-RTL [30].
iii) Centralized fixed state (binary) vs Distributed, variable state
(H-RTL) Finally, any instrumentation framework needs to read and
write state from the target. With binary, the ISA registers and memory
state are defined and centralized i.e. all binaries refer to common ISA
register state. HLS compilers customize the state for each H-RTL
accelerator and distributes state across in the pipeline latches, operand
buffers, and scratchpads. iii) ii) Imperative ISA (binary) vs Concur-
rent Dataflow (H-RTL) A binary is an imperative specification in
a target ISA. The instrumented binary implicitly supports sequential
semantics enforced by the underlying cpu. H-RTL is a concurrent
specification in which ordering of operations has to be defined by
`grind.
2.2 Motivational tool: Checking H-RTL errors.

To motivate how instrumentation can help with HLS compiler
research, we briefly preview a checker tool from Section 5). We track
the git commits in a state-of-the-art HLS compiler [53](`IR) and find
errors introduced due to H-RTL passes. We discuss the errors and
motivate the need for instrumentation that can track signal values and
cycle timing. We communicated with the authors of `IR and verified
the cause of these errors [18, 43, 53].
H-RTL Error 1: Stuck Control
Detection: Instrument the merge mux’s output signal.

Many HLS compilers translate LLVM’s SSA representation to
RTL (e.g., LLVM IR [2, 35, 53]). LLVM periodically updates the
SSA syntax during major releases. In this instance LLVM reversed
the order of labels in the select and q ops. This led the HLS to wire the
mux data lines to the merge node in the incorrect order (see Figure 3).
Due to the mix-up, the mux is stuck at and always propagates i=0 on

Spawn

<

i plus 1
start

i = 0
~start i=0

i=0

i=0

i=0

ite
ra

tio
n

Merge
i = 0

Branch

Merge
Load

hist[in[0]]
store

hist[in[0]]
Load
in[0]

hist[in[0]]
+ wgt[0]

Merge
i = 0

Load
hist[in[0]]

store
hist[in[0]]

Load
in[0]

hist[in[0]]
+ wgt[0]

Merge
i = 0

Load
hist[in[0]]

Load
in[0]

hist[in[0]]
+ wgt[0]

Merge
i = 0

...............
Original
H-RTL
signals

Instrumentated signals

Exit

1 2 3 4 5 6

+1

Figure 3: H-RTL Error 1: Stuck control caused by LLVM syntax
mismatch leading to incorrect mux wiring.

each iteration of the loop; the loop keeps re-executing iteration i =
0. Tracing or waveforms cannot catch this bug since execution will
never terminate. `grind’s dynamic instrumentation will capture the
output of the merge and analyze if the loop induction variable.
H-RTL Error 2: Incorrect dataflow pipelining
Detection: Instrument the output signal of dataflow operators and
check against SSA register values.

Load in[i]

Store hist[x[i]]

Spawn

Spawn

Load
hist[in[i]]

Load wgt[i]

Exit

i = 0

<
i=0

i=1

i=1

i=2

ite
ra

tio
n

1 2 3 4 5 6
Load

hist[in[0]]
store

hist[in[0]]
Load
in[0]

hist[in[0]]
+ wgt[0]

Load hist[in[1]]

store
hist[in[0]]

Load
in[1]

hist[in[0]]
+ wgt[1]

Load
in[2]

...............

+1

i plus 1

Figure 4: H-RTL Error 2: Incorrect pipeline buffer depth setting
leading to faulty operands.

These classes of errors are reported even by Xilinx’s Vivado [56].
HLS compilers place FIFO buffers to: i) enable loop iterations to
start asynchronously, and ii) to balance the different critical paths
at spawns. In this instance, the HLS compiler miscalculated the
latency of paths and created a buffer with incorrect depth. As shown
in the timing diagram this leads to incorrect operands being placed
on the inputs to the adder leading to hist[in[0]]+wgt[1]; one
of the operands is from the ith iteration and the other one from i-1th.
Dynamic instrumentation will track the values in the output registers
of the nodes, check the iteration index, and the adder operands.
HLS Error 3: Faulty Cache Handshaking
Detection: Instrument the cache request and response lines, and check
number of requests/responses.

A common cause of error is the interface to the shared cache
(or scratchpad). Typically the cache or scratchpad is a blackbox IP
invisible to HLS. The HLS statically schedules loads and store across
latency-sensitive request and response ports. In this particular case,
`IR HLS incorrectly scheduled the load hist[in[i]] on the
same cycle as another load. This led to a load being missed missed by
the cache. `IR HLS [53] also reported similar error causing incorrect
response errors due to wrong address. `grind instruments the cache
request and response lines along with the memory nodes. It analyzes
the sequence of requests and responses to verify if every request has a

PACT ’22, October 10–12, 2022, Chicago, IL, USA Parmida Vahdatniya, Amirali Sharifian, Reza Hojabr, Arrvindh Shriraman

corresponding response. These type of checkers can be since `grind
permits the user to define analysis function within the guards.

Store hist[x[i]]

Load
hist[in[i]]

Load wgt[i]

Exit

Load in[i]

U
ni

ns
tru

m
en

te
d

H
-R

TL

Shared
Cache

A
XI

DRAM

i=0

i=1

i=2

ite
ra

tio
n

1 2 3 4 5 6
Load

hist[in[0]]
store

hist[in[0]]
Load
in[0]

hist[in[0]]
+ wgt[0]

Load hist[in[1]]
Load
in[1]

Load
hist[in[2]]

store
hist[in[2]]

Load
in[2]

hist[in[2]]
+ wgt[2]

Figure 5: H-RTL Error 3: Incorrect interfacing between H-RTL
and Cache leading to missed request and circuit lockup.

2.3 Complexity of instrumented H-RTL circuits.
We now motivate the need for a framework that can automatically

inject instrumentation into H-RTL (without requiring any human
editing). We study end-to-end applications from Machsuite [49] Relu,
Saxpy, Vadd, Conv2D, Stencil, and Gemm. Upto 40K lines of verilog,
32 state FSMs, 400 modules, 40 stage pipeline, and 700 operations in a
single cycle. Table 1 lists the characteristics of the H-RTL circuits. For
the interested reader, the H-RTL imported into Chisel can be viewed
here (https://anonymous.4open.science/r/d6f70aaf-3014-4353-9b48-
cc5759080898/).

App. Verilog LOC # FSM # Verilog Mod. Pipe. Depth Parallel
GEMM 33049 32 366 14 32
Conv2D 37277 16 329 41 48

FFT 37418 4 340 22 56
Relu 21051 4 206 11 48

Saxpy 18060 2 228 9 48
Stencil 26396 8 166 8 768

Table 1: RTL Complexity of guarded Accelerators

We use four proxy metrics i) Verilog LOC: The number of lines
of verilog strongly correlate with the number of H-RTL variables
(signals or registers). ii) Ctrl-states This measures the complexity
of the control FSM. Accelerator with nested loops, require multiple
states. iii) Verilog modules: The number of modules instantiated;
each module roughly corresponds to a dataflow operation. The higher
the number of modules, the more the motivation for instrumentation
since waveforms tend to be polluted. iv) Pipeline depth: In HLS,
the pipeline can be much deeper than CPUs i.e., more instruction
execution overlap. This makes it hard to analyze timing-dependent

errors. v) Concurrency: The H-RTL circuits we investigate are highly
concurrent with upto 700 parallel fine-grain ops; an instrumentation
framework is required to narrow the region.
3 `grind: Architecture and Design
3.1 Auto-Wiring guards into H-RTL

In `grind, the end-user or HLS developer does not need to read
or edit the H-RTL. Figure 6 illustrates the passes we have developed
to mixin guards into the H-RTL. The example illustrates a simple
address checker that analyzes the loads in the H-RTL circuit. In y1
`grind iterates over the SSA representation within the HLS compiler
and creates a mapping table between SSA registers and the verilog
modules. This serves two purposes: i) a tool (or user) can indicate
their region of interest at the program-level and we can track down the
signals to be guarded. ii) we can reverse-map the guard output to the
higher-level region of interest using the SSA as an intermediary. Iny2 the guard list is filled based on the instrumentation goals e.g., load
nodes. Each entry also includes the verilog module and the analysis
function. Each entry can independently determine the guard class i.e.,
multiple guard classes can be simultaneously active. In y3 `grind
iterates over the H-RTL and identifies the signals (registers and wires)
within the module. For each signal, `grind includes an AddGuard()
annotation in the H-RTL module. In this example, since loads are
instrumented, the address and data fields are annotated. y4 In this
stage, we define the guard circuits and connect it to the actual signals.
`grind leverages FIRRTL, a compiler that loads H-RTL into a data-
structure that we can transform and rewrite. The main challenge is that
guards are separate modules introduced post H-RTL generation, while
the module signals could be embedded deep in the H-RTL’s module
hierarchy. To wire these up `grind uses a FIRRTL pass that “bore”
through the module hierarchy (Figure 7 illustrates). We add wiring
for toggle enabling/disabling the guards from a tool. We also wire in
a trigger switch that is enabled when the module is active (e.g., load).
Finally we bore the H-RTL signals to the guard and corresponding
patch values in the reverse direction.
Guard Internals

Each guard monitors an H-RTL signal and includes five compo-
nents: i) Trigger: a boolean signal that activates the guard to pay
attention and start analyzing the H-RTL signal. This serves to avoid
the data deluge of waveforms. ii) Shadow RAM a scratchpad for hold-
ing guard’s metadata. The metadata is streamed from DRAM during
the execution. There could be multiple metadata buffered, and a guard

modul e accel
modul e l oop

modul e l oad

SSA IR

Ar e LD/ ST t o scr at chpad
out - of - bounds?

1

Guard module
 Bore.Source(io.in(0)
 // Analysis function
 when(io.addr > MAX)

Op Analysis
Load in[i] Range()

Load hist[in[i]] Range()
... ...

 Guard list (json)
module Load(Debug = true)

Addguard(io.addr)
 Addguard(io.data)

SSA-RTL
Mapping

3

Store

Load

Load
Uninst.
H-RTL

H
-R

TL

Chisel/FIRRTL

 Wiring

4 Inst.
Netlist

Verilator
Simulation

FPGA
Prototype

loop:...
x_reg = load *x, [%i]
wgt_reg = load *wght, [%i]
hist_reg = load *hist, [%x_reg]

H-RTL

2 H-RTL
Tagging

Trigger

Figure 6: `grind Toolflow

mu-grind: A Framework for Dynamically Instrumenting HLS-Generated RTL PACT ’22, October 10–12, 2022, Chicago, IL, USA

Baseline H-RTL

µgrind
wiring

=
<
>

Logic en

Data Buffers

trigger

signal
patch

Guards (Chisel)

=
<
>

Logic en

Data Buffers

trigger

signal
patch

G
ua

rd
 m

ux

Instrumented module
Top

Signal

Figure 7: Boring wires between guards and nested H-RTL

may refer to different shadow values depending on execution cycle.
iii) Analysis(): a logic block that processes the incoming H-RTL sig-
nals and shadow value. It further records the data and/or modifies the
H-RTL on-chip signal (patching). The majority of analysis functions
require simple logic, e.g., isEqual() or isRange() that can be
accomplished in 1 cycle. Guards also support multi-cycle analysis
functions, since they interface with H-RTL using latency-insensitive
connections iv) Patch value: The patch value overwrites the H-RTL
signal during execution. Patches are useful for fixing erring signals
during debugging and injecting faults for testing resiliency. v) Tracer
RAM: Each entry includes: i) runtime context: logical timestamp and
cycle time when the guard was triggered. ii) the signal values from
the H-RTL, and iii) the analysis output.
Guard core

A guard core serve as the top module for all the guards mixed in
with the H-RTL (Figure 8). Having a separate guard core enables the
following benefits: i) guards can share buffers to interface with the
DRAM, ii) we can provide shared I/O for the user to access the guards.
If guards were implemented as part of the H-RTL modules, then the
I/O ports of H-RTL modules would have to be redefined. iii) guards
can exchange information with each other for dynamic analysis. The
core collects the results of the analysis and burst them to the main
memory in double-buffered batches. An important issue we had to
consider was how to handle the write buffers filling up. We keep
the circuit completely decoupled from the H-RTL and drop packets
if the buffers fill up. Note that in this case, the guards themselves
continue to function, analyze, and patch values if required. We only
drop the outputs for some cycles. However, this approach continues
to maintain the timing independence and fidelity of the H-RTL circuit.

4 `grind APIs
Event APIs

The event APIs are included at the top-level of the H-RTL circuit
and are used to dynamically turn on (or off) callbacks to guards.
The event APIs are triggered by `grind when the module in the H-
RTL is activated. These events are module start or termination, and
entry/exit of module function units. The H-RTL is represented as a
latency-agnostic structural graph. Nodes in the graph represent the
compute, control and memory modules. The link here includes all
the H-RTL benchmarks evaluated with the relevant event APIs [54].
Code 1 shows excerpts from the top-level of a Relu circuit. Every
node or module that has debugging set to true, triggers the guard
when the node kick-starts in the dataflow at runtime. We extract the

AXI

Load
A[i]

Mul

Store
C[i]

Shadow
RAM

H-RTL Value:
0x1004101024

Patch:
0x0004101024

ID Flag OpCode Iter Data
05 1 0x0A 4 0x1004101024

...

A
rbiter

D
R

A
M

Guard
A[i]

Guard
B[i]

Guard
Mul

uGrind Core

Instrumented
H-RTL Analysis

FIFO

FIFO

FIFO

Load
B[i]

Patch
Value

Trigger

Figure 8: Guard Core

dependencies in the dataflow graph and expose a json file, in which
the tool (or user) can mark events of interest(code 2).

1 // %mul = mul nsw i32 %shr, %W,
2 val mul3 = Module(new ComputeNode
3 (NumOuts, ID = 3, opCode = "mul", sign = false)
4 (Debug = True))

Code 1: Line 101 from Relu H-RTL.

1 { "id" : 3,
2 "name" : "mul3",
3 "operands" : ["INS_13", "INS_21"],
4 "bb" : 19,
5 "type" : "Binary" }

Code 2: Event configuration (Relu.json)

Compute Select Control

Store
Func()

N - Live
Ins

N - Live
Outs

Memory
Interface

addr()
data()

addr()
data()

Ack

Data

En Sel

Token

N
Write
Ports

N
Read
Ports

Addr Data

To
Mem

Load

Addr

From
MemData

Figure 9: List of nodes with guard callback support

4.1 Signal APIs
Signal API is akin to a hardware callback. During HLS they tunnel

wires from signals in the H-RTL to the guard modules. During runtime
they expose the H-RTL state to guards. The signal API is hierarchical.
The module-level API treats each node in the H-RTL as a blackbox
and only extracts the io ports of each module (e.g., the operands and
output). The wire API can extract the signals within each node, any
register, signal, and RAM entry. The signals extracted by wire API
depend on the type of the module (see Table 2). HLS blackboxes (e.g.,
FPGA specific FPUs or caches) default to the module API. Code 3
illustrates the wiring we automatically add to module for the internal
signal. A sink (line 3) is the hardware callback from H-RTL module

PACT ’22, October 10–12, 2022, Chicago, IL, USA Parmida Vahdatniya, Amirali Sharifian, Reza Hojabr, Arrvindh Shriraman

to guard. The source (line 6) wires in guard output back into the
H-RTL module. Every source or sink call takes a string name for the
wire, which helps identify the corresponding guard partner during
hardware synthesis.

Table 2: `grind Signal API for H-RTL nodes.

Components H-RTL Signals
Compute (INT,FP) ID, Predicate, Operands, Output
Addr (e.g.,Gep,Ptr) Base Addr., Offsets, Type
Control (e.g.,Select) Mux, Enable, Predicates, Branch

Load/Store Addr., Data, Size, Type (Local,DRAM)
Cache/Scratch Req./Resp packet, Data, Valid, Data, Address

Function Arg., Output, Operation ports, Pipeline reg.

1 class ComputeNode() {
2 //Callback module to guard
3 addSink(io.FU.data, s"FU_data${ID}")
4 addSink(io.FU.valid, s"FU_valid${ID}")
5 // Analysis result from guard to module
6 addSource(io.Callin, s"Guard_Callin${ID}")
7 addSource(io.Patch, s"Patch_data${ID}")
8 }

Code 3: Signal API for boring wires.

4.2 Instrumentation API
`grind includes a library of guards that the tool or user can declare

without any additional effort (Table 3). The user can also create
customized guards in Scala and Chisel [8]. Code 4 shows a simple
equivalence checker. The APIs are meant to have a software-feel,
and `grind will create a hardware circuit and attach it to the H-
RTL module. The guard arguments and return values are wired in
using the mirror image sink/source calls (like 6). The API requires
the tool to declare three components. i) Trigger (line 11): a valid
flag that activates the guard. Here we use the function unit (FU)’s
valid signal. ii) Analysis (line 12): This is an acyclic function of
the signals extracted from the module. Here the isEqual() analysis
function checks if the FU output is equivalent to the golden and returns
the boolean result. iii) Patch (line 13): The patch calls back in to the
module. In hardware we set the callin flag and guard output lines. The
patch is gated based on the result of the analysis function i.e., patch
output is not sent if the analysis evaluates to false. (line 4:"when()" in
RTL is equivalent to an “if statement”). Code 5 illustrates two other
guard types i) a profiler which silently analyzes incoming module
data, and immediately calls into the module i.e., patch is not gated.
ii) a fault injector that does not perform any analysis, but patches in
bogus value into the module’s output.

1 val isEqual(FU_out, golden) = (FU_out == golden)
2 // Guard top module
3 class Checker() extends Guards {
4 val io = {
5 addSink(io.FU.data, s"FU_data${ID}")
6 addSource(io.Guard.out, s"Guard_data${ID}")
7
8 }
9 when(FU_valid) { // Callback from Module

10 // Analysis
11 val result = isEqual(io.FU.data, golden)
12 when(result) { // Patch function
13 io.Patch := io.golden
14 }
15 io.FU.callin := true.B

Table 3: `grind instrumentation library.

Guards Description
Check Check module output is equal to golden value
Patch Check and update module output with golden value
Assert Check and stop circuit, if output does not match
Activity Count the number of times module is active
Hist Create a histogram of output values of module
isRange Check cache or scratchpad request address range
isValid Check if the input operands to a module are valid
isTarget List the modules activated by a control module
Fault Inject a faulty value into the module’s output

16 }

Code 4: Instrumentation API

1 // Profiler creates histogram
2 class Profiler extends Guards() {
3 val bins = Vector(Counter(0.U),256) // Histogram
4 // Calculate index of counter.
5 val idx = FU.io.out.signal(31,24) // Index
6 when (io.FU.valid) { // Trigger
7 bins(io.FU.valid).increment() // Analysis.
8 }
9 io.FU.callin := true.B // No patch.

10 }
11 // Faulty guard injects faults in the module
12 class Faulty extends Guards() {
13 when(FU_valid) { // Trigger
14 io.FU.callin := true.B // Always Patch
15 io.FU.out := LFSR() // Faulty value
16 }
17 }

Code 5: Profiler and Faulty Guards

5 Tool 1: H-RTL Checker
To demonstrate the utility of `grind we develop a tool that helps

with HLS compiler research. The tool performs checking between the
H-RTL signals (hardware behavior) and SSA register state (software
behavior) for an execution. The goal of the checker is not formal
verification [40], but rapid discovery of functional bugs in H-RTL.

 %5 = phi i32 [0, %2]
 %6 = phi i32 [0, %2]
 %7 = mul i32 %6, %1,

HLS

SSA
Trace

%5 = phi i32 [0, %2]
trace_reg(%5)
%6 = phi i32 [0, %2]
trace_reg(%6)
%7 = mul i32 %6, %1,
trace_reg(%7)

CPU
Run

DMA
golden values

Simulation FPGA

2

1

Inject Guards

==
Gold ?

en
Patch

00000110110
01010010101

.........

DRAM DRAM

Erring
Guards

3

Update
guardlist

4

5

Phase 1: Extract
 golden

Phase 2: Guard and
 Check

H-RTL

Phase 3:
Update
Guard

Figure 10: Iterative H-RTL checker tool built using `grind.

mu-grind: A Framework for Dynamically Instrumenting HLS-Generated RTL PACT ’22, October 10–12, 2022, Chicago, IL, USA

Tool Description
Figure 10 illustrates the checker. Phase 1: Extract golden

is run once. The first requirement in debugging hardware is obtaining a
reference golden behavior. 1� Here, we modify the HLS compiler [53]
to dump the dependence graph and the SSA register list (to a JSON
file).

2� We insert software instrumentation to trace the SSA register
values and memory live-outs from a CPU run. The golden values
are written to the DRAM and are consumed by guards during the
instrumented FPGA run. 3� The instrumented H-RTL is synthesized
and mapped onto the FPGA. In the first iteration, we instrument stores,
control, live outs. We will automatically refine the list (in subsequent
iterations)

4� The guards write the IDs of the signals that deviate to the
DRAM. In Phase 3: Update guards, we use the guard output
to identify H-RTL signals that deviated from the SSA registers. 5�
We then backward slice the SSA form and update the guard list to
include the predecessors i.e., we check if the errors originated earlier
in the circuit. We keep iterating phases 2 and 3 until we find positively
identify the erring signal i.e., the signal whose parents did not err but
children did.

Here, we rely on the user to provide a list of inputs based on
application knowledge. Test input coverage is not a major concern
for H-RTL. The H-RTL is fixed-function and dataflow-based, unlike
CPUs that are programmable and include dynamic issue [36]. In
H-RTL, inputs have less impact on which portions of the circuit is
active/inactive. Also, the dominant overhead is FPGA re-synthesis on
each iteration. Hence, generating golden values for multiple inputs is
feasible. The primary goal is to minimize the number of iterations, by
using backward slicing.
Working Example

Figure 11 shows the the relu kernel, a nested loop. The Gep7 has
a hardware error that causes the faulty value to propagate and taint
successors e.g., Store12. The goal of the checker is to find the true
positive in the midst of multiple false positives i.e., find the erring
gep7 without flagging store12 and other successors.

In the first iteration, the guard list is initialized to the live-outs
and control-nodes in the H-RTL. The guards will check equivalence
with golden values and report the Store12 as erring. In the second
iteration, we guard the backward slice of the Store12, Select11
and Gep7. In this iteration Gep7 will fail the checks, but Store12
will work correctly. The guards on Gep7 will detect the deviation,
note it down, and patch with the available golden value (which was
already required to detect the deviation). The patching will prevent the
forward slice from becoming tainted and being reported. Select12
is a false guard as it is functioning correctly and we would not have
guarded it, if we had oracle knowledge. The efficacy of the checker
is determined by the successive refining and trimming of these false
guards.In the final iteration, we guard Gep7’s backward slice, Add6.
Since the Add6 is not faulty it will pass the checks, and we find the
error i.e., Gep7.
6 Tool 1 H-RTL Checker Evaluation

In this section, we evaluate the H-RTL checker. We study two forms
of deployment: running co-simulation within a Verilog simulator and
the other a deployment on Amazon AWS F1, Xilinx UltraScale+

Load8

add6

gep7

? > 0

select11

Store12

addr

data

0

select5

Exit

add13

j++, j<N?

cmp14

Error

add16

i++, i<N?

cmp17
Br18

select2
mul3

Br4

Iter.

1

2

3

Guard list

Back slice

#G

4

2

1

Store12cmp
14

cmp
17mul3

gep7select11

add6

gep7select11

add6

Inner loop

Outer loop

Exit

Iter. 1 Region

Ite
r.

2
R

eg
io

n

Patched
Guards

Store12

gep7

Fwd. slice

Load8 Store12

Memory
 Liveout

Figure 11: Illustrating H-RTL checker in a Relu circuit. gep7
has an error.

FPGAs (synthesis results in § 9). All the circuits studied have deter-
ministic bugs occurring at the same site, and triggered at the same
cycle. We include a citation to our anonymized benchmark code [54].

(1) SRAM (§ 6.1): The resources consumed by the guards deter-
mine the resources leftover in the FPGA for the H-RTL. Lower
resources, implies we can support larger design.

(2) Time-to-check(§ 6.2): This corresponds to the the wall-clock
time taken to identify the true-positive (error) or confirm the
correctness of the circuit.

(3) False guard rate(§ 6.4): The False guard (FG) rate as the
fraction of nodes that we checked but eliminated for subsequent
checker iterations.

(4) H-RTL size: We measure the size of the design as a % of the
the FPGA resources occupied. Higher % implies we can check
realistic designs that fill the FPGA, without having to scale
them down for instrumentation.

§ 6.1 Result 1:`grind requires 2—10⇥ less on-chip SRAM than
state-of-the-art trace-based checkers [57].

§ 6.2 Result 2: `grind’s iterative approach can verify circuits
2—5⇥ larger. We can progressively scale up design size as `grind’s
approach narrows site of bug.

§ 6.2 Result 3: `grind demonstrates that iterative checking will be
practical. Patching and dynamic checking minimizes number of itera-
tions required to find bug. Despite FPGA resynthesis, bugs uncovered
in H-RTL within 16-24hrs (without human involvement).

§ 6.4 Result 4: `grind can rapidly trim the false guards. The FG
rate factor for circuits we study is 0.69. i.e., 69% of guards will be
eliminated by our backward slice in each iteration. Only 3-4 iterations
required to check a circuit.

PACT ’22, October 10–12, 2022, Chicago, IL, USA Parmida Vahdatniya, Amirali Sharifian, Reza Hojabr, Arrvindh Shriraman

Figure 12: SRAM requirement of `grind

6.1 SRAM: State-of-the-Art vs `grind
Here, we compare the amount of SRAM required against Au-

toslide [57] the state-of-the art debugger. Overall (Figure 12), `grind
has a lower SRAM requirement relative to AutoSlide, while main-
taining a low time-to-completion. `grind requires 2–10⇥ less SRAM
than trace-based approaches. Traces detect the bug offline and need
to collect the region-of-interest. Since there is no oracle, traces tend
to be collected in a coarse-grained manner across a large portion of
the circuit (including those functioning correctly). `grind spreads
the checking over multiple iterations. In each iteration, we dismiss
the correctly functioning parts of the circuit. The amount of SRAM
required is proportionate only to the activity factor and % of circuit
tainted by the unguarded erring signals.
6.2 Time-to-check vs. H-RTL size

In this section, we measure the time-to-check complete accelerators.
There is an inherent tradeoff between the time to check and the size
of the H-RTL. We support three flows (Figure 13):

Wallclock Time

N-Synthesis
large H-RTL, fast1 -Synthesis

small H-RTL, fast

H
R

TL
 S

iz
e

.....

N-synth 5%
large H-RTL, slow

Figure 13: Tradeoffs between different flows in H-RTL checker.

• 1-synth: We synthesize the H-RTL once onto the FPGA. All
guards are built into hardware at the beginning, limiting the
logic left-over and consequently H-RTL size.

• N-synth: `grind only builds in the required guards in each
iteration. As the guard list trims down, we can use the remain-
ing resources for scaling up the H-RTL design size. FPGA
bitstream is regenerated for each iteration.

• N-synth-5% : We bound the guards to 5% of LUT and BRAM,
leaving 95% of the FPGA for the design. More iterations are
required, since guards limited per iteration.

Our observations: y1 The 1-synth approach has to build in the
entire guard set at once and this limits the design size that can be
checked. For instance, only a CONV design that is 20% the FPGA
board could be checked.N-synth can scale up the design size as it
trims false guards in each iteration. In the final iteration, N-synth
verifies designs that are 5⇥ (CONV) larger than 1-synth. y2 N-synth
exploits the observation that during the checking stage the majority
of the H-RTL circuit typically functions correctly. It uses a smaller H-
RTL circuit to rapidly eliminate false guards. Within a few iterations
(2–3 iterations 9hr) once we have narrowed down the guard’s region
of interest, we scale up the design-under-test to 90% of the FPGA.y3 Overall N-synth can complete verification runs on all accelerators
in under 24hrs for FG slopes of 0.7 and 0.5. N-synth will complete

GEMM
FG = 0.3
FG = 0.3, 5%

FG = 0.7
FG = 0.7, 5%

FG = 0.5
FG = 0.5, 5%

FFT

1

2

Conv2d

2

1

Saxpy Stencil
Relu

X-axis: The timeline in hours. Y-axis:. H-RTL size as a % of FPGA resources. y: 1-synth design size.
4 N-synth. ⌅ : N-synth 5%. Green: FG=0.3 Orange: FG=0.5 Violet: FG=0.7.

Figure 14: 1-synth vs N-synth vs. N-synth-5% (`grind bound to 5% resources). Please view in color and zoom in.

mu-grind: A Framework for Dynamically Instrumenting HLS-Generated RTL PACT ’22, October 10–12, 2022, Chicago, IL, USA

verification between 2⇥–5 ⇥ faster than N-synth-5% as well. N-synth-
5% requires extra iterations, since in every iteration it can only check
a subset of a large guard-set.

To ensure that the comparison is fair and understand the design
space, we introduce deterministic bugs (same site and cycle). We also
determinstically control the rate of convergence, using the false guard
rate (FG) parameter. For instance, we fix FG rate = 0.7, it means in
our model 70% of the guarded signals are trimmed in each iteration
until we find the true positive. All models start with the same initial
guard set and iterate towards the same bug site. Figure 14 conducts
six runs for each accelerator H-RTL: 2 (N-synth and N-synth-5%) ⇥ 3
FG slopes (0.3, 0.5 and 0.7). FP=0.7 is representative of our circuits.
The FP=0.3 and 0.5, model complex errors, fewer guards trimmed per
iteration.
6.3 Bandwidth requirement (N-synth-BW2%)

We create N-synth-2%BW in which we bound the guards to use 2%
of board bandwidth, leaving 98% of bandwidth for the H-RTL circuit.
The bandwidth required by the checker depends on the number of
guards in each iteration. Thus, we plot the bandwidth required as
a % of peak bandwidth in each iteration (see Figure 15). In two
workloads, GEMM and Relu, the guards require more than 2% of the
bandwidth. Constraining to 2% limit, causes a noteable increase in
the number of iterations and time-to-check in those accelerators. In
other workloads that guards do not exceed 2% limit and there is no
impact on time-to-check.

Figure 15: Time-to-check with a hard 2% limit on bandwidth
Y-axis: actual bandwidth consumed.

6.4 False-guard rates
Result:The rate of trimming false guards is high for accelera-

tors as they tend to be parallel and backward slices tend to be shal-
low. Relu:0.68, Conv2d:0.82, Vadd:0.62, Saxpy:0.61 Stencil:0.78,
FFT:0.65. We plot the #⌧D0A343

#⌫D6B , the ratio of the number of netlist
signals guarded to the number of actual bugs in the circuit. The num-
ber of bugs is fixed, which means this effectively measures the false
guards in each iteration. Figure 16 shows how we improve accuracy
as we converge on the error. We highlight the rate of change i.e., the
higher rate implies that `grind zooms in on the bug faster. The lower
the % lower the overhead. We find that the accelerators of 0.69 i.e.,
69% of the guarded H-RTL signals will be trimmed in each iteration
by the backslice. Note that the rate depends on both the actual cir-
cuit dependencies and site of error. These factors are included in the
average.

Figure 16: False positive rate: #⌧D0A3B
#⌫D6B in each iteration. Higher

the rate of fall across the iteration, means less false guards.

7 Tool 2: H-RTL Profiler
Result: Guard-based profiling saves 200x—35000x times DRAM

traffic by building in the profiler on-chip at the site of the H-RTL
signal and eliminating the need to write to DRAM.

Result: Guard-based profiling saves on-chip SRAM by helping the
user rapidly create dynamic profilers that auto-instrument only the
regions of interest.

In this section, we construct a dynamic profiler for H-RTL circuits.
We make the key observation that the number of input bits to a pro-
filer far exceeds the summarized output. Prior state-of-the-art [37] has
relied on out-of-circuit analysis. This leads to high DRAM traffic and
wastes on-chip SRAM. We realize that profilers tend to be relatively
simpler circuits. Embedding profiler circuits in the H-RTL and profil-
ing dynamically during the execution is a better alternative to tracing
and profiling.

Figure 17: DRAM traffic. `grind vs state-of-the-art [37]

We quantitatively compare guard-based profiling against prior
state-of-the-art based on tracing. We compare the following profilers
i) Baseline: trace values to DRAM and post-process in software
ii) ACT: profile values when another Boolean signal indicates the
operation is active (this is representative of state-of-the-art). iii) HW:
Profile pipeline signals iv) MEM: Profile the memory addresses when
the operations are active. v) ADDER: Profile compute operations.
Figure 17 shows DRAM traffic reducing in `grind vs state-of-the-
art [37] and Figure 18 illustrates `grind SRAM usage vs state-of-the-
art [37]. `grind shows promising reduction.

PACT ’22, October 10–12, 2022, Chicago, IL, USA Parmida Vahdatniya, Amirali Sharifian, Reza Hojabr, Arrvindh Shriraman

Figure 18: Normalized SRAM.`grind vs state-of-the-art [37].
Lower bar means more reduction in SRAM

8 Tool 3: H-RTL Faulty
In this section, we study H-RTL circuit resiliency using `grind.

We inject two types of guards, faulty and checker. Faulty purposefully
injects buggy values into the circuit signals when they are enabled.
Checker guards simply check the values against golden values and
report if they deviate. This allows faults to propagate unhindered and
affect different parts of the circuit. We evaluate how a fault can cause
different types of failures. Chiffre [20] provided a convenient frame-
work to inject faults in signals of hand-written RTL. However, Chiffre
did not have the ability to check the propagation of faults. It did not
permit a user-defined analysis logic, nor vary the instrumentation
per signal. `grind’s instrumentation flexibility permits both checker
guards and faulty guards to be simultaneously active on the circuit on
different signals.

The three categories of bugs we inject are i) Compute Fault: We
flip the bits and in the ALUs ii) Control Fault this case we introduce
faults in the branch and merge operators iii) Memory Fault: Finally
we pertrube the addresses in memory operations and check the impact
on the final memory state.

Our methodology for evaluating fault injection consists of three
steps: 1)Where to inject bugs? Using the HLS compiler, we randomly
picked 10% nodes of each application of any one of these classes.
computation, control, or memory. 2)What is the bug? We select each
node’s output (the node can have multiple outputs) and the error value

Load1 Load2

Store6

D
R

AM
(S

of
tw

ar
e

SS
A

Va
lu

es
)

Guard
Faulty Stuck-

 at
 Zero

Checker
 == ?

Checker
 == ?

Checker
 == ?

Checker
 == ?

5

SELECT5

Figure 19: Example of Using guards to inject faults into Load,1
nodes while verifying resiliency in other nodes in the path.

to inject that output. 3)Error injections runs: We inject one fault in
the H-RTL circuit, and monitor for crashes, deadlock, and output
corruption.

In Figure 20 we plot the distribution of faults for each type of
error. FFT is a memory-intensive application and as a result, the
probability of showing a memory bug compared to other applications
is higher. In Conv and Gemm, since the control flow in the application
is more complex compared to the other applications, it is more likely
that a new bug in the circuit introduces control type of bugs. This
information can give insight to HLS compiler designers as to where
to start debugging a faulty change in the compiler.
9 Hardware Overhead

Table 4 shows the results of synthesis on an FPGA, in terms of the
number of LUTs, registers,BRAMs, and Mhz. `grind is a ‘pay-what-
you-want‘ approach i.e., there are no fixed overheads. The FPGA
resources required depend on how many guards are synthesized and
the complexity of these guards. Here we estimate the worse-case
overheads of `grind by listing the FPGA synthesis results for H-
RTL verifier. We pick the iteration from the earlier iteration since

LUTs (00s) Registers (00s) BRAM (000s) Mhz Guard BW Worst case

Base. [57] `-Veri. Base. [57] `-Veri. Base. [57] `-Veri. Base. `grind % Peak BW Wallclock.
Vadd (⇥* 4) 96 145 127 145 196 175 60 341 78 115 120 7.2% 1.00⇥
Saxpy (⇥* 4) 67 119 90 109 169 136 34 272 72 112 111 0.2% 1.14⇥

Conv2D 64 145 84 137 199 165 389 3849 1080 110 108 0.69% 1.00⇥
Stencil 68 135 76 93 112 105 41 465 82 123 113 0.89% 1.24⇥
Gemm 217 275 232 111 145 120 142 228 169 121 116 2.1% 1.09⇥
Relu 79 104 86 101 129 112 485 2667 983 130 122 0.91% 1.64⇥
FFT 312 390 330 108 194 114 148 8209 329 110 105 0.71% 1.27

Overhead 10—15% 10-25% 1.1⇥—2.5⇥ 5% 0.7—7% 1.2⇥
Table 4: AWS F1 Ultrascale+ FPGA Resource and timing. Base: unmodified H-RTL Trace: State-of-the-art HLS [57] `-Veri.: `grind
with maximal guards set up for H-RTL checker; worst case overhead. Exe. time overhead measured with all modules guarded. LUT
overhead excludes SAXPY and Vadd since circuit is small evem with unrolling.

mu-grind: A Framework for Dynamically Instrumenting HLS-Generated RTL PACT ’22, October 10–12, 2022, Chicago, IL, USA

Figure 20: Outcome of Fault injection

they include longer guard lists. Each guard also tends to have higher
activity factor and this will require more BRAM values for the shadow
buffers in the guards. All in all, this table is a conservative estimate
to show the feasibily of `grind. In later iterations in the same verifier
we will only require 2% of the FPGA resources. `grind has minimal
impact on clock (<5% overhead).

As discussed in the § 3 guards are entirely decoupled from the
H-RTL signals, have no dependencies on each other, and do not affect
critical path. The logic resources and registers even in the worst-case
tend to be limited since the guard analysis functions tend to be simple
and require minimal state. The dominant resource overhead is the
on-chip BRAMs required to buffer golden values in the verifier (other
tools will not include this overhead).
9.1 Related work

Table 5 compares frameworks for H-RTL analysis. We include
both state-of-the-art commercial tools e.g., Vivado [12, 55] and state-
of-the-art academic tools [26, 29, 31, 32, 57]. Many of the academic
tools [32, 57] extend existing commercial tools [16, 55].

The commercial tools (e.g., Xilinx Vivado [55], Legup [15]) sup-
port assertions and gdb-like breakpoints. Assertions are “kill-switches”
included in the H-RTL at specific signals. Asserts typically check a
fixed condition e.g., signal == 0?. They cannot accommodate value-
based checks e.g., Is ALU output correct, ALU.io.out == (io.in1
+ io.in2)?. The RHS in the assert, io.in1 + io.in2, has
to be dynamically evaluated. Commercial tools lack the support to
introduce additional hardware logic for runtime evaluation. Simula-
tions and waveforms [57] in commercial tools can track values using
printfs(), however all checks are post-execution. The efficacy
of asserts also dependen on the user who has to figure out where to
insert the assert. Asserts triggers only at deviating signal; the error
may have propagated from non-assert location.

In asserts, erring signals could influence each other making it hard
to identify the culprit. In contrast, `grind detects the first erring signal
and the first cycle deviation occurred. `grind provides a temporal
window (neighboring cycles in time) and spatial window (dependent
signals) since it patches and lets execution continue. A key novelty
of `grind is Patching, the ability to modify H-RTL signals during
execution. By patching the golden value as soon as a signal deviates, i)
we ensure erroneous values do not taint the forward slice, and prevent
false reports. ii) we ensure that faulty signals do not influence each
other, and we can detect multiple errors simultaneously.

Existing frameworks do not support user-defined tools. They do not
permit the user to define the analysis function on the H-RTL signals.
They also vary in terms of the target and type of instrumentation.
Majority of prior tools instrument C/System-C. They require human-
in-the-loop to identify the scope [11, 12, 23, 24, 44, 45, 57]. Some of
them target hand-written RTL [37], but not verbose HLS-generated
RTL. Execution analysis In prior work, the analysis of the signals is
postponed to post-execution. Thus, signal extraction incurs significant
bandwidth penalty. We have demonstrated the benefits of in-execution
analysis to save DRAM traffic and on-chip SRAM buffers. Low-effort

Left-Out

Right-addr

-- 1 -- 4 --

-- 0xD -- 0xE --

Left-addr 0xA -- 0xB -- 0xC

Right-Out -- -- 2 -- 4

Mul-Out -- -- -- 3 --

5

0xF

--

--

8

Left-Valid

Right-Valid

Mul-Valid

Waveform Trace-basedTime-consuming

-- 1 -- 4 --

-- 0xD -- 0xE --

0xA -- 0xB -- 0xC

-- -- 2 -- 4

-- -- -- 3 --

5

0xF

--

--

8

Not accurate
Human intervention
Detailed output GDB

1 4
0xA 0xB

Interactive
No analysis

Iter.1

Iter.2

0xD 0xE
2

3

Hard
Stop

1

0xD 0xE

0xA 0xB 0xC

2 4

3

5

0xF

8

4

Detailed and specificµGrind

Platform Tgt Type Value-
based

Asserts Patch Low-effort Auto-
edit

Post-Exe
Analysis.

In-Exe
Analysis

H-RTL
size

Source [12, 22, 25] FPGA C input Monitor — — — — — — — Large
Monitor [31, 32, 55] FPGA C input Monitor — 3 — — 3 — — Moderate
Asserts [26, 29, 50, 55] FPGA/ Sim. RTL Monitor — 3 — — — — — Large
Traces [21, 55, 57] Simulation C input. Cause 3 — — — — 3 — Small
Events [37] Simulation RTL Monitor — — — — 3 3 — Large
CheckPoint [7, 9, 39] FPGA/Sim. RTL Cause — — — 3 — 3 — Small
`grind FPGA/Sim. HLS

H-RTL
Root
Cause

3 3 3 3(Iter.) 3 3 3 Large

Table 5: State-of-the-art handwritten RTL and H-RTL Analysis frameworks.

PACT ’22, October 10–12, 2022, Chicago, IL, USA Parmida Vahdatniya, Amirali Sharifian, Reza Hojabr, Arrvindh Shriraman

and Auto-edit. The effort required to insert instrumentation into the H-
RTL impacts utility. Prior tools require humans intervention to decide
where and what to instrument. They lack a flexible mechanism [23,
24, 57] to let a tool determine the instrumentation.

Table 6 illustrated the advantages of `grind vs. Autoslide [57],
the state-of-the-art HLS checker. Prior work tackled source-level
bugs introduced by the C program fed to the HLS compiler. `grind
targets bugs in H-RTL. In Autoslide, the entire analysis phase is
post-execution. Hence, they log more than necessary and this leads
to a significant bandwidth overhead. Table 4 shows overheads of
Autoslide. The largest CONV that `grind can fit on AWS Ultrascale
FPGA is R,W,H = 8, 192, 192, and the largest circuit prior work can
fit is R,W,H = 8, 56, 56; '5⇥ improvement. Autoslide relies on user
input to reduce the scope of checking and identifying instrumentation
regions. `grind creates a fully automated checker that refines debug
scope without user input.

Prior art [12, 57] `grind
Monitoring Offline (post-execution) Online (in execution)
Checking Region User [12], Coarse [12, 57],

Fine [57]
Whole accelerator (including
blackbox RTL)

Region-of-interest Wide. Buggy and Correct
signals

Only dependent signals.

Patching — Yes. error does not propagate
Accuracy User dependent Convergence guaranteed
Hard failures Yes. No. `grind patches values.
Multiple bugs No. Erring signals propa-

gate.
Guards patch to isolate error.

Design size Small Large. See Section 6

Table 6: Tool Comparison: State-of-the-art vs `grind Checker

Advanced debugging and FPGA emulation platforms exist for
CPU RTL [39]. They are orthogonal to the problems we target. i)
They manually instrument handwritten H-RTL and predominantly
support checkpointing and asserts. We target the problem of how to
automatically wire user-defined instrumentation into HLS-generated
RTL. ii) They also deal with test coverage [36] which is a concern in
programmable architectures and dynamic issue RTL such as CPUs.
H-RTL is fixed-function and is based on dataflow. Hence, inputs does
not dramatically impact circuit coverage concerns.

Commercial formal RTL checkers are only loosely connected to
this paper [1]. Logic translation checking is computationally intensive
and has only been demonstrated on circuits as complex as floating
point ALUs (requires 12hrs [47]). We target the informal problem
of finding bugs in complete accelerators (e.g.Convolution) within
24 hrs. Further, SLEC only work with FSMs-with datapath [4] and
sequential semantics. Finally, existing tools [6, 17] that profile FPGA
performance target an entirely different problem. They track execution
time of kernels mapped to the FPGA; at best they are akin to gprof.
`grind is the first to profile the activity and values of the internal
signals in an accelerator circuit and permit the user to attach custom
profilers.
10 Conclusion

`grind is an open-source framework that enables flexible, low-
effort, scalable, dynamic instrumentation of H-RTL. Guards can probe,
modify and analyze any H-RTL signal during the execution. Unlike
other tools, `grind can dynamically inject values into the H-RTL
signal, enabling in-execution tasks such as patching values during
verification, and injecting faults during testing. `grind fully automates

the process of inserting guard circuits into the H-RTL without requir-
ing any human-effort. `grind is a pay-as-you-go approach where the
overheads are proportional to the H-RTL signals monitored. This
enables it to verify large circuits that occupy upto 98% of the FPGA.
References

[1] [n.d.]. Catapult High-Level Synthesis. https://www.mentor.com/hls-lp/catapult-
high-level-synthesis/.

[2] [n.d.]. Vivado Design Suite. https://www.xilinx.com/products/design-tools/vivado.
html.

[3] [n.d.]. Vivado HLS Co-simulation. https://forums.xilinx.com/t5/High-Level-
Synthesis-HLS/Vivado-HLS-Co-simulation-Waveform-signals-never-change/m-
p/984041.

[4] 2016. High Level Synthesis with a Dataflow Architectural Template. https:
//arxiv.org/pdf/1606.06451.pdf

[5] Shlomi Alkalay, Tamas Juhasz, Puneet Kaur, Sitaram Lanka, Daniel Lo, Todd
Massengill, Kalin Ovtcharov, Michael Papamichael, Andrew Putnam, Raja Seera,
Rimon Tadros, Hari Angepat, Jason Thong, Lisa Woods, Derek Chiou, Doug Burger,
Adrian Caulfield, Eric Chung, Oren Firestein, Michael Haselman, Stephen Heil,
Kyle Holohan, and Matt Humphrey. 2016. Agile Co-Design for a Reconfigurable
Datacenter. In the 2016 ACM/SIGDA International Symposium. ACM Press, New
York, New York, USA, 15–15.

[6] AMD/Xilinx. 2022. https://docs.xilinx.com/r/en-US/ug1400-vitis-embedded/
XSCT-Cross-Triggering-Commands.

[7] Sameh Attia and Vaughn Betz. 2020. StateMover: Combining Simulation and
Hardware Execution for Efficient FPGA Debugging. In The 2020 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays. 175–185.

[8] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman,
Rimas Avizienis, John Wawrzynek, and Krste Asanovic. [n.d.]. Chisel: Constructing
Hardware in a Scala Embedded Language. https://github.com/freechipsproject/
chisel3.

[9] Somnath Banerjee and Tushar Gupta. 2012. Efficient online RTL debugging method-
ology for logic emulation systems. In Proc. of the IEEE International Conference
on VLSI Design. IEEE.

[10] Gilbert Bernstein, Ross Daly, Jonathan, Ragan-Kelley, and Pat Hanrahan. 2021.
What are the Semantics of Hardware?. In Workshop on Languages Tools and
Techniques for Accelerator Design.

[11] Pavan Kumar Bussa, Jeffrey Goeders, and Steven JE Wilton. 2017. Accelerating in-
system FPGA debug of high-level synthesis circuits using incremental compilation
techniques. In 2017 27th International Conference on Field Programmable Logic
and Applications (FPL). IEEE, 1–4.

[12] Nazanin Calagar, Stephen D Brown, and Jason H Anderson. 2014. Source-level
debugging for FPGA high-level synthesis. In 2014 24th international conference on
field programmable logic and applications (FPL). IEEE, 1–8.

[13] Kevin Camera and Robert W. Brodersen. 2008. An integrated debugging environ-
ment for FPGA computing platforms. In Proc. of the FPL. 311–316.

[14] Keith Campbell, Leon He, Liwei Yang, Swathi Gurumani, Kyle Rupnow, and
Deming Chen. 2016. Debugging and verifying SoC designs through effective cross-
layer hardware-software co-simulation. In Proceedings of the 53rd Annual Design
Automation Conference. 1–6.

[15] Andrew Canis, Jongsok Choi, Blair Fort, Ruolong Lian, Qijing Huang, Nazanin
Calagar, Marcel Gort, Jia Jun Qin, Mark Aldham, Tomasz Czajkowski, Stephen
Brown, and Jason Anderson. 2013. From software to accelerators with LegUp
high-level synthesis. In International Conference on Compilers, Architecture and
Synthesis for Embedded Systems (CASES). IEEE, 1–9.

[16] Andrew Christopher Canis. 2015. LegUp: Open-Source High-Level Synthesis
Research Framework. https://bit.ly/3zttADY

[17] BSC Barcelona Supercomputing Center. 2022. "https://pm.bsc.es/ompss-at-fpga".
[18] Tao Chen, Shreesha Srinath, Christopher Batten, and G Edward Suh. 2018. An

architectural framework for accelerating dynamic parallel algorithms on reconfig-
urable hardware. In 2018 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 55–67.

[19] David Durst, Matthew Feldman, Dillon Huff, David Akeley, Ross G Daly,
Gilbert Louis Bernstein, Marco Patrignani, Kayvon Fatahalian, and Pat Hanra-
han. 2020. Type-directed scheduling of streaming accelerators.. In Proc. of the 41st
PLDI. 408–422.

[20] Schuyler Eldridge, Alper Buyuktosunoglu, and Pradip Bose. 2018. Chiffre: A
Configurable Hardware Fault Injection Framework for RISC-V Systems. In 2nd
Workshop on Computer Architecture Research with RISC-V (CARRV ’18).

[21] Pietro Fezzardi, Michele Castellana, and Fabrizio Ferrandi. 2015. Trace-based
automated logical debugging for high-level synthesis generated circuits. In 2015
33rd IEEE International Conference on Computer Design (ICCD). IEEE, 251–258.

[22] Pietro Fezzardi, Marco Lattuada, and Fabrizio Ferrandi. 2017. Using efficient path
profiling to optimize memory consumption of on-chip debugging for high-level
synthesis. ACM Transactions on Embedded Computing Systems (TECS) 16, 5s
(2017), 1–19.

mu-grind: A Framework for Dynamically Instrumenting HLS-Generated RTL PACT ’22, October 10–12, 2022, Chicago, IL, USA

[23] Jeffrey Goeders and Steven JE Wilton. 2014. Effective FPGA debug for high-
level synthesis generated circuits. In 2014 24th International Conference on Field
Programmable Logic and Applications (FPL). IEEE, 1–8.

[24] Jeffrey Goeders and Steve J.E. Wilton. 2015. Using dynamic signal-tracing to debug
compiler-optimized HLS circuits on FPGAS. In Proc. of the FCCM. 127–134.

[25] Jeffrey Goeders and Steven J.E. Wilton. 2017. Signal-Tracing Techniques for In-
System FPGA Debugging of High-Level Synthesis Circuits. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 36, 1 (2017), 83–96.

[26] Mohamed Ben Hammouda, Philippe Coussy, and Loïc Lagadec. 2014. A design
approach to automatically synthesize ansi-c assertions during high-level synthesis
of hardware accelerators. In 2014 IEEE International Symposium on Circuits and
Systems (ISCAS). IEEE, 165–168.

[27] K Scott Hemmert, Justin L Tripp, Brad L Hutchings, and Preston A Jackson. 2003.
Source level debugger for the sea cucumber synthesizing compiler. In 11th Annual
IEEE Symposium on Field-Programmable Custom Computing Machines, 2003.
FCCM 2003. IEEE, 228–237.

[28] Yann Herklotz, Zewei Du, Nadesh Ramanathan, and John Wickerson. 2021. An
empirical study of the reliability of high-level synthesis tools. In Proc. of the FCCM
(Short Paper).

[29] Yousef Iskander, Cameron Patterson, and Stephen Craven. 2014. High-level ab-
stractions and modular debugging for fpga design validation. ACM Transactions on
Reconfigurable Technology and Systems (TRETS) 7, 1 (2014), 1–22.

[30] Adam Izraelevitz, Jack Koenig, Patrick Li, Richard Lin, Angie Wang, Albert Magyar,
Donggyu Kim, Colin Schmidt, Chick Markley, Jim Lawson, et al. 2017. Reusability
is FIRRTL ground: Hardware construction languages, compiler frameworks, and
transformations. In 2017 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD). IEEE, 209–216.

[31] Al-Shahna Jamal, Eli Cahill, Jeffrey Goeders, and Steven JE Wilton. 2020. Fast
Turnaround HLS Debugging Using Dependency Analysis and Debug Overlays.
ACM Transactions on Reconfigurable Technology and Systems (TRETS) 13, 1 (2020),
1–26.

[32] Al Shahna Jamal, Jeffrey Goeders, and Steven J.E. Wilton. 2018. An FPGA overlay
architecture supporting rapid implementation of functional changes during on-chip
debug. In Proc. of the FPL.

[33] Weng Jian, Sihao Liu, Vidushi Dadu, Zhengrong Wang, Preyas Shah, and Tony
Nowatzki. 2020. DSAGEN: Synthesizing Programmable Spatial Accelerators.. In
Proc. of the 47th ISCA. 268–281.

[34] Gangwon Jo, Heehoon Kim, Jeesoo Lee, and Jaejin Lee. 2020. SOFF: An OpenCL
High-Level Synthesis Framework for FPGAs.. In Proc. of the 47th ISCA. 295–308.

[35] Lana Josipović, Radhika Ghosal, and Paolo Ienne. 2018. Dynamically Scheduled
High-level Synthesis. In Proc. of the FPGA.

[36] Wisam Kadry, Dimtry Krestyashyn, Arkadiy Morgenshtein, Amir Nahir, Vitali
Sokhin, Jin Sung Park, Sung-Boem Park, Wookyeong Jeong, and Jae Cheol Son.
2015. Comparative Study of Test Generation Methods for Simulation Accelera-
tors. In Proceedings of the 2015 Design, Automation Test in Europe Conference
Exhibition (Grenoble, France) (DATE ’15). EDA Consortium, 321–324.

[37] Sagar Karandikar, Albert Ou, Alon Amid, Howard Mao, Randy Katz, Borivoje
Nikolić, and Krste Asanović. 2020. FirePerf: FPGA-Accelerated Full-System
Hardware/Software Performance Profiling and Co-Design. In Proc. of the ASPLOS.

[38] Brucek Khailany, Evgeni Khmer, Rangharajan Venkatesan, Jason Clemons, Joel S
Emer, Matthew Fojtik, Alicia Klinefelter, Michael Pellauer, Nathaniel Ross Pinck-
ney, Yakun Sophia Shao, Shreesha Srinath, Christopher Torng, Sam Likun Xi,
Yanqing Zhang, and Brian Zimmer. 2018. A modular digital VLSI flow for high-
productivity SoC design.. In Proc. of DAC. ACM Press, New York, New York, USA,
1–6.

[39] Donggyu Kim, Christopher Celio, Sagar Karandikar, David Biancolin, Jonathan
Bachrach, and Krste Asanović. 2018. DESSERT: Debugging RTL Effectively
with State Snapshotting for Error Replays across Trillions of Cycles. In 2018 28th
International Conference on Field Programmable Logic and Applications (FPL).
IEEE, 76–764.

[40] Youngsik Kim. 2007. Formal Verification of High-Level Synthesis with Global Code
Motions. Ph.D. Dissertation.

[41] S. Lahti, P. Sjövall, J. Vanne, and T. D. Hämäläinen. 2019. Are We There Yet?
A Study on the State of High-Level Synthesis. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 38, 5 (2019), 898–911. https:
//doi.org/10.1109/TCAD.2018.2834439

[42] Chris Lattner. 2020. Many traditional LLVM people are confused about what
graph/dataflow semantics means, they’ve spent a bunch of time working with
imperative execution domains. https://bit.ly/3xwcvYs

[43] Steven Margerm, Amirali Sharifian, Apala Guha, Arrvindh Shriraman, and Gilles
Pokam. 2018. TAPAS: Generating parallel accelerators from parallel programs.
In 2018 51st Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 245–257.

[44] Joshua S Monson and Brad Hutchings. 2014. New approaches for in-system debug
of behaviorally-synthesized FPGA circuits. In 2014 24th International Conference
on Field Programmable Logic and Applications (FPL). IEEE, 1–6.

[45] Joshua S Monson and Brad L Hutchings. 2015. Using source-level transformations
to improve high-level synthesis debug and validation on fpgas. In Proceedings of the

2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays.
5–8.

[46] Rachit Nigam, Sachille Atapattu, Samuel Thomas, Zhijing Li 0002, Theodore Bauer,
Yuwei Ye, Apurva Koti, Adrian Sampson, and Zhiru Zhang. 2020. Predictable
accelerator design with time-sensitive affine types.. In Proc. of the 41st PLDI.
393–407.

[47] Travis W. Pouarz and Vaibhav Agrawal. 2017. https://s3.amazonaws.
com/verificationacademy-news/DVCon2017/Papers/dvcon-2017_efficient-
and-exhaustive-floating-point-verification-using-sequential-equivalence-
checking_paper.pdf

[48] Raghu Prabhakar, David Koeplinger, Kevin J Brown, HyoukJoong Lee, Christopher
De Sa, Christos Kozyrakis, and Kunle Olukotun. 2016. Generating Configurable
Hardware from Parallel Patterns.. In Proc. of the 21st ASPLOS.

[49] Brandon Reagen, Robert Adolf, Yakun Sophia Shao, Gu-Yeon Wei, and David
Brooks. 2014. MachSuite: Benchmarks for Accelerator Design and Customized
Architectures. In Proc. of the IISWC. Raleigh, North Carolina.

[50] Aurélien Ribon, Bertrand Le Gal, Christophe Jégo, and Dominique Dallet. 2011.
Assertion support in high-level synthesis design flow. In FDL 2011 Proceedings.
IEEE, 1–8.

[51] Samuel Rogers, Joshua Slycord, Mohammadreza Baharani, and Hamed Tabkhi.
2020. gem5-SALAM: A System Architecture for LLVM-based Accelerator Model-
ing.. In Proc. of the 53rd MICRO. 471–482.

[52] Yakun Sophia Shao, Brandon Reagen, Gu-Yeon Wei, and David Brooks. 2014.
Aladdin: A pre-rtl, power-performance accelerator simulator enabling large design
space exploration of customized architectures. In 2014 ACM/IEEE 41st Interna-
tional Symposium on Computer Architecture (ISCA). IEEE, 97–108.

[53] Amirali Sharifian, Reza Hojabr, Navid Rahimi, Sihao Liu, Apala Guha, Tony
Nowatzki, and Arrvindh Shriraman. 2019. `IR-An intermediate representation
for transforming and optimizing the microarchitecture of application accelerators.
In Proceedings of the 52nd Annual IEEE/ACM International Symposium on Mi-
croarchitecture. 940–953.

[54] `grind. 2022. https://anonymous.4open.science/r/d6f70aaf-3014-4353-9b48-
cc5759080898/benchmarks/.

[55] Xilinx. 2020. https://bit.ly/39WDXbG.
[56] Xilinx. 2020. https://forums.xilinx.com/t5/High-Level-Synthesis-HLS/BUG-

report-HLS-chooses-the-wrong-II-and-the-result-is-wrong/m-p/1070935.
[57] Liwei Yang, Swathi Gurumani, Deming Chen, and Kyle Rupnow. 2016. AutoSLIDE:

Automatic source-level instrumentation and debugging for HLS. In 2016 IEEE
24th Annual International Symposium on Field-Programmable Custom Computing
Machines (FCCM). IEEE, 127–130.

