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Abstract
High-level synthesis compilers (HLS) enable the rapid creation of

accelerator circuits. Unfortunately, compiler generated RTL (H-RTL)
is inconsistent in terms of quality, hard to comprehend, and tends
to be brittle [28, 41]. This paper develops a framework to help HLS
compiler architects inspect and profile H-RTL. Prior state-of-the-art
tools [23, 57] have predominantly focused on tracing. Tracing requires
massive amount of on-chip buffering, limits the H-RTL design size,
and only support post-mortem analysis at the end of the execution.

We propose `grind1, a dynamic instrumentation framework for
H-RTL. The key technique is guards, additional logic that we auto-
inject into the output of HLS compilers (H-RTL). Guards perform two
tasks: i) they run analysis functions on the values fed from the H-RTL
signal, and ii) patch values into the H-RTL during live execution.
Guards can either be mapped onto the FPGA or can be co-simulated
along with the H-RTL. `grind can remove them once the H-RTL is
finalized. Leveraging `grind, we create a novel tool, H-RTL checker,
that precisely identifies the erring signal and cycle without any user
involvement. Compared to prior art, `grind requires 2—10⇥ less
SRAM, supports 5⇥ larger H-RTL circuits (upto 98% of the FPGA)
and completes checks in <24 hours (including FPGA synthesis time).
We also develop two additional tools: i) H-RTL faulty, which deploys
heterogeneous guards to study circuit resilience, and ii) H-RTL pro-
filer, which creates detailed execution histograms. We save between
200-35000X DRAM traffic compared to prior art, by avoiding traces.
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1 Introduction
High-level synthesis research and development is error prone. Soft-

ware design is comparatively straightforward....with mature debug-
ging tools. — Andrew Canis, CTO, Legup HLS [15, Page 8]
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Figure 1: Overview of `grind toolflow.

The last few years has seen a surge in research into high-level-
synthesis compilers (HLS) that auto-translate high-level languages
into RTL [5, 19, 33, 34, 43, 46, 48, 51–53]. Today, computer architects
actively develop HLS compilers and deploy it for creating custom IP
targetting both FPGAs [1] and ASICs [38]. It is widely acknowledged
that the key impediment in HLS is the opaqueness of the compiled or
generated RTL (H-RTL) [41]; even industry-standard HLS break the
H-RTL in eccentric ways [28].

A leading HLS expert cites the lack of mature tools to inspect HLS
generated output (H-RTL) as being a key hindrance [15, Page 8] [41].
Multiple tools exist (e.g., valgrind, Dynamorio, gcc -p) to analyze the
output of software compilers (i.e., binaries). However, HLS compilers
lack such a framework. The question we answer in this paper: how
can we help the HLS compiler developers instrument the gener-
ated RTL with low-effort and in a flexible manner to understand
the dynamic execution of hardware (see Figure 1). Our goals are
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three-fold i) low-effort instrumentation i.e., the designer should be
able to read, analyze and write H-RTL signals without needing to edit
the H-RTL manually or knowing a hardware language. ii) flexible
instrumentation i.e., we need a configurable framework that adds in
additional logic and SRAM only for the signals instrumented in the
H-RTL. Conversely, it should be easy to remove the instrumenta-
tion entirely from the H-RTL, once the accelerator is analyzed. iii)
dynamic instrumentation i.e., the instrumentation should be able to
analyze and modify signals during the execution. We demonstrate
that live execution analysis is essential to creating checker tools that
avoid muddled-up logs.

Waveforms are the most prevalent approach [3]. This requires the
user to inspect a verbose H-RTL netlist across potentially millions of
simulation cycles [39]. State-of-the-art tools help annotate waveforms
with additional information [12, 24, 27, 31, 57]. However, this leaves
open the question of how can a user know which portion of the
opaque H-RTL to focus on. Some works have provided a gdb-like
environment [11, 13, 14, 25, 32] to inject kill switches. The kill
switches are similar to asserts and stop the circuit [50]). They do not
support analysis of the live execution.
Our Approach

We propose `grind, a framework for dynamically instrumenting
HLS generated RTL (Figure 1). The key technique is guards, circuitry
that we mix into the H-RTL to tail any register, memory entry, and
signal. `grind builds on modern RTL toolchains (Chisel [30]) to add
and remove guards. Guards get mapped onto the FPGA prototype with
H-RTL; they can also be co-simulated in verilator. During execution,
guards can dynamically extract, run analysis logic, and modify (or
patch) the H-RTL’s signals. This eliminates the need to trace a verbose
dump of signals to the DRAM for post-execution analysis. Guards
only write post-analysis data to the DRAM. This saves DRAM traffic,
reduces on-chip SRAM, and enables larger circuits to be analyze.
Finally, patching prevents the unfettered propagation of erroneous
signals during debug runs (unlike asserts), enabling us to converge
rapidly on region of analysis. Guards run concurrently which reduces
the overhead typically associated with instrumentation. The dynamic

term refers to the fact that: i) we can analyze internal hardware signals
during runtime (a first), and ii) we can turn off the instrumentation at
runtime.

We create three tools to demonstrate `grind. a) H-RTL Checker:
a novel checker, that pinpoints the statements and cycles in which
the H-RTL deviated from the software behavior. We exploit the key
observation that during the checking stage the majority of the H-
RTL circuit typically functions correctly. It uses a smaller H-RTL
circuit to rapidly eliminate false guards. Once we have narrowed
down the guard’s region of interest, we scale up the design-under-
test to 90% of the FPGA. This way we can check complete real
accelerators in <24hrs. We also study two other tools: a) H-RTL
Faulty : leverages guards to check circuit resiliency. It injects a variety
of faults (e.g,. struck control) into specific H-RTL signals, while
simultaneously monitoring the circuit. c) H-RTL Profiler : a tool that
builds into hardware the logic for histograming and summarizing
H-RTL activities.

• We are the first to propose techniques for hardware instru-
mentation. `grind enables a tool to extract H-RTL signals
and attach user-defined analysis functions. FPGA prototyping
demonstrates that instrumentation imposes limited overhead,
10—15% extra logic and ' 5% Mhz penalty.

• We develop a novel tool to find bugs in H-RTL and automati-
cally refine regions of inspection. Compared to state-of-the-art,
we find bugs in RTL 5⇥ larger, in under 24hrs (including FPGA
synthesis).

• We demonstrate that iterative approach to debugging is prac-
tical. For accelerator circuits, we can narrow down bug site
within a few iterations (3-4 iterations 16-24hr) and we can
study designs up to 90% of FPGA (prior state-of-the-art re-
stricted to 20% of FPGA).

• Compared to prior trace tools, we demonstrate that dynamic
instrumentation can save 200—35000× DRAM traffic and
2—10× of on-chip SRAM.
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2 Motivation and Scope
First, we provide an overview of an HLS compiler and H-RTL

(Figure 2). State-of-the-art HLS compilers [35, 53] translate C/C++
to a token-based dataflow circuit. Here we show a histogam kernel.
The execution is dynamically-scheduled i.e., the nodes and operations
are triggered as dependencies are satisfied, and no centralized FSM
(finite state machine) is required. The pipeline diagram illustrates the
timing. Within the loop, a data dependency may exist between the load
of hist[in[i+1]] and the store to hist[in[i]] of a prior
iteration, depending on the contents of in[]. When the dependency
does not occur, the dynamic schedule initiates a new iteration each
cycle. When a dependency does occur, the dynamic schedule stalls the
pipeline to satisfy read-after-write dependency. Loop iterations can
complete in arbitrary order. When the underlying loads and stores are
connected to a cache it leads to non-determinism in the latency and
the timing of memory operations. For instance the add operation in
iteration 2 is stalled until the load of hist[2] from cache completes.
In the meanwhile, the third iteration starts and completes.
2.1 H-RTL instrumentation vs. Binary instrumentation

HLS compiler developers cite the lack of fixed state as to why H-
RTL requires new techniques to binaries [10, 42]. i) Executable (bi-
nary) vs. Structural (H-RTL): A binary runs on existing hardware.
The instrumentation reads and writes ISA-visible registers/memory
and runs on same hardware as the binary. The state is accessed via the
processor instructions. H-RTL describes a microarchitecture structure
and accelerators are based on dataflow. We have to create functions
units, bind operations, and physically route values. Only recently RTL
toolchains have made it possible to programmatically edit H-RTL [30].
iii) Centralized fixed state (binary) vs Distributed, variable state
(H-RTL) Finally, any instrumentation framework needs to read and
write state from the target. With binary, the ISA registers and memory
state are defined and centralized i.e. all binaries refer to common ISA
register state. HLS compilers customize the state for each H-RTL
accelerator and distributes state across in the pipeline latches, operand
buffers, and scratchpads. iii) ii) Imperative ISA (binary) vs Concur-
rent Dataflow (H-RTL) A binary is an imperative specification in
a target ISA. The instrumented binary implicitly supports sequential
semantics enforced by the underlying cpu. H-RTL is a concurrent
specification in which ordering of operations has to be defined by
`grind.
2.2 Motivational tool: Checking H-RTL errors.

To motivate how instrumentation can help with HLS compiler
research, we briefly preview a checker tool from Section 5). We track
the git commits in a state-of-the-art HLS compiler [53](`IR) and find
errors introduced due to H-RTL passes. We discuss the errors and
motivate the need for instrumentation that can track signal values and
cycle timing. We communicated with the authors of `IR and verified
the cause of these errors [18, 43, 53].
H-RTL Error 1: Stuck Control
Detection: Instrument the merge mux’s output signal.

Many HLS compilers translate LLVM’s SSA representation to
RTL (e.g., LLVM IR [2, 35, 53]). LLVM periodically updates the
SSA syntax during major releases. In this instance LLVM reversed
the order of labels in the select and q ops. This led the HLS to wire the
mux data lines to the merge node in the incorrect order (see Figure 3).
Due to the mix-up, the mux is stuck at and always propagates i=0 on
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Figure 3: H-RTL Error 1: Stuck control caused by LLVM syntax
mismatch leading to incorrect mux wiring.

each iteration of the loop; the loop keeps re-executing iteration i =
0. Tracing or waveforms cannot catch this bug since execution will
never terminate. `grind’s dynamic instrumentation will capture the
output of the merge and analyze if the loop induction variable.
H-RTL Error 2: Incorrect dataflow pipelining
Detection: Instrument the output signal of dataflow operators and
check against SSA register values.
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Figure 4: H-RTL Error 2: Incorrect pipeline buffer depth setting
leading to faulty operands.

These classes of errors are reported even by Xilinx’s Vivado [56].
HLS compilers place FIFO buffers to: i) enable loop iterations to
start asynchronously, and ii) to balance the different critical paths
at spawns. In this instance, the HLS compiler miscalculated the
latency of paths and created a buffer with incorrect depth. As shown
in the timing diagram this leads to incorrect operands being placed
on the inputs to the adder leading to hist[in[0]]+wgt[1]; one
of the operands is from the ith iteration and the other one from i-1th.
Dynamic instrumentation will track the values in the output registers
of the nodes, check the iteration index, and the adder operands.
HLS Error 3: Faulty Cache Handshaking
Detection: Instrument the cache request and response lines, and check
number of requests/responses.

A common cause of error is the interface to the shared cache
(or scratchpad). Typically the cache or scratchpad is a blackbox IP
invisible to HLS. The HLS statically schedules loads and store across
latency-sensitive request and response ports. In this particular case,
`IR HLS incorrectly scheduled the load hist[in[i]] on the
same cycle as another load. This led to a load being missed missed by
the cache. `IR HLS [53] also reported similar error causing incorrect
response errors due to wrong address. `grind instruments the cache
request and response lines along with the memory nodes. It analyzes
the sequence of requests and responses to verify if every request has a
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corresponding response. These type of checkers can be since `grind
permits the user to define analysis function within the guards.
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2.3 Complexity of instrumented H-RTL circuits.
We now motivate the need for a framework that can automatically

inject instrumentation into H-RTL (without requiring any human
editing). We study end-to-end applications from Machsuite [49] Relu,
Saxpy, Vadd, Conv2D, Stencil, and Gemm. Upto 40K lines of verilog,
32 state FSMs, 400 modules, 40 stage pipeline, and 700 operations in a
single cycle. Table 1 lists the characteristics of the H-RTL circuits. For
the interested reader, the H-RTL imported into Chisel can be viewed
here (https://anonymous.4open.science/r/d6f70aaf-3014-4353-9b48-
cc5759080898/).

App. Verilog LOC # FSM # Verilog Mod. Pipe. Depth Parallel
GEMM 33049 32 366 14 32
Conv2D 37277 16 329 41 48

FFT 37418 4 340 22 56
Relu 21051 4 206 11 48

Saxpy 18060 2 228 9 48
Stencil 26396 8 166 8 768

Table 1: RTL Complexity of guarded Accelerators

We use four proxy metrics i) Verilog LOC: The number of lines
of verilog strongly correlate with the number of H-RTL variables
(signals or registers). ii) Ctrl-states This measures the complexity
of the control FSM. Accelerator with nested loops, require multiple
states. iii) Verilog modules: The number of modules instantiated;
each module roughly corresponds to a dataflow operation. The higher
the number of modules, the more the motivation for instrumentation
since waveforms tend to be polluted. iv) Pipeline depth: In HLS,
the pipeline can be much deeper than CPUs i.e., more instruction
execution overlap. This makes it hard to analyze timing-dependent

errors. v) Concurrency: The H-RTL circuits we investigate are highly
concurrent with upto 700 parallel fine-grain ops; an instrumentation
framework is required to narrow the region.
3 `grind: Architecture and Design
3.1 Auto-Wiring guards into H-RTL

In `grind, the end-user or HLS developer does not need to read
or edit the H-RTL. Figure 6 illustrates the passes we have developed
to mixin guards into the H-RTL. The example illustrates a simple
address checker that analyzes the loads in the H-RTL circuit. In y1
`grind iterates over the SSA representation within the HLS compiler
and creates a mapping table between SSA registers and the verilog
modules. This serves two purposes: i) a tool (or user) can indicate
their region of interest at the program-level and we can track down the
signals to be guarded. ii) we can reverse-map the guard output to the
higher-level region of interest using the SSA as an intermediary. Iny2 the guard list is filled based on the instrumentation goals e.g., load
nodes. Each entry also includes the verilog module and the analysis
function. Each entry can independently determine the guard class i.e.,
multiple guard classes can be simultaneously active. In y3 `grind
iterates over the H-RTL and identifies the signals (registers and wires)
within the module. For each signal, `grind includes an AddGuard()
annotation in the H-RTL module. In this example, since loads are
instrumented, the address and data fields are annotated. y4 In this
stage, we define the guard circuits and connect it to the actual signals.
`grind leverages FIRRTL, a compiler that loads H-RTL into a data-
structure that we can transform and rewrite. The main challenge is that
guards are separate modules introduced post H-RTL generation, while
the module signals could be embedded deep in the H-RTL’s module
hierarchy. To wire these up `grind uses a FIRRTL pass that “bore”
through the module hierarchy ( Figure 7 illustrates). We add wiring
for toggle enabling/disabling the guards from a tool. We also wire in
a trigger switch that is enabled when the module is active (e.g., load).
Finally we bore the H-RTL signals to the guard and corresponding
patch values in the reverse direction.
Guard Internals

Each guard monitors an H-RTL signal and includes five compo-
nents: i) Trigger: a boolean signal that activates the guard to pay
attention and start analyzing the H-RTL signal. This serves to avoid
the data deluge of waveforms. ii) Shadow RAM a scratchpad for hold-
ing guard’s metadata. The metadata is streamed from DRAM during
the execution. There could be multiple metadata buffered, and a guard
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may refer to different shadow values depending on execution cycle.
iii) Analysis(): a logic block that processes the incoming H-RTL sig-
nals and shadow value. It further records the data and/or modifies the
H-RTL on-chip signal (patching). The majority of analysis functions
require simple logic, e.g., isEqual() or isRange() that can be
accomplished in 1 cycle. Guards also support multi-cycle analysis
functions, since they interface with H-RTL using latency-insensitive
connections iv) Patch value: The patch value overwrites the H-RTL
signal during execution. Patches are useful for fixing erring signals
during debugging and injecting faults for testing resiliency. v) Tracer
RAM: Each entry includes: i) runtime context: logical timestamp and
cycle time when the guard was triggered. ii) the signal values from
the H-RTL, and iii) the analysis output.
Guard core

A guard core serve as the top module for all the guards mixed in
with the H-RTL (Figure 8). Having a separate guard core enables the
following benefits: i) guards can share buffers to interface with the
DRAM, ii) we can provide shared I/O for the user to access the guards.
If guards were implemented as part of the H-RTL modules, then the
I/O ports of H-RTL modules would have to be redefined. iii) guards
can exchange information with each other for dynamic analysis. The
core collects the results of the analysis and burst them to the main
memory in double-buffered batches. An important issue we had to
consider was how to handle the write buffers filling up. We keep
the circuit completely decoupled from the H-RTL and drop packets
if the buffers fill up. Note that in this case, the guards themselves
continue to function, analyze, and patch values if required. We only
drop the outputs for some cycles. However, this approach continues
to maintain the timing independence and fidelity of the H-RTL circuit.

4 `grind APIs
Event APIs

The event APIs are included at the top-level of the H-RTL circuit
and are used to dynamically turn on (or off) callbacks to guards.
The event APIs are triggered by `grind when the module in the H-
RTL is activated. These events are module start or termination, and
entry/exit of module function units. The H-RTL is represented as a
latency-agnostic structural graph. Nodes in the graph represent the
compute, control and memory modules. The link here includes all
the H-RTL benchmarks evaluated with the relevant event APIs [54].
Code 1 shows excerpts from the top-level of a Relu circuit. Every
node or module that has debugging set to true, triggers the guard
when the node kick-starts in the dataflow at runtime. We extract the
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dependencies in the dataflow graph and expose a json file, in which
the tool (or user) can mark events of interest(code 2).

1 // %mul = mul nsw i32 %shr, %W,
2 val mul3 = Module(new ComputeNode
3 (NumOuts, ID = 3, opCode = "mul", sign = false)
4 (Debug = True))

Code 1: Line 101 from Relu H-RTL.

1 { "id" : 3,
2 "name" : "mul3",
3 "operands" : ["INS_13", "INS_21"],
4 "bb" : 19,
5 "type" : "Binary" }

Code 2: Event configuration (Relu.json)
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Figure 9: List of nodes with guard callback support

4.1 Signal APIs
Signal API is akin to a hardware callback. During HLS they tunnel

wires from signals in the H-RTL to the guard modules. During runtime
they expose the H-RTL state to guards. The signal API is hierarchical.
The module-level API treats each node in the H-RTL as a blackbox
and only extracts the io ports of each module (e.g., the operands and
output). The wire API can extract the signals within each node, any
register, signal, and RAM entry. The signals extracted by wire API
depend on the type of the module (see Table 2). HLS blackboxes (e.g.,
FPGA specific FPUs or caches) default to the module API. Code 3
illustrates the wiring we automatically add to module for the internal
signal. A sink (line 3) is the hardware callback from H-RTL module
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to guard. The source (line 6) wires in guard output back into the
H-RTL module. Every source or sink call takes a string name for the
wire, which helps identify the corresponding guard partner during
hardware synthesis.

Table 2: `grind Signal API for H-RTL nodes.

Components H-RTL Signals
Compute (INT,FP) ID, Predicate, Operands, Output
Addr (e.g.,Gep,Ptr) Base Addr., Offsets, Type
Control (e.g.,Select) Mux, Enable, Predicates, Branch

Load/Store Addr., Data, Size, Type (Local,DRAM)
Cache/Scratch Req./Resp packet, Data, Valid, Data, Address

Function Arg., Output, Operation ports, Pipeline reg.

1 class ComputeNode() {
2 //Callback module to guard
3 addSink(io.FU.data, s"FU_data${ID}")
4 addSink(io.FU.valid, s"FU_valid${ID}")
5 // Analysis result from guard to module
6 addSource(io.Callin, s"Guard_Callin${ID}")
7 addSource(io.Patch, s"Patch_data${ID}")
8 }

Code 3: Signal API for boring wires.

4.2 Instrumentation API
`grind includes a library of guards that the tool or user can declare

without any additional effort (Table 3). The user can also create
customized guards in Scala and Chisel [8]. Code 4 shows a simple
equivalence checker. The APIs are meant to have a software-feel,
and `grind will create a hardware circuit and attach it to the H-
RTL module. The guard arguments and return values are wired in
using the mirror image sink/source calls (like 6). The API requires
the tool to declare three components. i) Trigger (line 11): a valid
flag that activates the guard. Here we use the function unit (FU)’s
valid signal. ii) Analysis (line 12): This is an acyclic function of
the signals extracted from the module. Here the isEqual() analysis
function checks if the FU output is equivalent to the golden and returns
the boolean result. iii) Patch (line 13): The patch calls back in to the
module. In hardware we set the callin flag and guard output lines. The
patch is gated based on the result of the analysis function i.e., patch
output is not sent if the analysis evaluates to false. (line 4:"when()" in
RTL is equivalent to an “if statement”). Code 5 illustrates two other
guard types i) a profiler which silently analyzes incoming module
data, and immediately calls into the module i.e., patch is not gated.
ii) a fault injector that does not perform any analysis, but patches in
bogus value into the module’s output.

1 val isEqual(FU_out, golden) = (FU_out == golden)
2 // Guard top module
3 class Checker() extends Guards {
4 val io = {
5 addSink(io.FU.data, s"FU_data${ID}")
6 addSource(io.Guard.out, s"Guard_data${ID}")
7 .....
8 }
9 when(FU_valid) { // Callback from Module

10 // Analysis
11 val result = isEqual(io.FU.data, golden)
12 when(result) { // Patch function
13 io.Patch := io.golden
14 }
15 io.FU.callin := true.B

Table 3: `grind instrumentation library.

Guards Description
Check Check module output is equal to golden value
Patch Check and update module output with golden value
Assert Check and stop circuit, if output does not match
Activity Count the number of times module is active
Hist Create a histogram of output values of module
isRange Check cache or scratchpad request address range
isValid Check if the input operands to a module are valid
isTarget List the modules activated by a control module
Fault Inject a faulty value into the module’s output

16 }

Code 4: Instrumentation API

1 // Profiler creates histogram
2 class Profiler extends Guards() {
3 val bins = Vector(Counter(0.U),256) // Histogram
4 // Calculate index of counter.
5 val idx = FU.io.out.signal(31,24) // Index
6 when (io.FU.valid) { // Trigger
7 bins(io.FU.valid).increment() // Analysis.
8 }
9 io.FU.callin := true.B // No patch.

10 }
11 // Faulty guard injects faults in the module
12 class Faulty extends Guards() {
13 when(FU_valid) { // Trigger
14 io.FU.callin := true.B // Always Patch
15 io.FU.out := LFSR() // Faulty value
16 }
17 }

Code 5: Profiler and Faulty Guards

5 Tool 1: H-RTL Checker
To demonstrate the utility of `grind we develop a tool that helps

with HLS compiler research. The tool performs checking between the
H-RTL signals (hardware behavior) and SSA register state (software
behavior) for an execution. The goal of the checker is not formal
verification [40], but rapid discovery of functional bugs in H-RTL.

 %5 = phi i32 [ 0, %2 ]
 %6 = phi i32 [ 0, %2 ]
 %7 = mul i32 %6, %1,
 ....
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%5 = phi i32 [ 0, %2 ]
trace_reg(%5) 
%6 = phi i32 [ 0, %2] 
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Figure 10: Iterative H-RTL checker tool built using `grind.
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Tool Description
Figure 10 illustrates the checker. Phase 1: Extract golden

is run once. The first requirement in debugging hardware is obtaining a
reference golden behavior. 1� Here, we modify the HLS compiler [53]
to dump the dependence graph and the SSA register list (to a JSON
file).

2� We insert software instrumentation to trace the SSA register
values and memory live-outs from a CPU run. The golden values
are written to the DRAM and are consumed by guards during the
instrumented FPGA run. 3� The instrumented H-RTL is synthesized
and mapped onto the FPGA. In the first iteration, we instrument stores,
control, live outs. We will automatically refine the list (in subsequent
iterations)

4� The guards write the IDs of the signals that deviate to the
DRAM. In Phase 3: Update guards, we use the guard output
to identify H-RTL signals that deviated from the SSA registers. 5�
We then backward slice the SSA form and update the guard list to
include the predecessors i.e., we check if the errors originated earlier
in the circuit. We keep iterating phases 2 and 3 until we find positively
identify the erring signal i.e., the signal whose parents did not err but
children did.

Here, we rely on the user to provide a list of inputs based on
application knowledge. Test input coverage is not a major concern
for H-RTL. The H-RTL is fixed-function and dataflow-based, unlike
CPUs that are programmable and include dynamic issue [36]. In
H-RTL, inputs have less impact on which portions of the circuit is
active/inactive. Also, the dominant overhead is FPGA re-synthesis on
each iteration. Hence, generating golden values for multiple inputs is
feasible. The primary goal is to minimize the number of iterations, by
using backward slicing.
Working Example

Figure 11 shows the the relu kernel, a nested loop. The Gep7 has
a hardware error that causes the faulty value to propagate and taint
successors e.g., Store12. The goal of the checker is to find the true
positive in the midst of multiple false positives i.e., find the erring
gep7 without flagging store12 and other successors.

In the first iteration, the guard list is initialized to the live-outs
and control-nodes in the H-RTL. The guards will check equivalence
with golden values and report the Store12 as erring. In the second
iteration, we guard the backward slice of the Store12, Select11
and Gep7. In this iteration Gep7 will fail the checks, but Store12
will work correctly. The guards on Gep7 will detect the deviation,
note it down, and patch with the available golden value (which was
already required to detect the deviation). The patching will prevent the
forward slice from becoming tainted and being reported. Select12
is a false guard as it is functioning correctly and we would not have
guarded it, if we had oracle knowledge. The efficacy of the checker
is determined by the successive refining and trimming of these false
guards.In the final iteration, we guard Gep7’s backward slice, Add6.
Since the Add6 is not faulty it will pass the checks, and we find the
error i.e., Gep7.
6 Tool 1 H-RTL Checker Evaluation

In this section, we evaluate the H-RTL checker. We study two forms
of deployment: running co-simulation within a Verilog simulator and
the other a deployment on Amazon AWS F1, Xilinx UltraScale+
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Figure 11: Illustrating H-RTL checker in a Relu circuit. gep7
has an error.

FPGAs (synthesis results in § 9). All the circuits studied have deter-
ministic bugs occurring at the same site, and triggered at the same
cycle. We include a citation to our anonymized benchmark code [54].

(1) SRAM (§ 6.1): The resources consumed by the guards deter-
mine the resources leftover in the FPGA for the H-RTL. Lower
resources, implies we can support larger design.

(2) Time-to-check(§ 6.2): This corresponds to the the wall-clock
time taken to identify the true-positive (error) or confirm the
correctness of the circuit.

(3) False guard rate(§ 6.4): The False guard (FG) rate as the
fraction of nodes that we checked but eliminated for subsequent
checker iterations.

(4) H-RTL size: We measure the size of the design as a % of the
the FPGA resources occupied. Higher % implies we can check
realistic designs that fill the FPGA, without having to scale
them down for instrumentation.

§ 6.1 Result 1:`grind requires 2—10⇥ less on-chip SRAM than
state-of-the-art trace-based checkers [57].

§ 6.2 Result 2: `grind’s iterative approach can verify circuits
2—5⇥ larger. We can progressively scale up design size as `grind’s
approach narrows site of bug.

§ 6.2 Result 3: `grind demonstrates that iterative checking will be
practical. Patching and dynamic checking minimizes number of itera-
tions required to find bug. Despite FPGA resynthesis, bugs uncovered
in H-RTL within 16-24hrs (without human involvement).

§ 6.4 Result 4: `grind can rapidly trim the false guards. The FG
rate factor for circuits we study is 0.69. i.e., 69% of guards will be
eliminated by our backward slice in each iteration. Only 3-4 iterations
required to check a circuit.
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Figure 12: SRAM requirement of `grind

6.1 SRAM: State-of-the-Art vs `grind
Here, we compare the amount of SRAM required against Au-

toslide [57] the state-of-the art debugger. Overall (Figure 12), `grind
has a lower SRAM requirement relative to AutoSlide, while main-
taining a low time-to-completion. `grind requires 2–10⇥ less SRAM
than trace-based approaches. Traces detect the bug offline and need
to collect the region-of-interest. Since there is no oracle, traces tend
to be collected in a coarse-grained manner across a large portion of
the circuit (including those functioning correctly). `grind spreads
the checking over multiple iterations. In each iteration, we dismiss
the correctly functioning parts of the circuit. The amount of SRAM
required is proportionate only to the activity factor and % of circuit
tainted by the unguarded erring signals.
6.2 Time-to-check vs. H-RTL size

In this section, we measure the time-to-check complete accelerators.
There is an inherent tradeoff between the time to check and the size
of the H-RTL. We support three flows (Figure 13):
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Figure 13: Tradeoffs between different flows in H-RTL checker.

• 1-synth: We synthesize the H-RTL once onto the FPGA. All
guards are built into hardware at the beginning, limiting the
logic left-over and consequently H-RTL size.

• N-synth: `grind only builds in the required guards in each
iteration. As the guard list trims down, we can use the remain-
ing resources for scaling up the H-RTL design size. FPGA
bitstream is regenerated for each iteration.

• N-synth-5% : We bound the guards to 5% of LUT and BRAM,
leaving 95% of the FPGA for the design. More iterations are
required, since guards limited per iteration.

Our observations: y1 The 1-synth approach has to build in the
entire guard set at once and this limits the design size that can be
checked. For instance, only a CONV design that is 20% the FPGA
board could be checked.N-synth can scale up the design size as it
trims false guards in each iteration. In the final iteration, N-synth
verifies designs that are 5⇥ (CONV) larger than 1-synth. y2 N-synth
exploits the observation that during the checking stage the majority
of the H-RTL circuit typically functions correctly. It uses a smaller H-
RTL circuit to rapidly eliminate false guards. Within a few iterations
(2–3 iterations 9hr) once we have narrowed down the guard’s region
of interest, we scale up the design-under-test to 90% of the FPGA.y3 Overall N-synth can complete verification runs on all accelerators
in under 24hrs for FG slopes of 0.7 and 0.5. N-synth will complete
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Figure 14: 1-synth vs N-synth vs. N-synth-5% (`grind bound to 5% resources ). Please view in color and zoom in.
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verification between 2⇥–5 ⇥ faster than N-synth-5% as well. N-synth-
5% requires extra iterations, since in every iteration it can only check
a subset of a large guard-set.

To ensure that the comparison is fair and understand the design
space, we introduce deterministic bugs (same site and cycle). We also
determinstically control the rate of convergence, using the false guard
rate (FG) parameter. For instance, we fix FG rate = 0.7, it means in
our model 70% of the guarded signals are trimmed in each iteration
until we find the true positive. All models start with the same initial
guard set and iterate towards the same bug site. Figure 14 conducts
six runs for each accelerator H-RTL: 2 (N-synth and N-synth-5%) ⇥ 3
FG slopes (0.3, 0.5 and 0.7). FP=0.7 is representative of our circuits.
The FP=0.3 and 0.5, model complex errors, fewer guards trimmed per
iteration.
6.3 Bandwidth requirement (N-synth-BW2%)

We create N-synth-2%BW in which we bound the guards to use 2%
of board bandwidth, leaving 98% of bandwidth for the H-RTL circuit.
The bandwidth required by the checker depends on the number of
guards in each iteration. Thus, we plot the bandwidth required as
a % of peak bandwidth in each iteration (see Figure 15). In two
workloads, GEMM and Relu, the guards require more than 2% of the
bandwidth. Constraining to 2% limit, causes a noteable increase in
the number of iterations and time-to-check in those accelerators. In
other workloads that guards do not exceed 2% limit and there is no
impact on time-to-check.

Figure 15: Time-to-check with a hard 2% limit on bandwidth
Y-axis: actual bandwidth consumed.

6.4 False-guard rates
Result:The rate of trimming false guards is high for accelera-

tors as they tend to be parallel and backward slices tend to be shal-
low. Relu:0.68, Conv2d:0.82, Vadd:0.62, Saxpy:0.61 Stencil:0.78,
FFT:0.65. We plot the #⌧D0A343

#⌫D6B , the ratio of the number of netlist
signals guarded to the number of actual bugs in the circuit. The num-
ber of bugs is fixed, which means this effectively measures the false
guards in each iteration. Figure 16 shows how we improve accuracy
as we converge on the error. We highlight the rate of change i.e., the
higher rate implies that `grind zooms in on the bug faster. The lower
the % lower the overhead. We find that the accelerators of 0.69 i.e.,
69% of the guarded H-RTL signals will be trimmed in each iteration
by the backslice. Note that the rate depends on both the actual cir-
cuit dependencies and site of error. These factors are included in the
average.

Figure 16: False positive rate: #⌧D0A3B
#⌫D6B in each iteration. Higher

the rate of fall across the iteration, means less false guards.

7 Tool 2: H-RTL Profiler
Result: Guard-based profiling saves 200x—35000x times DRAM

traffic by building in the profiler on-chip at the site of the H-RTL
signal and eliminating the need to write to DRAM.

Result: Guard-based profiling saves on-chip SRAM by helping the
user rapidly create dynamic profilers that auto-instrument only the
regions of interest.

In this section, we construct a dynamic profiler for H-RTL circuits.
We make the key observation that the number of input bits to a pro-
filer far exceeds the summarized output. Prior state-of-the-art [37] has
relied on out-of-circuit analysis. This leads to high DRAM traffic and
wastes on-chip SRAM. We realize that profilers tend to be relatively
simpler circuits. Embedding profiler circuits in the H-RTL and profil-
ing dynamically during the execution is a better alternative to tracing
and profiling.

Figure 17: DRAM traffic. `grind vs state-of-the-art [37]

We quantitatively compare guard-based profiling against prior
state-of-the-art based on tracing. We compare the following profilers
i) Baseline: trace values to DRAM and post-process in software
ii) ACT: profile values when another Boolean signal indicates the
operation is active (this is representative of state-of-the-art). iii) HW:
Profile pipeline signals iv) MEM: Profile the memory addresses when
the operations are active. v) ADDER: Profile compute operations.
Figure 17 shows DRAM traffic reducing in `grind vs state-of-the-
art [37] and Figure 18 illustrates `grind SRAM usage vs state-of-the-
art [37]. `grind shows promising reduction.
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Figure 18: Normalized SRAM.`grind vs state-of-the-art [37].
Lower bar means more reduction in SRAM

8 Tool 3: H-RTL Faulty
In this section, we study H-RTL circuit resiliency using `grind.

We inject two types of guards, faulty and checker. Faulty purposefully
injects buggy values into the circuit signals when they are enabled.
Checker guards simply check the values against golden values and
report if they deviate. This allows faults to propagate unhindered and
affect different parts of the circuit. We evaluate how a fault can cause
different types of failures. Chiffre [20] provided a convenient frame-
work to inject faults in signals of hand-written RTL. However, Chiffre
did not have the ability to check the propagation of faults. It did not
permit a user-defined analysis logic, nor vary the instrumentation
per signal. `grind’s instrumentation flexibility permits both checker
guards and faulty guards to be simultaneously active on the circuit on
different signals.

The three categories of bugs we inject are i) Compute Fault: We
flip the bits and in the ALUs ii) Control Fault this case we introduce
faults in the branch and merge operators iii) Memory Fault: Finally
we pertrube the addresses in memory operations and check the impact
on the final memory state.

Our methodology for evaluating fault injection consists of three
steps: 1)Where to inject bugs? Using the HLS compiler, we randomly
picked 10% nodes of each application of any one of these classes.
computation, control, or memory. 2)What is the bug? We select each
node’s output (the node can have multiple outputs) and the error value
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to inject that output. 3)Error injections runs: We inject one fault in
the H-RTL circuit, and monitor for crashes, deadlock, and output
corruption.

In Figure 20 we plot the distribution of faults for each type of
error. FFT is a memory-intensive application and as a result, the
probability of showing a memory bug compared to other applications
is higher. In Conv and Gemm, since the control flow in the application
is more complex compared to the other applications, it is more likely
that a new bug in the circuit introduces control type of bugs. This
information can give insight to HLS compiler designers as to where
to start debugging a faulty change in the compiler.
9 Hardware Overhead

Table 4 shows the results of synthesis on an FPGA, in terms of the
number of LUTs, registers,BRAMs, and Mhz. `grind is a ‘pay-what-
you-want‘ approach i.e., there are no fixed overheads. The FPGA
resources required depend on how many guards are synthesized and
the complexity of these guards. Here we estimate the worse-case
overheads of `grind by listing the FPGA synthesis results for H-
RTL verifier. We pick the iteration from the earlier iteration since

LUTs (00s) Registers (00s) BRAM (000s) Mhz Guard BW Worst case

Base. [57] `-Veri. Base. [57] `-Veri. Base. [57] `-Veri. Base. `grind % Peak BW Wallclock.
Vadd (⇥* 4) 96 145 127 145 196 175 60 341 78 115 120 7.2% 1.00⇥
Saxpy (⇥* 4) 67 119 90 109 169 136 34 272 72 112 111 0.2% 1.14⇥

Conv2D 64 145 84 137 199 165 389 3849 1080 110 108 0.69% 1.00⇥
Stencil 68 135 76 93 112 105 41 465 82 123 113 0.89% 1.24⇥
Gemm 217 275 232 111 145 120 142 228 169 121 116 2.1% 1.09⇥
Relu 79 104 86 101 129 112 485 2667 983 130 122 0.91% 1.64⇥
FFT 312 390 330 108 194 114 148 8209 329 110 105 0.71% 1.27

Overhead 10—15% 10-25% 1.1⇥—2.5⇥ 5% 0.7—7% 1.2⇥
Table 4: AWS F1 Ultrascale+ FPGA Resource and timing. Base: unmodified H-RTL Trace: State-of-the-art HLS [57] `-Veri.: `grind
with maximal guards set up for H-RTL checker; worst case overhead. Exe. time overhead measured with all modules guarded. LUT
overhead excludes SAXPY and Vadd since circuit is small evem with unrolling.
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Figure 20: Outcome of Fault injection

they include longer guard lists. Each guard also tends to have higher
activity factor and this will require more BRAM values for the shadow
buffers in the guards. All in all, this table is a conservative estimate
to show the feasibily of `grind. In later iterations in the same verifier
we will only require 2% of the FPGA resources. `grind has minimal
impact on clock (<5% overhead).

As discussed in the § 3 guards are entirely decoupled from the
H-RTL signals, have no dependencies on each other, and do not affect
critical path. The logic resources and registers even in the worst-case
tend to be limited since the guard analysis functions tend to be simple
and require minimal state. The dominant resource overhead is the
on-chip BRAMs required to buffer golden values in the verifier (other
tools will not include this overhead).
9.1 Related work

Table 5 compares frameworks for H-RTL analysis. We include
both state-of-the-art commercial tools e.g., Vivado [12, 55] and state-
of-the-art academic tools [26, 29, 31, 32, 57]. Many of the academic
tools [32, 57] extend existing commercial tools [16, 55].

The commercial tools (e.g., Xilinx Vivado [55], Legup [15]) sup-
port assertions and gdb-like breakpoints. Assertions are “kill-switches”
included in the H-RTL at specific signals. Asserts typically check a
fixed condition e.g., signal == 0?. They cannot accommodate value-
based checks e.g., Is ALU output correct, ALU.io.out == (io.in1
+ io.in2)?. The RHS in the assert, io.in1 + io.in2, has
to be dynamically evaluated. Commercial tools lack the support to
introduce additional hardware logic for runtime evaluation. Simula-
tions and waveforms [57] in commercial tools can track values using
printfs(), however all checks are post-execution. The efficacy
of asserts also dependen on the user who has to figure out where to
insert the assert. Asserts triggers only at deviating signal; the error
may have propagated from non-assert location.

In asserts, erring signals could influence each other making it hard
to identify the culprit. In contrast, `grind detects the first erring signal
and the first cycle deviation occurred. `grind provides a temporal
window (neighboring cycles in time) and spatial window (dependent
signals) since it patches and lets execution continue. A key novelty
of `grind is Patching, the ability to modify H-RTL signals during
execution. By patching the golden value as soon as a signal deviates, i)
we ensure erroneous values do not taint the forward slice, and prevent
false reports. ii) we ensure that faulty signals do not influence each
other, and we can detect multiple errors simultaneously.

Existing frameworks do not support user-defined tools. They do not
permit the user to define the analysis function on the H-RTL signals.
They also vary in terms of the target and type of instrumentation.
Majority of prior tools instrument C/System-C. They require human-
in-the-loop to identify the scope [11, 12, 23, 24, 44, 45, 57]. Some of
them target hand-written RTL [37], but not verbose HLS-generated
RTL. Execution analysis In prior work, the analysis of the signals is
postponed to post-execution. Thus, signal extraction incurs significant
bandwidth penalty. We have demonstrated the benefits of in-execution
analysis to save DRAM traffic and on-chip SRAM buffers. Low-effort
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Detailed and specificµGrind

Platform Tgt Type Value-
based

Asserts Patch Low-effort Auto-
edit

Post-Exe
Analysis.

In-Exe
Analysis

H-RTL
size

Source [12, 22, 25] FPGA C input Monitor — — — — — — — Large
Monitor [31, 32, 55] FPGA C input Monitor — 3 — — 3 — — Moderate
Asserts [26, 29, 50, 55] FPGA/ Sim. RTL Monitor — 3 — — — — — Large
Traces [21, 55, 57] Simulation C input. Cause 3 — — — — 3 — Small
Events [37] Simulation RTL Monitor — — — — 3 3 — Large
CheckPoint [7, 9, 39] FPGA/Sim. RTL Cause — — — 3 — 3 — Small
`grind FPGA/Sim. HLS

H-RTL
Root
Cause

3 3 3 3(Iter.) 3 3 3 Large

Table 5: State-of-the-art handwritten RTL and H-RTL Analysis frameworks.
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and Auto-edit. The effort required to insert instrumentation into the H-
RTL impacts utility. Prior tools require humans intervention to decide
where and what to instrument. They lack a flexible mechanism [23,
24, 57] to let a tool determine the instrumentation.

Table 6 illustrated the advantages of `grind vs. Autoslide [57],
the state-of-the-art HLS checker. Prior work tackled source-level
bugs introduced by the C program fed to the HLS compiler. `grind
targets bugs in H-RTL. In Autoslide, the entire analysis phase is
post-execution. Hence, they log more than necessary and this leads
to a significant bandwidth overhead. Table 4 shows overheads of
Autoslide. The largest CONV that `grind can fit on AWS Ultrascale
FPGA is R,W,H = 8, 192, 192, and the largest circuit prior work can
fit is R,W,H = 8, 56, 56; '5⇥ improvement. Autoslide relies on user
input to reduce the scope of checking and identifying instrumentation
regions. `grind creates a fully automated checker that refines debug
scope without user input.

Prior art [12, 57] `grind
Monitoring Offline (post-execution) Online (in execution)
Checking Region User [12], Coarse [12, 57],

Fine [57]
Whole accelerator (including
blackbox RTL)

Region-of-interest Wide. Buggy and Correct
signals

Only dependent signals.

Patching — Yes. error does not propagate
Accuracy User dependent Convergence guaranteed
Hard failures Yes. No. `grind patches values.
Multiple bugs No. Erring signals propa-

gate.
Guards patch to isolate error.

Design size Small Large. See Section 6

Table 6: Tool Comparison: State-of-the-art vs `grind Checker

Advanced debugging and FPGA emulation platforms exist for
CPU RTL [39]. They are orthogonal to the problems we target. i)
They manually instrument handwritten H-RTL and predominantly
support checkpointing and asserts. We target the problem of how to
automatically wire user-defined instrumentation into HLS-generated
RTL. ii) They also deal with test coverage [36] which is a concern in
programmable architectures and dynamic issue RTL such as CPUs.
H-RTL is fixed-function and is based on dataflow. Hence, inputs does
not dramatically impact circuit coverage concerns.

Commercial formal RTL checkers are only loosely connected to
this paper [1]. Logic translation checking is computationally intensive
and has only been demonstrated on circuits as complex as floating
point ALUs (requires 12hrs [47]). We target the informal problem
of finding bugs in complete accelerators (e.g.Convolution) within
24 hrs. Further, SLEC only work with FSMs-with datapath [4] and
sequential semantics. Finally, existing tools [6, 17] that profile FPGA
performance target an entirely different problem. They track execution
time of kernels mapped to the FPGA; at best they are akin to gprof.
`grind is the first to profile the activity and values of the internal
signals in an accelerator circuit and permit the user to attach custom
profilers.
10 Conclusion

`grind is an open-source framework that enables flexible, low-
effort, scalable, dynamic instrumentation of H-RTL. Guards can probe,
modify and analyze any H-RTL signal during the execution. Unlike
other tools, `grind can dynamically inject values into the H-RTL
signal, enabling in-execution tasks such as patching values during
verification, and injecting faults during testing. `grind fully automates

the process of inserting guard circuits into the H-RTL without requir-
ing any human-effort. `grind is a pay-as-you-go approach where the
overheads are proportional to the H-RTL signals monitored. This
enables it to verify large circuits that occupy upto 98% of the FPGA.
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