
Deepframe: A Profile-driven Compiler for Spatial Hardware Accelerators

Apala Guha, Naveen Vedula, Arrvindh Shriraman
School of Computing Science, Simon Fraser University

Email: {aguha,nvedula,ashriram}cs.sfu.ca

Abstract—Tracing code paths to form extended basic blocks
is useful in many areas, compiler optimizations [1], improving
instruction cache behavior [2] and custom-hardware offload-
ing [3]. Prior work has been plagued by small traces, limited
either by the overheads of dynamic profiling, statically available
information [4], or side-exit branches [5]. In this work, we
rethink what code path sequences to fuse and construct long
traces for offloading to spatial accelerators, while minimizing
the occurrence of side exits which limit dynamic coverage.

We introduce a novel technique that recasts learning a
program’s execution patterns as a natural-language-processing
problem, CBOW (Continuous Bag of Words). We then use a
deep learning network to learn the relationships among paths.
During the compilation phase, the compiler uses a sequence
miner to decide what paths are likely to occur. The learning
network predicts a Deepframe online, which is an extended
basic block comprising a multi-path sequence (each path itself
is composed of multiple basic blocks). We demonstrate the
efficacy of Deepframe on spatial hardware accelerators and
find the following: i) Deepframe can construct up to 5× (max:
27×) longer offload regions compared to prior approaches.
ii) Surprisingly far–flung ILP (instruction-level parallelism)
and MLP (memory-level parallelism) can be mined from the
frames statically (5.5× increase in ILP and 10.5× increase
in MLP). iii) The frames offloaded to the spatial accelerator
have minimal side exits (mis-speculation) and achieve sufficient
dynamic coverage to improve overall application performance
(up to 9× improvement). We will be releasing open-source our
end-to-end compiler prototype based on LLVM.

I. Introduction
The Problem.: In this paper, we develop a frame compilation
toolchain for hardware accelerators. Frames [1] serve the
same purpose as traces or superblocks [5] within a Trace
Scheduling compiler [6]. A frame is a single-entry single-exit
sequence of basic blocks that that either atomically runs to
completion or fails (due to side-exits) and falls back to the
original path. Frames form effective scheduling windows by
straight-lining code [4], [7]–[9] and enable the extraction of
instruction and memory parallelism in OOO (out-of-order)
processors [10], VLIW processors [11] and, more recently,
hardware accelerators [3]. This latter use case is our target.

We choose to spatial hardware accelerators as our target
platform because these implicitly rely on heterogeneous
execution (Figure 1) to support the whole program. Heteroge-
neous execution depends on three factors i) the overhead of
migrating between the OOO and the accelerator and ii) how
often the accelerator execution has to fall back to the OOO
due to control-flow divergence, iii) and whether we are able to
statically find program phases that are large enough to map to
the accelerator. In fact, current hardware accelerators restrict

CPU

+ Minimal control
— Small Window, Less ILP

Fine-grained
Accelerator

Coarse-grained
Accelerator

CPU

+ More ILP, MLP
— Side exit

exit ?

Figure 1: Accelerator execution model is heterogeneous and
interleaved with CPU. Fine-grained accelerators have lower
ILP (instruction parallelism) and MLP (memory parallelism)
as well as fewer side exits. Coarse-grained accelerators
improve ILP and MLP, but may have side exits.

bz
ip

2
bl

ac
ks

c
fl

ui
da

n
po

vr
ay

lb
m

eq
ua

ke
so

pl
ex

ff
t-

2d
gz

ip
h2

64
re

f
fr

eq
m

in
dw

t5
3

st
re

am
c

ar
t

vp
r

bo
dy

tr
a

fe
rr

et
na

m
d

pa
rs

er
24

28

212

st
at

ic
 o

pe
ra

ti
on

 c
ou

nt

BERET
Small Core
Large Core
Small FPGA

Figure 2: Accelerator hardware frame size supported vs.
Superblock sizes [5], [12].

themselves to statically scheduling coarse-grain frames from
applications with perfect loops. In this paper, we address the
question central to heterogeneous execution. How can we
develop a generalized compiler for accelerators that can create
coarse-grain frames that mine instruction-level parallelism
from a diverse application set?

Many current accelerator designs continue to rely on semi-
nal work in VLIW [5], [13], [14] and dataflow processors [15]
which also segment the execution into frames. However, there
are important differences that limit the effectiveness of prior

P1
P1
P2
P1
P1
P2
....

P1
P1
P2
P1
P1
P2....

WORD

Sentence

Deep
Learning

Program
with embedded

Deepframes

Input: Few words
 (a local history)

Prediction: Sentence
(sequence of hot paths)

A

C D
F

E

G

P3P1

P2
P3 P3

P1
P1
P2
P1

DeepFrame

Reconfigurable
Accelerator

CPU
EXIT 1

CPU
EXIT 2

Cold path
and Rollback

Host
CPU

L1 Cache

Shared L2 Cache
Memory

CFG

Execution ModelDeepframe LLVM Compiler

Path history

Design Tradeoffs

B

Coverage

Spec.
Depth

Finding
ILP

Wasted
Ops

Rollback
latency

DeepFrame Loop Unroll+Hyperblock Hyperblock Superblock/Trace

Figure 3: Constructing Deepframes from path execution histories. Frames are statically mapped to the accelerator, while next
frames are predicted dynamically.

techniques. We enumerate the differences below.
(i) Accelerators support coarse-grain frames. Hardware

accelerators are typically a spatial grid of function units onto
which the compiler maps the dataflow of a frame. The size of
the spatial grid determines the size of the frame the compiler
is expected to construct to effectively exploit the hardware.
With increase in transistor density current accelerators to
support a larger grid of function units, 212 —220 [16], [17]
operations and hence increase pressure on the compiler to find
frames with more operations. To understand the limitations
of prior work, we compared superblock sizes against various
frame sizes supported by different accelerators (Figure 2).
We study if prior work [5], [18], [19] can fill the available
hardware resources. In Figure 2, BERET [12] represents a
fine-grain accelerator while a small FPGA is closer to a
coarse-grain accelerator. In many workloads, prior techniques
are unable to identify offload opportunity beyond a target
window of 64—128 instructions. While this window size is
sufficient for fine-grain accelerators which have window sizes
similar to small cores and VLIW CPUs etc. [15], [19], [20],
they will lead to hardware under-utilization in coarse-grained
accelerators.

(ii) Accelerators typically rely on static construction.
In prior work the set of frames could potentially be updated
at runtime. Accelerators need to be reconfigured if/when a
frame changes and this is expensive. Hence, the objective is
to statically construct a coarse-grain frame.

(iii) Accelerators rely on coarse-grain execution. The
overhead and frequency of migrating dictate that coarse-
granularity (1000s of operations) must be offloaded to
overcome the overhead of execution migration. We need
to create the offload frame a priori such that side exit events
are few and migration overheads are low. The key challenge
with the accelerator execution model is control divergences
that lead to side-exits and reverting to the CPU. Accelerators
have higher penalties due to aggressive static optimization,
and mis-speculation rates are exacerbated by larger code
regions. This concern on control divergence has steered
much of the compiler effort in prior work toward fine-grain
accelerators [19], [20].

Table I: Simulation Parameters

Host CPU 2 GHz, 4-way OOO, 96 entry ROB. 32 entry LSQ.
Cache L1: 64K 4-way, 3 cycles.

Shared L2 : 4M shared 16 way, 25 cycles.
MESI Directory. Memory 200 cycles.

Accelerator
CGRA 32× 32 homogeneous units [26], [27]
Energy [28] Network: 600 fJ/link. ALU : 500 fJ/INT, 1500

fJ/FP.MDE. May: 500 fJ/edge Must: 250 fJ /edge
LSQ (§6) 2 port 48 entries/bank. # banks 2—8. Loads:2500 fJ,

Stores: 3500fJ

(iv) Accelerators can mine wider instruction paral-
lelism. Compared to front-end limited processors, spatial
accelerators adopt dataflow execution [16], which can support
wider instruction parallelism since it is not limited by the
sizes of issue queues and register file ports. This instruction
parallelism has to be mined statically, and coarser-granularity
frames afford more opportunity for mining instruction paral-
lelism.

Our Proposal.: We propose Deepframe to statically select
and dynamically predict frames for acceleration (Figure 3).
The input to Deepframe is path execution history from
reference runs. The output of Deepframe is, (i) a set of frames
that should be statically offloaded to the accelerator, and,
(ii) a predictor that dynamically forecasts the next frame (a
sequence of paths) that should be offloaded to the accelerators.
To achieve this, Deepframe trains a neural network on the
execution histories.

Figure 3 visulizes the process. The program control-flow
graph (CFG) exhibits paths P1 (ABCFG), P2 (ABDFG), P3
(AE) with potential side exit AE from paths P1 and P2, BD
from P1, and BC from P2. Our frames are sequences of Ball-
Larus paths (or just paths) [2], which can be interpreted
as maximal superblocks (i.e., not limited by hardware
constraints) encompassing at most one loop iteration, but
never crossing a loop boundary. In this example paths may
combine to form frames such as P1 P1 P2. As frame length
increases and encompasses multiple path sequences, the
potential for side exits increase. On the other hand, longer
frames improve instruction and memory parallelism. The goal

of our frame selection is to balance these opposing forces.
We answer several questions that enable the compiler to

automate the construction of frames for hardware accelerators.
i) Can we balance the size of the frame and coverage (fraction
of execution within frames) in the presence of control flow?. ii)
Assuming that large frames with good coverage exist, can we
dynamically predict next frames with high accuracy (no side
exits)? iii) Finally, will larger frames necessarily expose more
ILP (instruction-level parallelism) and MLP (memory-level
parallelism) that an accelerator can leverage? Deepframe is
an end-to-end compiler toolchain which provides support for
frame construction, spatial accelerator mapping and frame
prediction. Deepframe is built on LLVM [21] and will be
released open-source.

The insight underlying Deepframe is that analyzing control-
flow patterns with static/dynamic features is complex, leads to
inaccuracies, and loss of portability. We can find an effective
feature-less analysis technique technique for our problem in
natural language learning [22]. Natural language learning
characterizes languages by observing word associations (rel-
ative positions and sequences) with zero a priori knowledge
of the language, and without any user input. This is known
as latent feature selection. We apply the same principles
to Deepframe where we view the path execution patterns
as the application’s language, and the paths themselves as
words. We select as well as predict frames without any
prior assumptions. We encode program execution patterns
as a classical natural-language-learning, Continuous-Bag-of-
Words (CBOW) problem and then rely on modern deep
learning networks to effectively learn the recurring patterns
in each application.

As shown in Figure 3, Deepframe employs an offline
compilation stage before execution. In the first stage, the
baseline compiler instruments the original program for
generating an execution history at path granularity [2], [5].
We then chunk the execution history into a collection of
word-grams or sentences, each distinct path in the execution
history being a word. Each gram or sentence corresponds
to a frame. The length of the gram is a compiler parameter.
We train a deep learning network offline on reference runs.
Additionally, we mine frequent grams from reference runs
to help the compiler effectively form frames for offloading
to the accelerator. We show that these multi-path frames
form effective optimization targets for an accelerator. We
dynamically predict frames to execute. In summary, our
contributions are:
• Multiple hot path sequencing: We develop, Deep-

Frame, a LLVM-based compiler that leverages state-
of-the-art machine learning to analyze the dynamic
behavior of programs for frame construction. The frames
are large (up to 27× a superblock) and effectively
sequence multiple hot paths; prior work largely focused
on constructing a single hot path.

• End-to-End Frame construction for Accelerators:

We develop a complete compiler backend that utilizes
a latent feature selecting deep learning network to
construct and re-optimize frames. The constructed frame
is mapped to a spatial accelerator.

• Enabling far-flung ILP and MLP to improve per-
formance: We find that Deepframe can increase the
ILP by up to 5.5× and the MLP by up to 10.5×. We
demonstrate that Deepframe can achieve performance
improvements of up to 9× for hot frames, compared to
offloading at path granularity.

• Programmer-Friendly, adaptable Compiler: Deep-
frame is a black-box compiler that does not require the
user or compiler-expert to hand-engineer code selection
and prediction heuristics. It is driven entirely by the
observed execution histories of the program.

We provide detailed context on the problem of code
framing for accelerators in Section II. Section III describes
Deepframe in detail. We evaluate coverage, performance
and accuracy of Deepframe in Section IV, Section V, and,
Section VI respectively. We conclude in Section VII.

II. Scope and Related Work
In this section, we provide context to our work. We

describe our experimental framework in Section II-A. Next,
we characterize 20 SPEC and PARSEC benchmarks in
terms of control flow and the implications for framing in
Section II-B. Finally, we present related work on code region
construction in Section II-C. Section II-D presents related
work on learning–based compilers.
A. Target Spatial Accelerator and Execution Model

Here we provide a brief overview of the baseline spatial ar-
chitecture. Detailing the internals of spatial accelerators [12],
[16], [23] is challenging within the page limits. We briefly
summarize below. The accelerator we deploy is a loosely
coupled CGRA with 32×32 homogeneous functional units
similar in design to Dyser [23]. The accelerator includes
its own private cache and is cache coherent with the host
CPU through the shared L2 cache. Each functional unit in the
32×32 grid maps a single instruction from the dataflow graph
of the offloaded frame (See the reconfigurable accelerator in
Figure 3). The data dependencies between the operations are
explicitly routed over a static mesh operand network. The
operand network also routes values from the cache at the
edge of the grid to the function units in the grid. We rely on
previously released software for mapping the LLVM IR of
the offload frame to the CGRA and configuring the operand
network [20]. We use a recently released CGRA simulator
for cycle-by-cycle timing [24]; the OOO host core is modeled
in detail using macsim [25]. See Table I for the simulation
set-up.

Deepframe constructs the offload frame that is mapped to
the CGRA. Since the frame is free of control flow, compiler
has to only map the dataflow to the spatial grid. A mapped
frame consists of three components: the dataflow block,

so
pl

ex

ff
t-

2d

gz
ip

bz
ip

2

h2
64

re
f

bl
ac

ks
c

flu
id

an

fr
eq

m
in

dw
t5

3

st
re

am
c

ar
t

vp
r

po
vr

ay

bo
dy

tr
a

lb
m

eq
ua

ke

fe
rr

et

na
m

d

pa
rs

er

0

100

200

300

400

#
 B

as
ic

 b
lo

ck
s

2 path 4 path 6 path 8 path 10 path

Figure 4: Number of basic blocks in the hottest frame as the constructed frame size is varied from 2—10 paths. The number
of basic blocks is equal to the number of static branches. A path is a superblock.

so
pl

ex

ff
t-

2d

gz
ip

bz
ip

2

h2
64

re
f

bl
ac

ks
c

flu
id

an

fr
eq

m
in

dw
t5

3

st
re

am
c

ar
t

vp
r

po
vr

ay

bo
dy

tr
a

lb
m

eq
ua

ke

fe
rr

et

na
m

d

pa
rs

er

0

5

10

15

#
 U

ni
qu

e
pa

th
s

2 path 4 path 6 path 8 path 10 path

Figure 5: Number of unique paths in top 5 hottest frames. Frame size is varied from 2—10 paths. A path is a superblock.

which is a block of operations to run on the accelerator,
the guards which check for side exits, and the store buffer
which captures memory writes by the frame to quash in
case of speculation failure. The compiler is permitted to
move instructions within the frame and find the requisite ILP.
When a guard is triggered and the side-exit is taken during
a frame’s execution, the externally visible state has to be
reverted. Note that no architectural state is shared between the
frame and host processor; live values and memory operations
are the only form of communication to and from the frame.
Deepframe implements full rollback using a store buffer.

B. Quantifying control flow in programs.
We quantitatively analyze the control flow in programs in

Figure 4 and Figure 5, to motivate our research. Figure 4
shows the number of basic blocks (or branches) in the hottest
frame for lengths of 2–10 paths. In figure 4 we see that
the number of branches scales linearly with frame length,
and straddle up to 400 static branches in a frame. This is
well beyond the capacity of existing software and hardware
instruction windows. Yet, applications execute many frames
that could benefit from instruction windows that speculate
hundreds of branch outcomes.

To understand the source of these large frames and their
branch biases we study the number of unique paths that
manifest at runtime. One could argue that the large branch

counts are indeed there, but they only come from highly
biased loops i.e. loops that trace the same paths in a large
majority of the iterations, such that loop specialization and
unrolling is sufficient. We look at Figure 5, which shows the
number of unique paths in the 5 hottest frames for a fixed
frame length. Three cases are possible here. A unique path
count of 5 signifies that each frame was formed from one or
more copies of a single path. When the unique path count
is less than 5, it indicates that the same loop has produced
frames with different path combinations. Finally, a unique
path count greater than 5 indicates multiple loops, at least
some of which yield frames with different path combinations.
All three cases are present in our benchmarks, indicating the
need for developing framing techniques that are free of prior
assumptions about frame length and composition.

C. Related Work
Our main contribution is an end-to-end compiler for

constructing frames [1]. Here, we briefly review the concept of
frames. Deepframe constructs single-entry single-exit regions
that enable aggressive speculative execution on accelerators.
The ILP extracted by a compiler [4] is highly dependent on
the control characteristics and the size of a code region.
Removing control flow creates opportunities for finding
parallel instructions [8], [9]. Many solutions exist to form
control-free regions. To guide the reader through the paper we

DeepFrame
Trace Scheduler

/ SuperblockA

B

CD
E

F

A

B

C

D

C

E

Unmodified CFG Hyperblock
A

B

CD

E

F

Hyperblock + Unroll
A

B

CD

E

F

CD

A

B

CD
E

F

P1

P2

P1
P2
P2
..
E

P1
P2
P2
..

Original Frame

CD
CD

JIT Compiler Superblock Hyperblock Deepframe
[9], [29]–[32] [5], [19], [33] [14], [15], [34]

Scope
Unit Basic block Basic blocks Basic blocks Paths
Target Sequence of basic blocks ��1© Multiple superblocks Multiple

superblocks
Feature Single-entry Multi-exit Single-entry

Single-exit

Design

Branches No (guards) Yes ��2© No
User defines
heuristics

Yes [29] No

Compile-time Dynamic Static/Profile Profile
Support for Multi-
Superblocks

No ��3© Yes Yes

Support for
Loops

Yes (backward branch assumed taken) Yes (Profile)

Unbiased
Branches

No (Side Exits and Superblock fragmentation) Yes (Merge superblocks) ��4© Yes (path duplica-
tion)

Spec. and Opt.
Side-exits Yes (duplicate tail) No
Rollback
overhead

High Depends (compensation code) High (fallback to
unopt)

IR optimization No Yes (implemented within compiler)
1© Large Region 2© High Optimization opportunity. 3© Good Coverage 4© No Cold Ops

Figure 6: Comparison of different types of code regions.

clarify the following terms. Traces are multi-entry multi-exit
regions [35], [36]. A frame is a specific type of trace with a
single entry and a single exit. Superblocks [5] are single-entry
multi-exit regions and hyperblocks are single-entry multi-exit
(with internal control flow).

Figure 6 shows the popular existing strategies for su-
perblock extraction and compares them against Deepframe.
Superblocks [5], [19], [33] are a static approach which
elides backward branches as taken. The key limitation of
superblocks is their handling of branches that are not entirely
biased. For instance, in the example CFG, every third iteration
takes the superblock CE, the branch deviates from the
dominant CD superblock. Superblocks will not recognize this
and cannot predict which specific superblock will execute
in a given loop iteration. Superblocks make the decision of
including a basic block based on heuristics that reflect the
dynamic execution count of the block. Unfortunately, as the
superblock targets longer regions, the heuristics make locally
optimal decisions that increase the likelihood of side exits.
Typically backward branches are folded into the superblock;
however how to control the unrolling is not clear. Superblocks
use heuristics [9], [29]–[32] to limit their sizes and we find
that in our workloads, typical superblock sizes are 4—6 basic
blocks; see Figure 4. Superblocks limit optimization scope

because they allow side exits, and also increase side exit
events by making fixed assumptions on branch types.

Hyperblocks [14], [15], [34] were invented to handle the
limitations of superblocks and capture multiple superblocks
that a non-biased branch may follow. They effectively merge
all the superblocks that a loop may potentially execute. In
the example, both CD and CE are folded into the hyperblock.
Unfortunately, they introduce control flow (which limits the
optimization opportunities) and may include cold blocks since
they merge multiple superblocks. Overall, existing works have
primarily studied small inner loops with regular control flow.
Hyperblocks are capable of producing large regions as they
capture multiple code superblocks to avoid side exits. This
leads to a significant fraction of operators remaining idle
(see Figure 7). The hyperblocks in Figure 7 were formed by
fusing paths with common prefixes. In the accelerator context,
hyperblocks inhibit ILP by preserving control instructions,
and occupy space that is under-utilized during execution.

Deepframe fuses sequences of superblocks, or paths (which
are themselves composed of multiple basic blocks) based
on dynamic profile. This leads to frames 25× larger than
superblocks (see Section IV). Deepframe does not include
any wasted operations since frame execution is atomic (all
or none of the operations execute). The utility of any frame

so
pl

ex
ff

t-
2d

gz
ip

bz
ip

2
h2

64
re

f
bl

ac
ks

c
flu

id
an

fr
eq

m
in

dw
t5

3
st

re
am

c
ar

t
vp

r
po

vr
ay

bo
dy

tr
a

lb
m

eq
ua

ke
fe

rr
et

na
m

d
pa

rs
er

0.0

0.2

0.4

0.6

Id
le

 F
ra

ct
io

n

Figure 7: Fraction of idle basic blocks in hyperblocks.

depends on what fraction of a dynamic execution can be
captured by the the frame. A key factor impacting dynamic
coverage is the multiplicity of frames that originate from the
same branch head. For example, ABCDE and ABCE are two
frames that start at the same branch. Deepframe maintains
coverage by being selective about frame construction and
learning from dynamic profiles. Finally, paths and frames can
leverage the exact same set of transformations as superblocks
(e.g. loop unrolling), as well as achieve the best configuration
(e.g. unroll factor), in the absence of these transforms.
D. Learning-based Compilers

Static compilers have previously leveraged machine learn-
ing for predicting which basic blocks should constitute a
superblock [37], [38]. Prior works on static hot superblock
prediction show feasibility in detecting individual hot su-
perblocks using whole-program techniques [39] and other
heuristics [40]. Buse and Weimer [41] and more recently
Zekany et al. [38] apply machine learning algorithms to
learn statistical models with features extracted from the
program. Both these works rely on learning static features
to predict which basic blocks should constitute a single hot
superblock. There has been other work that has looked at
function-granularity traces [42]. Tetzlaff and Glesner [43]
also apply machine learning to the problem of predicting
loop iteration count. Our work focuses on the more general
notion of frames and sequences of paths.

Finally, while there has been prior work on learning branch
prediction [44], the goals and deployment of branch prediction
(Out-of-order processor) are entirely different. In contrast
our work relies on learning dynamic path patterns and also
constructs frames from a sequence of paths (not a single
superblock). For the learning phase, we eschew user-defined
features in favor of latent feature learning by observing path
associations.

III. Deepframe: Building Frames for
Accelerators

We motivate our proposal using the example in Figure 8. It
shows an example code (sieve of Eratosthenes) which is used
to calculate prime numbers in a given range. In this example,
the inner loop forms one path (P2), the code preceding this
loop forms a path (P1), and the code following P2 forms the

third path (P3).

A. Selecting Frames for Offloading
We define speculation as statically eliminating a conditional

branch based on a predicted outcome. Speculation increases
optimization opportunities. Larger straight-line code regions
(more speculation) have greater optimization potential. Paths
embody speculation by definition, and frames do so even
more. In Figure 8, we mine frames such as P2 P2. Given
the target accelerator size, the hottest frames that fit within
that size will be laid out.

Producing the execution history. The first step is to
instrument application paths using the BL-method [45]. We
have demarcated paths P1, P2, P3 in the sieve of Eratosthenes
snippet in Figure 8 using a LLVM BL-path pass. The next
step is to execute the application and collect the path history
in run-length encoded format.

Selecting frames. We use sequence mining parameterized
by frame length on the execution history, to discover the best
frames of a given length. Frames are ranked by weight , which
is the product of frame frequency and size (static instruction
count). Selecting frames requires balancing between frame
length and coverage. Longer frames have greater potential for
ILP and MLP, however they also account for a smaller fraction
of the execution (compared to their constituent paths). For
example, frame P1 may account for 50% execution, however
frame P1P1 accounts for only 25%, because P1 is also in
frames P1P2 and P1P3.

We make no assumptions about the paths composing
frames i.e. whether it is a homogeneous or mixed frame.
We hypothesize that the hottest frames appearing in one
typical execution of an application will also appear when
executing the same application with other inputs, but with
different relative weights.

B. Optimizing Selected Frames
This step has two objectives: 1) enabling heterogeneous

execution, and, 2) spatially laying out selected frames.
Heterogeneous execution requires a standard interface be-
tween the host and the accelerator. The host packages input
arguments and dynamically activates the predicted frame.
Upon completion, the accelerator returns control to the host
with return values and the next program address. Frames are
extracted into a separate function. This function explicitly
enumerates the input arguments, return values and memory
writes. This function does not have any side effects apart from
these three categories. Absence of side effects is necessary
in order to offload to an accelerator, and preserve the option
of full rollback. Global variable arguments are passed as
pointers to the global variable. All memory writes are routed
to a store buffer that is discarded in the event of a rollback.
Finally, the computation (which is control-free) is laid out
on the spatial grid. Guards are added to the layout to invoke
the rollback procedure in the case of a side exit. The last
step of Phase 2 in Figure 8 depicts a mapped frame.

primes[i] = true for all i.
for (var i = 2; i < 100; ++i) {
 // P1
 if (primes[i])
 {
 for (var k = 2 * i; i < 100; k += i)
 // P2
 primes[k] = true;
 }
 // P3
}

Sieve of Erathosenthes
(Calculate all primes to 100)

LLVM
BL-Path Pass

Run and Profile

P1
P2

P3

P2
...

...
P1
P3

inner
loop.

1 iteration
 outer
 loop NLP

Problem

P1
P2

P3

P2
...

...
P1
P3

Se
nt

en
ce

s

WORD

SPARK
Word2Vec
Training

Sentences

Paths

Input:

Output:

Phase 1: Deep Learning Training

Phase 2: Frame Construction and Optimization
LLVM Compiler

Original Program
Current
Path: P1

P2 [0.2,0.3,0.4,1]
P3 [0,0,0,0] Sentence

Context: P2P2

P1
P2
P2
...

Frame
Outline

Optimize

Feature vector

Params: Length

k

Figure 8: DeepFrame Overview. Phase 1: Profiling and modeling execution. Phase 2: Constructing and optimizing frames.

The layout essentially maps computation nodes in the
frame dataflow graph to functional units, and dataflow edges
to wires connecting the functional units. Dataflow graphs
may be re-factored based on the functional units available
in the target accelerator. Memory requests and responses are
also explicitly routed between the memory interface and the
spatial grid. While specific optimization techniques will vary,
the degree of ILP and MLP exposed by frames is a starting
point for all these techniques.
C. Building Next Frame Predictors

We define prediction as the dynamic selection of the next
frame to execute. Designing systems for code region construc-
tion and execution is expensive. It is typically an iterative,
hand-tuned process to determine standard heuristics. Code
region properties such as size, control flow handling, side
exits etc., and also platform properties such as hardware cache
size, branch buffer size etc. are inter-dependent, requiring an
iterative tuning process. There is no fixed template for the
process, which is expert-driven. Typically, these predictors
train on a certain application set and yield fixed values for
user-defined heuristics. In contrast, Deepframe trains for each
application individually using a standard training template,
and is not based on user-defined heuristics. As shown in
Figure 8, in the last step of Phase 1, Deepframe produces a
neural network trained with weights that correspond to the
application properties.

Our predictors train by only observing path sequences

in the execution history. The path execution history for a
given application and input is independent of platform and
environment parameters. These are defined as latent features
in machine learning. A consequence of latent feature selection
is that the predictors are application-specific. Although the
predictor itself is application-specific, its construction and
deployment is not. We designed standard procedures for
building and using these predictors.

Formulating Prediction as a Learning Problem. We
find some parallels to our case in neural networks for
natural language prediction. We formulate the path prediction
problem as a next word prediction problem for language
networks. We treat each path identifier as a word in a language.
The whole set of path identifiers for an application form
its vocabulary. Frames are word-grams in the language. In
Figure 8, P1 and P2 are words, while P1P1, P1P2, P2P1, and,
P2P2 are word grams. Our task is to discover the grammar
rules of the language by studying its grams, and using the
learned grammar to predict the next words dynamically.

We adapt the Continuous bag-of-words(CBOW) [22], [46]
model for our purposes. CBOW is a deep learning model
that has been used to predict words from context in many
languages. Typically, CBOW models use a fixed context size
(length of preceding word gram) and predict the word most
likely associated with this context. In our case, the context
constitutes the last few executed paths (not frames) while
the prediction is the next path identifier. It is a classification

problem, where the predicted class is the next path to be
executed. Multi-path frames are predicted by concatenating
consecutive path predictions.

Learning patterns. Training produces characterizes each
path using a floating-point weight vector. Training also
produces weight vectors that characterize the application,
and convolve with preceding path vectors to predict the next
path vectors. As shown in Figure 8, the last step in Phase 1
consumes the history and passes it through a deep learning
network. Its output of floating-point feature vectors is used
in Phase 2.

Each dimension of the vector is a latent feature of the
path, and the value of that dimension is the intensity of that
feature, although it is not generally known what each feature
signifies. Representing classes (each path identifier is a class
in our case) as floating point vectors (as opposed to one-hot
bit vectors) is a technique used when the number of classes
is high. It reduces the complexity of the data by storing it
in floating point vectors of low dimensionality (with some
information loss). We use the standard Spark Word2Vec [47],
[48] deep learning network (which has been used in CBOW
modeling) for training.

The parameters to the training phase are the context size
and the vector size. A larger context size allows capturing
longer patterns. A larger vector size allows characterizing
patterns in greater detail. These two configuration parameters,
which are borrowed from the CBOW model, are universal in
nature. We evaluate a reasonable search space of these two
values for each application (see Section IV). The training
phase also takes a sample size as input and samples the
execution history accordingly. The models are built on this
sample. Sampling is done to avoid overfitting models to the
data.
D. Predicting frames

When execution hits the starting address of any frame,
the predictor decides which frame (if any) starting from that
address will execute next. The predictor takes the context (a
window of recent paths) and the application model as input
and outputs a predicted path.

Prediction maps each path in the context to its floating
point vector and concatenates the vectors, convolves the
context vector with the weight vector (application model), and
produces the prediction vector. It maps back the prediction
vector to a path identifier, which is its prediction. If multi-
path frames are being predicted, the context window slides
to include the current prediction into the context, for each
subsequent path prediction. In Figure 8, the path P1 is
predicted from the context P2P2 in Phase 2. In this example,
the context size is two, and the prediction size (or frame
length) is one. Note that even though the predictor predicts
the constituent paths of a frame separately, these paths are
spatially fused.

Prediction occurs online. Therefore, path vectors are stored
on the host system. Since it is not feasible to store a large

number of vectors, we limit the number of paths that can
be cached by the system. A prediction is made only if the
vectors for all the paths in the context are cached by the
system. The prediction vector is mapped to the path with the
nearest cached vector. Note that we do not need to cache
or map to frames as a whole, regardless of frame length
configuration. Therefore, the space overheads of our method
remains constant with frame length. Space overheads only
depend on vector size and dictionary size, which is the
number of path vectors we cache.

The predicted vector is mapped to the nearest cached
vector. Vector proximity is quantified by the cosine similarity
between them. Cosine similarity is cheap to compute, essen-
tially being a dot product. It ranges from 0 (completely
dissimilar) to 1 (identical). The vector with the greatest
similarity is chosen using a comparator tree. The confidence
threshold is the minimum required cosine similarity between
the prediction vector and the nearest path vector, for a
prediction to be considered valid. In the example in Figure 8,
the prediction is P1 because the predicted vector is closest
to the feature vector for P1 (but may not be exactly the
same). When the prediction does not meet the similarity
requirement, it is ignored, and execution proceeds on the
original, unframed code.

IV. Evaluating Coverage of Deepframes
Result 1:Coverage for all benchmarks is significant, even

with increasing frame lengths, demonstrating the opportunity
for large instruction windows. Frames scale up offload granu-
larity by increasing the number of paths in the frame, thereby
affording more opportunity for finding ILP. Also, coverage
and size are reasonably balanced for all applications.

Result 2:We observed several benchmark groups, which
justifies our frame mining technique. Coverage reduces
minimally with frame length compared to superblocks in
8 benchmarks (e.g., streamcluster, lbm). In some benchmarks
(e.g., namd) frames achieve greater coverage than superblocks,
by including paths outside the top-5 hottest individual
superblocks. In some benchmarks (e.g., blackscholes, flu-
idanimate) coverage reduces with increasing frame length
and the optimal frame size has to be carefully chosen to
achieve speedup. Additionally, in a few benchmarks (e.g.,
fft) frames capture distinct paths in a loop (size increase is
proportional to number of paths). In a few benchmarks (e.g.,
povray, at frame length 6 paths) frames include cold paths
that have large basic blocks, leading to a disproportionate
increase in frame size.

We define coverage as the fraction of total dynamic
instructions executed by a frame (#frequency of frame × #
Static Instructions, normalized). We study whether Deepframe
can balance frame size and coverage. Figure 9 shows the total
coverage of the top 5 frames for varied frame lengths (2—10
paths). Superblocks are represented by frames of length 1
path. Figure 10 and Figure 11 depict static instruction count

so
pl

ex

ff
t-

2d

gz
ip

bz
ip

2

h2
64

re
f

bl
ac

ks
c

flu
id

an

fr
eq

m
in

dw
t5

3

st
re

am
c

ar
t

vp
r

po
vr

ay

bo
dy

tr
a

lb
m

eq
ua

ke

fe
rr

et

na
m

d

pa
rs

er

0.00

0.25

0.50

0.75

1.00

C
ov

er
ag

e

top5 others2 11—10paths

Figure 9: Normalized coverage for top 5 frames of lengths {1, 2, 4, 6, 8, 10}. Baseline: Superblocks (or, paths). The leftmost
bars correspond to the baseline.

so
pl

ex

ff
t-

2d

gz
ip

bz
ip

2

h2
64

re
f

bl
ac

ks
c

flu
id

an

fr
eq

m
in

dw
t5

3

st
re

am
c

ar
t

vp
r

po
vr

ay

bo
dy

tr
a

lb
m

eq
ua

ke

fe
rr

et

na
m

d

pa
rs

er

0
5

10
15
20
25
30

N
or

m
al

iz
ed

 S
ta

tic
 in

st
ru

ct
io

ns

2 path 4 path 6 path 8 path 10 path
200 460 690 145 690 160 629 130 230 420 210 190 1320 584 3750 1191 390 3010 373

1
2 3

Figure 10: Normalized static instruction count for the top 5 frames for various frame length (2—10 paths). Baseline:
Superblocks (or, paths). Numbers on top of bars are the absolute number of instructions for frame of length 10 paths. Bold:
memory intensive.

so
pl

ex

ff
t-

2d

gz
ip

bz
ip

2

h2
64

re
f

bl
ac

ks
c

flu
id

an

fr
eq

m
in

dw
t5

3

st
re

am
c

ar
t

vp
r

po
vr

ay

bo
dy

tr
a

lb
m

eq
ua

ke

fe
rr

et

na
m

d

pa
rs

er

0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

 to
ta

l f
re

qu
en

cy

2 path 4 path 6 path 8 path 10 path
2 1

Figure 11: Total frequency of the top 5 sequences for various frame length (2—10 paths). Baseline: Superblocks (or, paths).

and frequency respectively. To help understand coverage we
elaborate on the tradeoff between frame size and frequency.

Figure 9: 1 Few benchmarks (e.g., blackscholes, fluidan-
imate, vpr, and ferret) exhibit decreasing coverage with
increasing frame length. The reason is permutation between
paths to form longer frames. For example, in the case of
blackscholes, the top frame for lengths 1, 2, 4, are respectively
A, AA, AAAA, and these have identical coverage i.e. it is a
case of simple loop unrolling for these lengths. However, the
second ranked frames for these lengths i.e. B, BB, BBBB do
not have identical coverage (note A and B are distinct paths).

B and BB are identical in coverage, while BBBB is much lower
in coverage because its frequency is much lower. The reason
is that at sequence length of 4, paths that were not in the top
5 for shorter frames (1–4 paths), have to be considered by
the compiler in the case of longer frames (6—10 paths) due
to increasing diversity i.e. CDBB shows equivalent frequency
as BBBB, although CD has much lower frequency than BB.
Even so, these benchmarks maintain significant coverage at
higher frame lengths, and leverage instruction window sizes
of 160− 629 instructions. Figure 9: 2 In contrast, bzip2,
namd exhibit an increase in coverage with frame length. This

phenomenon occurs when path diversity is extremely high.
For example, the unrolled version of the top path for bzip2
does not form the top frame for larger sizes. Instead, longer
frames are composed of different paths and this enables an
increase in coverage i.e., a less hot path includes many static
operations resulting in overall increase in coverage. gzip,
dwt53, streamcluster, povray, lbm, namd exhibit almost 100%
coverage across all frame lengths. These benchmarks have
a few (or even a dominant) hot path and longer frames are
simply a result of reptitive execution.

When targeting longer frames, the compiler may need
to include paths that are individually cold. The increase
in offload granularity enables static ILP to be mined and
improve performance. However, the inclusion of cold paths
will result in reduction in coverage since the frame appears
less often in the execution. In a few benchmarks, the increase
at a certain frame length could be disproportionate to the
number of paths (e.g., povray at frame length 6) indicating
that the constructed frame is including a less hot path that
nevertheless has many static instructions. In blackscholes, the
hottest path is included from the math library and contains
400 instructions. Longer frames include paths that are only
a few static instructions (about 20) and do not significantly
impact the frame size.

V. Evaluating Speedup Achievable by
Offloading Frames to Spatial Accelerator

Result 1: Speedup scales up to 9x with increasing frame
length in all benchmarks except two (fluidanimate, ferret),
showing that increasing speculation is beneficial.

Result 2: Instruction parallelism increased up to 5.5×
and memory level parallelism increased up to 10.5×.

To understand the benefit of longer frames, we offloaded
the frames to the spatial accelerator described in Section II-A.
Table I shows the simulation parameters. We fix the frame
length and evaluate the overall speedup of offloading the top
5 hottest frames. We analyze the benefits of the compiler
varying the frame length from 2—10 paths. The baseline
system we compare against offloads frames of length 1 path
(effectively a superblock) and to ensure fairness we offload
the top 5 hottest superblocks. As shown in Figure 9, in 18
of the 20 benchmarks the top 5 superblocks achieve over
50% coverage of dynamic instructions. Any performance
improvement in Deepframe is a result of increasing the
offloading granularity to multiple paths which enables ILP and
MLP to mined across multi-path sequences. If the dynamic
coverage of the frame is low, it will limit the performance
improvement. We assume the spatial accelerators are capable
of offloading both integer and floating point operations.

Please note that as we have seen in Section IV, the paths
that constitute the five hottest frames are not identical across
the frames of different lengths. For instance, as we elaborate
in Section IV, in equake the constituent paths change
entirely and represent a different program region. To compare

frames doing equivalent amounts of work, we divide the
benchmarks into two groups: consonant and dissonant, and
present the result for these two groups separately. Consonant
benchmarks have similar path composition across frame
lengths i.e. shorter frames are subsequences of longer ones.
Dissonant benchmarks have varying path composition across
frame lengths, but some subsets of the frame lengths maybe
compatible among themselves. For dissonant benchmarks,
we only show the frames where the paths were similar.

A. Consonant Benchmarks
Overall, speedup scales linearly with frame length, showing

that it is worth mining ILP (Figure 14) and MLP (Figure 16)
from large code regions. Even at a frame length of 10, we
did not see flattening speedup for any application except
fluidanimate i.e., multi-path frames are always better than
single path superblocks. While the superblocks in some
benchmarks (e.g., art, soplex) achieve higher coverage (see
Figure 9), the improved ILP and MLP enable the offloaded
region to achieve speedup to improve the overall application.
In h264ref, Deepframe effectively mimics the effect of
loop unrolling and manages to retain the dynamic coverage
compared to superblocks with increasing frame length. In
such cases it suffers from minimal adverse effects due to
side exits and improves overall performance by up to 10×.
fluidanimate exhibits a flat speedup across frame lengths. It
also exhibits flat IPC. Fluidanimate is compute intensive and
is effectively cache bandwidth limited. While the number
of independent memory instructions increase, the average
memory access latency remains steady and this leads to
minimal improvement in performance.

B. Dissonant Benchmarks
vpr, povray, bodytrack did not produce any acceleratable

frames at higher frame lengths of 4—10 i.e., the constructed
frames had I/O or system calls and were not amenable
to speculation. However, for the frame length of 2, their
constituent paths were compatible. vpr, povray, bodytrack
show speedups of 1.09x, 1.42x, 1.68x respectively. lbm was
compatible up to a frame length of 6 paths. It exhibited
speedups of 1.61x, 2.39x, and 2.52x at frame lengths of
2, 4, and 6 respectively. Please note that hot frames of
length 6 and 4 represent entirely different regions of the
program and hence the absolute speedups are not comparable.
Similarly, equake was compatible up to a frame length of 8;
it achieved speedup up to 3.4×. ferret has been partitioned
into two benchmarks, ferret1 and ferret2. ferret1 corresponds
to frame lengths of 2 and 4, while ferret2 corresponds to the
other frame lengths. These two groups are compatible among
themselves and exhibit consistent characteristics. Similarly,
parser is partitioned into parser1 (for length 2), parser2 (for
lengths 4, 6, 8) and parser3 (for length 10). namd on the
other hand has been divided into namd1 for frame lengths of
2 and 4, and namd2, for the other frame lengths. ferret2 has
a situation similar to fluidanimate (explained in Section V-A)

so
pl

ex

ff
t-

2d

gz
ip

bz
ip

2

h2
64

re
f

bl
ac

ks
c

flu
id

an

fr
eq

m
in

dw
t5

3

st
re

am
c

ar
t0

2
4
6
8

N
or

m
al

iz
ed

 s
pe

ed
up

2 path 4 path 6 path 8 path 10 path
12 3

Figure 12: Speedup for consonant benchmarks. Baseline:
Superblocks.

vp
r

po
vr

ay

bo
dy

tr
a

lb
m

eq
ua

ke

fe
rr

et
1

fe
rr

et
2

na
m

d1

na
m

d2

pa
rs

er
1

pa
rs

er
2

pa
rs

er
3

0
2
4
6
8

N
or

m
al

iz
ed

 s
pe

ed
up

2 path 4 path 6 path 8 path 10 path

Figure 13: Speedup for dissonant benchmarks. Baseline:
Superblocks.

so
pl

ex

ff
t-

2d

gz
ip

bz
ip

2

h2
64

re
f

bl
ac

ks
c

flu
id

an

fr
eq

m
in

dw
t5

3

st
re

am
c

ar
t0

1
2
3
4
5
6

N
or

m
al

iz
ed

 I
PC

2 path 4 path 6 path 8 path 10 path

Figure 14: IPC for consonant benchmarks. Baseline:
Superblocks.

vp
r

po
vr

ay

bo
dy

tr
a

lb
m

eq
ua

ke

fe
rr

et
1

fe
rr

et
2

na
m

d1

na
m

d2

pa
rs

er
1

pa
rs

er
2

pa
rs

er
3

0

1

2

3

N
or

m
al

iz
ed

 I
PC

2 path 4 path 6 path 8 path 10 path

Figure 15: IPC for dissonant benchmarks. Baseline:
Superblocks.

so
pl

ex

ff
t-

2d

gz
ip

bz
ip

2

h2
64

re
f

bl
ac

ks
c

flu
id

an

fr
eq

m
in

dw
t5

3

st
re

am
c

ar
t0

2
4
6
8

10
12

N
or

m
al

iz
ed

 M
LP

2 path 4 path 6 path 8 path 10 path

Figure 16: MLP for consonant benchmarks. Baseline:
Superblocks.

vp
r

po
vr

ay

bo
dy

tr
a

lb
m

eq
ua

ke

fe
rr

et
1

fe
rr

et
2

na
m

d1

na
m

d2

pa
rs

er
1

pa
rs

er
2

pa
rs

er
3

0

2

4

N
or

m
al

iz
ed

 M
LP

2 path 4 path 6 path 8 path 10 path

Figure 17: MLP for dissonant benchmarks. Baseline:
Superblocks.

which leads to a flattened speedup. In this case, the primary
limitation is the shared cache bandwidth.

VI. Evaluating Prediction Accuracy
Result: For a dictionary of 20 paths, each represented by

a length 10 vector, at least 85% of the execution coverage
was accelerated for length 1 frames, and at least 50% of
the execution coverage was accelerated for length 2 frames.
Successful prediction rate remained steady at higher frame
lengths for almost all benchmarks. Failure mode (side exit)
execution was negligible. Most of the unaccelerated execution
was due to the inability to make a prediction owing to the
tiny path dictionary. Our coverage in prediction mode is
comparable to oracle mode (Section IV).

As shown in Section IV, frame diversity is intrinsically
high in some benchmarks, which increases with frame length.
Diversity typically makes prediction harder, lowers execution
coverage in accelerated mode. Here we study the question
whether prediction accuracy scales with frame length.

Figure 18 and Figure 19 depict the execution coverage

for various modes - success(accelerated), unoptimized(low-
confidence prediction), failure(rollback). Note that success
mode delivers optimization benefits while failure mode leads
to overheads. Unoptimized mode does not cause speedup or
overhead. Also, note that unoptimized mode does not include
all host execution. Unoptimized mode execution occurs when
there is enough context for the predictor to make a prediction,
but the prediction confidence is below the threshold level.
The host execution that is not covered by the unoptimized
mode is when the context did not match the path dictionary
of the predictor, and therefore did not activate the predictor.

We have only evaluated frame lengths of 1, 2, 4, 8 due
to time constraints. We used a context length of 3 paths,
vector size of 10, and a confidence threshold of 0.5. Our
path dictionary has 20 paths, therefore a prediction will be
made only if the last 3 execution paths were all found in the
dictionary. Application developers can sweep larger parameter
spaces to improve performance further. The overhead of a
dictionary of 20, 10–dimensional vectors is low for modern
processors.

so
pl

ex

ff
t-

2d

gz
ip

bz
ip

2

h2
64

re
f

bl
ac

ks
c

flu
id

an

fr
eq

m
in

dw
t5

3

st
re

am
c

ar
t

vp
r

po
vr

ay

bo
dy

tr
a

lb
m

eq
ua

ke

fe
rr

et

na
m

d

pa
rs

er

0.0

0.5

1.0

D
yn

am
ic

 in

st
ru

ct
io

n
success unoptimized fail

Figure 18: Fraction of dynamic instructions executed in various modes for the frames of length {1, 2, 4, 8} paths. Normalized
to frame length 1 path which represents superblocks.

bl
ac

ks
c

bo
dy

tr
a

fe
rr

et

flu
id

an

fr
eq

m
in

st
re

am
c

0.0

0.5

1.0

D
yn

am
ic

 in

st
ru

ct
io

n

success unoptimized fail

Figure 19: Fraction of dynamic instructions executed in
various modes for the frames of length {1, 2, 4, 8} paths. Nor-
malized to frame length 1 path which represents superblocks.
We trained on a 1% sample of the execution history for
simdev inputs, and validated using 100% of the history for
test inputs.

The first point we note is that we have high success
coverage for all the benchmarks, for most frame lengths.
All benchmarks executed more than 85% in success mode
for superblocks, and more than 50% for frames of length
2. Thus Deepframe had high success, even in cases of high
execution diversity.

The success coverage decreased at higher frame lengths
for benchmarks such as parser, blackscholes, bodytrack,
ferret, fluidanimate, freqmine. Even then, it is worth noting
that failure mode execution is negligible, and so also is
unoptimized mode. Therefore, the second biggest execution
mode is unframed host mode. For benchmarks, where the
host mode had a large share, it is worthwhile to experiment
with a larger path dictionary. The third largest execution
mode was the unoptimized mode. This mode can be reduced,
where applicable, by lowering the confidence threshold.

VII. Summary
In this paper, we developed an end-to-end compiler that

profiles and learns from execution histories to create frames of
multi-path sequences. Deepframe mitigates a long outstanding
problem of offloading coarse-granularity frames for control-
intensive applications and the opportunity to statically extract
ILP. We offload the constructed frames to a spatial hardware

accelerator and demonstrate up to 27× greater coverage,
and 10× speedup compared to prior approaches that offload
a single path trace-at-a-time. Our solution is completely
blackbox and does require the user or compiler developer to
hand-engineer features for frame construction.

References
[1] S. S. L. Sanjay J Patel, “rePLay: A Hardware Framework

for Dynamic Program Optimization,” IEEE Transactions on
Computers archive. Volume 50, 1999.

[2] T. Ball and J. R. Larus, “Branch prediction for free,” in PROC
of the 1993 PLDI, 1993.

[3] N. Clark, M. Kudlur, H. Park, S. Mahlke, and K. Flautner,
“Application-Specific Processing on a General-Purpose Core
via Transparent Instruction Set Customization,” in PROC of
the 37th MICRO, 2004.

[4] M. Arnold, S. Fink, V. Sarkar, and P. F. Sweeney, “A
comparative study of static and profile-based heuristics for
inlining,” in Proc. of the ACM SIGPLAN Workshop on Dynamic
and Adaptive Compilation and Optimization, 2000.

[5] W. mei W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang,
N. J. Warter, R. A. Bringmann, R. G. Ouellette, R. E. Hank,
T. Kiyohara, G. E. Haab, J. G. Holm, and D. M. Lavery,
“The superblock: An effective technique for vliw and super-
scalar compilation,” THE JOURNAL OF SUPERCOMPUTING,
vol. 7, pp. 229–248, 1993.

[6] P. G. Lowney, S. M. Freudenberger, T. J. Karzes, W. D.
Lichtenstein, R. P. Nix, J. S. O’Donnell, and J. Ruttenberg,
“The multiflow trace scheduling compiler,” The Journal of
Supercomputing, vol. 7, May 1993.

[7] E. Rotenberg, S. Bennett, and J. E. Smith, “Trace cache: a
low latency approach to high bandwidth instruction fetching,”
in PROC of the 29th MICRO, 1996.

[8] S. J. Patel, M. Evers, and Y. N. Patt, “Improving trace cache
effectiveness with branch promotion and trace packing,” in
PROC of the 25th ISCA, 1998.

[9] D. Bruening, T. Garnett, and S. Amarasinghe, “An infrastruc-
ture for adaptive dynamic optimization,” in Proc. of the CGO,
2003.

[10] D. S. McFarlin, C. Tucker, and C. Zilles, “Discerning the
dominant out-of-order performance advantage: is it speculation
or dynamism?,” in Proc. of the eighteenth ASPLOS, 2013.

[11] R. P. Colwell, R. P. Nix, J. J. O’Donnell, D. B. Papworth, and
P. K. Rodman, “A VLIW architecture for a trace scheduling
compiler,” in PROC of the 2nd ASPLOS, 1987.

[12] S. Gupta, S. Feng, A. Ansari, S. A. Mahlke, and D. I. August,
“Bundled execution of recurring traces for energy-efficient
general purpose processing,” in MICRO, 2011.

[13] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A.
Bringmann, “Effective compiler support for predicated execu-
tion using the hyperblock,” in ACM SIGMICRO Newsletter,
vol. 23, pp. 45–54, IEEE Computer Society Press, 1992.

[14] D. I. August, W.-m. W. Hwu, and S. A. Mahlke, “A framework
for balancing control flow and predication,” in PROC of the
30th MICRO, 1997.

[15] A. Smith, J. Gibson, B. A. Maher, N. Nethercote, B. Yoder,
D. Burger, K. S. McKinley, and J. H. Burrill, “Compiling for
EDGE Architectures.,” CGO, pp. 185–195, 2006.

[16] T. Nowatzki, V. Gangadhar, and K. Sankaralingam, “Exploring
the potential of heterogeneous von neumann/dataflow execution
models,” ISCA, 2015.

[17] A. Fuchs and D. Wentzlaff, “The accelerator wall: Limits of
chip specialization,” in 25th IEEE International Symposium
on High Performance Computer Architecture, 2019.

[18] V. Bala, E. Duesterwald, and S. Banerjia, “Dynamo: a
transparent dynamic optimization system,” in PROC of the
2000 PLDI, 2000.

[19] S. Gupta, S. Feng, A. Ansari, S. Mahlke, and D. August,
“Bundled execution of recurring traces for energy-efficient
general purpose processing,” in PROC of the 44th MICRO,
2011.

[20] J. Benson, R. Cofell, C. Frericks, C.-H. Ho, V. Govindaraju,
T. Nowatzki, and K. Sankaralingam, “Design, integration
and implementation of the DySER hardware accelerator
into OpenSPARC,” High Performance Computer Architecture
(HPCA), 2012 IEEE 18th International Symposium on, pp. 1–
12, 2012.

[21] C. Lattner and V. Adve, “Llvm: A compilation framework for
lifelong program analysis & transformation,” in Proceedings
of the international symposium on Code generation and
optimization: feedback-directed and runtime optimization,
p. 75, IEEE Computer Society, 2004.

[22] “Spark machine learning library,” https://github.com/apache/
spark/blob/master/mllib/src/main/scala/org/apache/spark/
mllib/feature/Word2Vec.scala.

[23] V. Govindaraju, C.-H. Ho, and K. Sankaralingam, “Dynam-
ically Specialized Datapaths for energy efficient computing,”
in PROC of the 17th HPCA, 2011.

[24] A. Sharifian, S. Kumar, A. Guha, and A. Shriraman, “Chainsaw:
Von-neumann accelerators to leverage fused instruction chains,”
in MICRO, 2016.

[25] H. Kim, J. Lee, N. B. Lakshminarayana, J. Sim, J. Lim,
and T. Pho, “Macsim: A cpu-gpu heterogeneous simulation
framework user guide,” Georgia Institute of Technology, 2012.

[26] V. Govindaraju, C.-H. Ho, and K. Sankaralingam, “Dynam-
ically specialized datapaths for energy efficient computing,”
in 2011 IEEE 17th International Symposium on High Perfor-
mance Computer Architecture, pp. 503–514, IEEE, 2011.

[27] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti,
et al., “The gem5 simulator,” ACM SIGARCH Computer
Architecture News, vol. 39, no. 2, pp. 1–7, 2011.

[28] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M.
Tullsen, and N. P. Jouppi, “McPAT: an integrated power, area,
and timing modeling framework for multicore and manycore
architectures,” in PROC of the 42nd MICRO, 2009.

[29] E. Duesterwald and V. Bala, “Software profiling for hot path
prediction: less is more,” in PROC of the 9th ASPLOS, 2000.

[30] J. Holewinski, R. Ramamurthi, M. Ravishankar, N. Fauzia,
L.-N. Pouchet, A. Rountev, and P. Sadayappan, “Dynamic
trace-based analysis of vectorization potential of applications.,”
in PLDI, pp. 371–382, ACM, 2012.

[31] A. Gal, B. Eich, M. Shaver, D. Anderson, D. Mandelin, M. R.
Haghighat, B. Kaplan, G. Hoare, B. Zbarsky, J. Orendorff,
et al., “Trace-based just-in-time type specialization for dynamic
languages,” in ACM Sigplan Notices, vol. 44, pp. 465–478,
ACM, 2009.

[32] R. Sol, C. Guillon, F. M. Q. Pereira, and M. A. Bigonha,
“Dynamic elimination of overflow tests in a trace compiler,” in
International Conference on Compiler Construction, pp. 2–21,
Springer, 2011.

[33] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and
R. A. Bringmann, “Effective compiler support for predicated
execution using the hyperblock,” in PROC of the 25th MICRO,
1992.

[34] D. I. August, D. A. Connors, S. A. Mahlke, J. W. Sias, K. M.
Crozier, B.-C. Cheng, P. R. Eaton, Q. B. Olaniran, and W.-
m. W. Hwu, “Integrated predicated and speculative execution
in the IMPACT EPIC architecture,” in PROC of the 25th ISCA,
1998.

[35] J. Fisher, “Trace scheduling: A technique for global microcode
compaction,” Computers, IEEE Transactions on, vol. C-30,
pp. 478–490, July 1981.

[36] T. M. Conte, K. N. Menezes, P. M. Mills, and B. A. Patel,
“Optimization of instruction fetch mechanisms for high issue
rates,” in PROC of the 22nd ISCA, 1995.

[37] B. Calder, D. Grunwald, M. Jones, D. Lindsay, J. Martin,
M. Mozer, and B. Zorn, “Evidence-based static branch
prediction using machine learning,” ACM Trans. Program.
Lang. Syst., 1997.

[38] S. Zekany, D. Rings, N. Harada, M. A. Laurenzano, L. Tang,
and J. Mars, “CrystalBall: Statically analyzing runtime behav-
ior via deep sequence learning.,” in Proc. of the 49th MICRO,
pp. 1–12, 2016.

https://github.com/apache/spark/blob/master/mllib/src/main/scala/org/apache/spark/mllib/feature/Word2Vec.scala
https://github.com/apache/spark/blob/master/mllib/src/main/scala/org/apache/spark/mllib/feature/Word2Vec.scala
https://github.com/apache/spark/blob/master/mllib/src/main/scala/org/apache/spark/mllib/feature/Word2Vec.scala

[39] J. R. Larus, “Whole program paths,” in PROC of the 1999
PLDI, 1999.

[40] C. Young and M. D. Smith, “Improving the accuracy of static
branch prediction using branch correlation,” in PROC of the
6th ASPLOS, 1994.

[41] R. P. L. Buse and W. Weimer, “The road not taken: Estimating
path execution frequency statically,” in Proc. of the 31st
International Conference on Software Engineering, 2009.

[42] M. A. Laurenzano, Y. Zhang, L. Tang, and J. Mars, “Protean
Code: Achieving Near-Free Online Code Transformations for
Warehouse Scale Computers.,” in Proc. of the 47th MICRO,
pp. 558–570, 2014.

[43] D. Tetzlaff and S. Glesner, “Static prediction of loop iteration
counts using machine learning to enable hot spot optimizations,”
in 2013 39th Euromicro Conference on Software Engineering
and Advanced Applications, 2013.

[44] D. A. Jiménez and C. Lin, “Neural methods for dynamic
branch prediction,” ACM Transactions on Computer Systems
(TOCS), vol. 20, no. 4, pp. 369–397, 2002.

[45] T. Ball and J. R. Larus, “Efficient Path Profiling,” in PROC
of the 1996 MICRO, 1996.

[46] S. Ruder http://ruder.io/secret-word2vec/.

[47] Y. Ko, “A study of term weighting schemes using class
information for text classification,” in Proceedings of the 35th
SIGIR, 2012.

[48] K. Weinberger, A. Dasgupta, J. Langford, A. Smola, and
J. Attenberg, “Feature hashing for large scale multitask
learning,” in Proceedings of the 26th Annual International
Conference on Machine Learning, 2009.

http://ruder.io/secret-word2vec/

	Introduction
	Scope and Related Work
	Target Spatial Accelerator and Execution Model
	Quantifying control flow in programs.
	Related Work
	Learning-based Compilers

	Deepframe: Building Frames for Accelerators
	Selecting Frames for Offloading
	Optimizing Selected Frames
	Building Next Frame Predictors
	Predicting frames

	Evaluating Coverage of Deepframes
	Evaluating Speedup Achievable by Offloading Frames to Spatial Accelerator
	Consonant Benchmarks
	Dissonant Benchmarks

	Evaluating Prediction Accuracy
	Summary
	References

