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Abstract
Creating high quality application-specific accelerators requires us

to make iterative changes to both algorithm behavior and microar-
chitecture, and this is a tedious and error-prone process. High-Level
Synthesis (HLS) tools [5, 10] generate RTL for application acceler-
ators from annotated software. Unfortunately, the generated RTL is
challenging to change and optimize. The primary limitation of HLS
is that the functionality and microarchitecture are conflated together
in a single language (such as C++). Making changes to the acceler-
ator design may require code restructuring, and microarchitecture
optimizations are tied with program correctness.

We propose a generalized intermediate representation for describ-
ing accelerator microarchitecture, µIR, and an associated pass frame-
work, µopt. µIR represents the accelerator as a concurrent structural
graph in which the components roughly correspond to microarchi-
tecture level hardware blocks (e.g., function units, network, memory
banks). There are two important benefits i) it decouples microar-
chitecture optimizations from algorithm/program optimizations. ii)
it decouples microarchitecture optimizations from the RTL gener-
ation. Computer architects express their ideas as a set of iterative
transformations of the µIR graph that successively refine the acceler-
ator architecture. The µIR graph is then translated to Chisel, while
maintaining the execution model and cycle-level performance charac-
teristics. In this paper, we study three broad classes of optimizations:
Timing (e.g., Pipeline re-timing), Spatial (e.g., Compute tiling), and
Higher-order Ops (e.g., Tensor function units) that deliver between
1.5 — 8× improvement in performance; overall 5—20× speedup
compared to an ARM A9 1Ghz. We evaluate the quality of the auto-
generated accelerators on an Arria 10 FPGA and under ASIC UMC
28nm technology.

1 Introduction
Current High-Level Synthesis (HLS) tools [5, 8, 10, 15, 43] trans-

late a program, typically specified in C-like language, to synthesizable
RTL. The RTL is verbose, is hard to modify and optimize, and sup-
ports a limited execution model (timing-linked operation schedule).
Hence, many HLS tools [37] lift hardware description to the input
C program and rely on ad-hoc compiler optimizations as proxies for
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microarchitecture optimization e.g., loop unrolling to create paral-
lel function units [14, 18]. HLS tools expect designers to sprinkle
ad-hoc annotations in the C program to side-step limitations in the
compiler and ensure the quality of the final RTL output e.g., Xilinx’s
stream<T> in a C++ program translate to FIFO queues in RTL.
Like HLS, Hardware construction languages (HCLs) are also moti-
vated to raise the design abstraction [7, 35]. HCLs require the designer
to specify a structural hardware description (as opposed to C-level
behavior specification). While this enables the designer to precisely
explore the hardware tradeoffs, it leaves unanswered the question
of how to derive a good quality hardware description from software.
Domain-specific HLS tools have sought to provide a software-feel
to hardware construction by introducing higher order hardware con-
trollers (e.g., for loops) [8, 22, 28, 31]. Unfortunately, they restrict the
control and data patterns, and only target fixed hardware templates.

Our insight is that perhaps the limiting factor in prior work is
their use of a single representation to capture both the behavior of
the accelerator (i.e., the operational specification) and its microar-
chitecture (i.e., the structural specification). HLS toolchains require
both to be specified in C variants, while HCLs require both to be
specified in a hardware-oriented language. This conflating of microar-
chitecture and behavior limits the scope of accelerator to loop-based
program behaviors [26, 55]. The hardware description generated by
prior toolchains also tend to correspond to low-level RTL that only per-
mit a limited set of transformations. We propose an alternative —-
decouple the representation used for accelerator microarchitec-
ture and hardware optimizations from the functional behavior
specification. We develop µIR, a new intermediate representation for
the back-end representation of the accelerator microarchitecture. We
are motivated by software compilers that have long recognized the
importance of an intermediate-layer for enabling optimizations prior
to binary creation [51].

µIR is a structural graph that explicitly specifies the accelera-
tor’s microarchitecture components and orchestrates data movement
between the different components. The higher-level representation
(compared to RTL) makes it easier for both localized and global trans-
formations to optimize the accelerator microarchitecture. Figure 1
provides the end-to-end view of our multi-stage framework that gen-
erates the RTL for a high-performance accelerator from a program.
The multi-stage approach encourages a clear demarcation of behavior
optimizations (e.g., loop unrolling), microarchitecture optimizations
(e.g., memory banking), and RTL optimizations (e.g., FPGA-specific
SRAMs).

These are the primary novelties of µIR, i) Optimizability: µIR
represents hardware at a higher microarchitecture level of abstrac-
tion. In comparison to hardware languages (such as FIRRTL [24]
and Verilog), µIR enables computer architects to concisely express
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2. Spatial                   
(e.g., Tiling)          

3. Intrinsic                  
(e.g., Tensor FU)

4. Parameters       
(e.g., Network)
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General-Purpose SIMT Programming Model

�T0

__global__ void vsadd_kernel( int y[], int a ) {
int idx = blockIdx.x * blockDim.x + threadIdx.x;
y[idx] = y[idx] + a;

}
...
void vsadd( int y[], int a, int n ) {

// move data from CPU to GPU
vsadd_kernel <<<32,n/32>>>( y, a );
// move data from GPU to CPU

}
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Figure 1: Overview of µIR toolchain: Stage 1: We translate C++, Cilk [34, 49], Tensorflow [38] programs to µIR graph of the
accelerator. Stage 2: µopt applies transformations and optimizations on the µIR graph. Stage 3: We lower the µIR graph to Chisel
RTL relying on an internal library of microarchitecture components, for subsequent mapping either to an FPGA or ASIC. Plot:
Improvement in performance of application accelerators through µoptimization passes (see § 6 for details).

their optimizations. ii) Tranformability: µIR decouples the microar-
chitectural description from its behavior. Unlike HLS, this enables the
microarchitecture to be changed iteratively without affecting behav-
ioral correctness. µIR also more precisely describes the hardware and
continues to preserve the expected cycle-level performance tradeoffs
when translated to RTL (unlike HLS). iii) Synthesizability: µIR’s
abstractions have been purposefully designed targeting heterogeneous
parallel dataflow architectures. This enables the baseline µIR graph
to be derived from software, unlike hardware construction languages
such as Chisel [4, Section 1.1]. iv) Composability: All the edges
in an µIR graph are governed by latency-agnostic interfaces. µIR
exploits this property to ensure correctness when composing opti-
mization passes. Prior work has exploited this property to modularize
CPUs [57].

µopt is a toolchain that realizes architecture ideas as iterative trans-
formations of the accelerator microarchitecture graph. We demon-
strate that µopt is capable of applying three broad classes of optimiza-
tions: i)Timing, statically assigns operations to hardware units and
changes pipelining, ii) Spatial, which replicates nodes representing
hardware structures in the graph to improve throughput and reduce
contention, iii) Higher-Order Ops enable a designer to introduce oper-
ators on composite data types such as Tensors (and vectors) to increase
computational intensity. § 6 discusses the optimizations. During these
transformations µopt tunes the parameters of µIR components to
optimize the generated RTL (e.g., operator bit-width, channel width).

The plot in Figure 1 summarizes the benefit of four optimization
passes. These microarchitectural changes can result in 1.5 — 8×
improvement in performance. (see § 6.1—§ 6.4 for details). We syn-
thesized all our accelerators on Arria 10 SoC board and also push
them through a ASIC 28nm umc. Our contributions:

• We have created µIR, an intermediate representation for op-
timizing and generating accelerator microarchitecture. µIR
is sufficiently generalized to automatically derive a baseline
accelerator from unmodified software (currently tested using
C++, Cilk and Tensorflow).

• We created an optimization framework, µopt, that decouples
microarchitecture optimizations from the lower RTL. µopt
helps designers realize optimizations as an iterative pass of
the µIR, without having to modify RTL. µopt optimization

passes can be automatically applied to different accelerators,
and multiple passes can be stacked for a specific accelerator.

• We implemented three important classes of optimizations, Tim-
ing, Spatial, and Higher-Order Ops on five different compo-
nents (compute units, concurrency control, memory network,
scratchpads, caches). The optimizations result in between 1.4 —
8× improvement in performance over the baseline accelerator.

2 A Case for a Microarchitecture IR
2.1 Limitations of current HLS compilers

Current HLS compilers [10, 14] plug into software compilers and
translate C to RTL (similar to generating a binary). Hence, they rely on
software compiler’s intermediate representation (IR) for representing
a model of the hardware and rely on compiler transformations to
optimize the microarchitecture.1 Consider canonical loop unrolling,
which HLS tools simply interpret as parallel hardware instances of
instructions. Unfortunately, HLS compiler’s IRs suffer from two broad
limitations that make them ill suited for studying microarchitecture
tradeoffs: 1) Transformations are performed using the control-driven
Von-Neumann execution model and this limits the types of hardware
designs that they can target and C behaviors they can support. For
instance, HLS tools primarily focus on lowering loops to statically
scheduled circuits [10]. 2) HLS IR represents execution behavior and
not the structural components of a microarchitecture. This makes
it challenging to understand how a transformation of the IR graph
changes the RTL output, and quantify the performance and power
tradeoffs (particularly in the presence of multiple transformations).

HLS compilers are aware of the challenges with creating microar-
chitectural transformations with a software compiler’s IR. Hence,
they encourage users to lift the microarchitectural descriptions to
the C behavior description. However, this closely ties in behavioral
correctness with microarchitecture structural description, both of
which require different mental models. Further, note in many cases
changes to microarchitecture are inter-dependent, and current HLS
tools require the C source program to be modified iteratively for each
accelerator (a labor-intensive task).

1HLS compilers do use an RTL-based hardware representation in the backend, but this
primarily targets circuit transformations (e.g., vendor-specific BRAM), not microarchi-
tectural transformations.
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Figure 2: Overview of different microarchitectures that imple-
ment a 1D Convolution [2]

We highlight the limitations in HLS by considering microarchitecture-
level transformations that a designer may seek to implement. Figure 2
expresses the behavior of a simple 1D convolution in C. The baseline
microarchitecture that HLS creates is also shown. HLS lowers int
inputs[],outputs[],weight[] arrays into local buffers and
streams data from the DRAM;the loop body is offloaded to a single
processing element on which iterations are time multiplexed.

• Opt. 1 - Localities: A common optimization in accelerators is
to introduce multiple layers of buffering, with sharing (or not)
between the compute units. In HLS, data movement between
buffers is specified using copy operations in the C behavioral
description. Unfortunately, this does not permit the designer to
study how the data moves between the buffers and when the
data actually moves. Further, these logical hardware buffers
can choose different hardware implementations e.g., FIFOs vs
Line-buffers vs Scratchpad. To specify these in HLS the de-
signer has to make changes (potentially correctness affecting)
to the input C program. In contrast, µIR is a structural-graph
that permits the designer to explicitly introduce buffers and the
communication logic that implicitly move data between these
buffers.

• Opt. 2 - Higher-level Concurrency: Designers may seek to
capture concurrency synergistically at multiple levels in the
microarchitecture. In this example, we could implement the
parallelism of the inner loop in a vector fashion, and then
replicate each vector block in a fractal fashion to capture outer
loop parallelism. HLS compilers IR are sequential and lack
the abstractions to represent hierarchical parallelism in the
microarchitecture. µIR is a concurrent specification and will
allow the designer to sweep different tiling factors for each

nested level in conjunction with changes to organization of the
local RAM buffers.

• Opt. 3 - Dataflow Pipelining: HLS compilers do not expose
concepts such as operation pipelining, as they primarily target
statically scheduled (i.e., fixed latency) circuits. HLS com-
pilers’ IR also assume a machine model with unbounded re-
sources and hence scheduling and mapping has to be achieved
at the RTL level. This does not allow computer architects to
budget resources (cycles, power, or area) of the microarchitec-
ture’s dataflow. µIR permits a more detailed expression of the
microarchitecture and permits designer to: a) explore higher
performance dynamically-scheduled pipelines to hide memory
latency, and b) schedule operations to manage contention on
the datapath’s computational and memory resources.

• Opt. 4 - Higher-Order Ops Finally, current HLS compilers
are rigid in their definition of operations and data types, typ-
ically RISC-style 3-operand (as they derived software com-
piler’s IR). However, hardware accelerators are capable of
supporting a richer variety of operators on complex shapes
such as tensors. This necessitates an IR that permits the intro-
duction of custom operators with transformations. 2

As shown in Figure 2 when translating a behavior specification to
hardware multiple microarchitecture designs that could be generated.
µIR is essentially a software data structure that canonicalizes the
description of microarchitectures and describes an execution model
that is better matched for hardware (than HLS compiler IR). This
permits a richer set of microarchitecture optimizations and promotes
a quantitative clearer understanding of the performance implications.
Finally, µIR automates the labor-intensive task of optimizing the
microarchitecture description of each accelerator.
2.2 Related works

Table 1 summarizes comparison between µIR and other IRs that
are used to build hardware accelerators.

There has been a number of works that have recognized the mis-
match between compiler IRs and hardware execution. Pegasus [9],
VSFG [56], and AHIR [48] all have created dataflow-based IRs [54]
that unify the control, data, and memory dependency edges. Their
primary target is to transform branches in compiler IR to predicates.
This enables higher instruction-level-parallelism. The whole accelera-
tor is described as a monolithic dataflow and the nodes in the graph
roughly correspond to instructions in the compiler IR. Overall, such
IRs are primarily suitable for dataflow pipelining.

There has been a spate of work in domain-specific languages
(DSLs) for leveraging concurrency patterns [15, 20, 47, 52]. A com-
mon trait in these DSLs is that they embed information on parallel
patterns within the compiler IR. The parallel patterns could either
be data-parallel (OpenCL’s SPIR-V), heterogeneous parallel (e.g.,
HPVM [30], TAPIR [49]), or domain-specific (e.g., Halide-HLS [42],
MLIR [3]). While all IRs are focused on optimized code genera-
tion, only some of DSL IRs have an execution model that resembles
hardware (e.g., Halide HLS, SPIR-V, Gorilla [32]) and can be fed
to an HLS toolchain. However, many of these IRs target a known
fixed microarchitecture [12, 31], and closely tie in algorithm and
microarchitecture structure (e.g., line buffers [22, 42, 44, 46]). The

2HLS tools do introduce vendor-specific IPs, but these IPs are implemented as co-
processors.



MICRO-52, October 12–16, 2019, Columbus, OH, USA Sharifian et al.

Table 1: Comparing the Intermediate-Representations

C/C++ 

App
RTL

LLVM IR

C/
C++ 

Cilk 
(for-all)

Concurrent LLVM IR 

Tensor
flow

Compiler opt

µ-IR
<latexit sha1_base64="httsf29runep4BUwVduTx+xd29U=">AAACDXicbVC7TsMwFHV4lvIKMDCwWLRIDFAlZWAtIARIDKWiD6mpKsdxWquOE9lOpSrKN/ARrDCyIVa+gYlfwW0zQMuRLB2dc6+uz3EjRqWyrC9jYXFpeWU1t5Zf39jc2jZ3dhsyjAUmdRyyULRcJAmjnNQVVYy0IkFQ4DLSdAdXY785JELSkD+qUUQ6Aepx6lOMlJa65n7iuD5MnPuL2s01LDpBXExP72pp1yxYJWsCOE/sjBRAhmrX/Ha8EMcB4QozJGXbtiLVSZBQFDOS5p1YkgjhAeqRtqYcBUSeeEMayQntJJMsKTzSpgf9UOjHFZyov5cTFEg5Clw9GSDVl7PeWPzPazOdmNudhPIoVoTj6Sk/ZlCFcFwN9KggWLGRJggLqj8OcR8JhJUuMK8bsWfzz5NGuWSflcoP5ULlMusmBw7AITgGNjgHFXALqqAOMEjBM3gBr8aT8Wa8Gx/T0QUj29kDf2B8/gD3hZpy</latexit>

Our Approach
Commercial

Tools
Dataflow

IR

App
RTL

Dataflow IR

Domain Specific 

OpenCL
Halide-HLS

DSL IR

LLVM IRPipeline opt

Template
RTL

Streaming opt

High-Level-Synthesis Hardware Construction

Chisel

App
RTL

Microarch Opt (µ-OPT)
<latexit sha1_base64="y0u4flxQiCeNfMCklr4wayiknzg="></latexit>

DELITE
SPATIAL

Domain Specific 

Pattern IR

Templated
RTL

Locality opt

FIRRTL

App
RTL

RTL IR 

Chisel

Circuit Opt

Hardware-
oriented IRs

High-Level Synthesis (HLS) Hardware construction lang (HCL) HLS + HCL
HLS Toolchains Domain-specific IR Modular RTL Pattern-based HCL µ IR and µopt
Legup [10], Vivado [5, 14],
Catapault-C [1], AHIR [48],
Pegasus [9]

OpenCL SPIR [27], Halide-
HLS [42], Gorilla++ [32]

FIRRTL [24] SPATIAL [28, 52], Pat-
tern [17]

D
es

ig
n Input C program Domain lang. Chisel Domain Lang. C++/Cilk/Tensorflow

Output Flat dataflow Pipeline of kernels Flat dataflow Pattern-based dataflow Hierarchical dataflow
IR Nodes Compiler ops (e.g., add) Kernels, Streams Logic e.g., Mux,Adder Concurrency patterns,

Memory
Polymorphic ops, Dataflow
node, Memory.

Ta
rg

et
O

pt
. Higher Parall. — ✓Kernels e.g., stencil — ✓Patterns e.g., for-all ✓General

Op Pipelining ✓ — ✓ — ✓
Locality — ✓(streams) — ✓(streams) ✓(partitioned. shared)
Resource — — — — ✓(µarch level)
Higher Ops — — — — ✓(Tensor ops)

primary benefit of these IRs is the ability to assure the domain-specific
program is transformed to a structure well-suited to HLS toolchains.

FIRRTL and other hardware IRs:Recently, there has been work
on raising the abstraction of hardware description [7, 35, 53]. The
most popular is Chisel, which internally uses an IR, FIRRTL [24].
FIRRTL is closer in spirit to Verilog and many of the known passes
only support localized circuit transformations (e.g., common-sub-
expression elimination, backend specific RAMs). FIRRTL would
present the following challenges if used as a microarchitectural IR
— i) it would be challenging and verbose to write transformations
that makes changes to overall microarchitecture graph (see Section 7
for details). ii) FIRRTL is not intended to be a backend for HLS and
would restrict the types of software behaviors that can be lowered to
hardware (e.g. nested loops are unrolled, no nested parallelism). There
has been some work on introducing higher-level concurrent patterns
in the hardware descriptions [28, 29, 36, 40, 41] and optimizing
those patterns prior to lowering to RTL. These, however, tend to be
pattern specific and target the organization at a fixed microarchitecture
template such as grid-based spatial architectures.

µIR Summary:µIR’s abstractions have been designed with a view
to two requirements i) µIR must support high-level synthesis i.e., the

input to our toolchain is a microarchitecture behavior described in
software. The main reason being we would like to leverage software
transformations such as loop unrolling to expose more opportunity
for hardware transformations. ii) µIR’s execution model must re-
semble hardware and include a structural specification that permits
hardware transformations, like hardware construction languages. This
will ensure the performance characteristics of the transformations we
implement on µIR will be retained when lowered to the final RTL.
µIR creates a specific set of abstraction that target the construction
of generalized heterogeneous-parallel dataflow architectures. Unlike
Chisel [4, page 5], it is precise enough to be the backend target of an
HLS system. Unlike FIRRTL[24], µIR helps designers express their
optimizations in a concise manner. Unlike HLS, it helps designers
realize a broad set of microarchitecture-level transformations.

3 Microarchitectural Intermediate-Representation
(µIR)

Figure 3 provides an overview of the toolflow. The input to the
flow is an unmodified software programs specifying behavior. We use
the LLVM compiler framework’s language bindings for Tapir [49],
Cilk/OpenMP programs and Tensorflow [33] for helping translate
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Cilk Program

1 // 32bit scalar operations
2 uint32_t left[N/2],right[N/2],result[N/2];
3 // 2D Tensor 4x4 operations.
4 Tensor2D left2D[N/2],right2D[N/2],result2D[N/2];
5 ..........
6 parallel_for (int i = 0; i < N ; i++) {
7 if (i%2 == 0) // Uint32 multiply
8 spawn
9 {result[i/2] = left[i/2]*right[i/2];}
10 else // 2D Tensor multiply
11 spawn
12 {result2D[i/2] = left2D[i/2]*right2D[i/2];}
13 }
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Modular RTL generated from µIR graph
1 class Accelerator(val p: Parameters) extends architecture {
2 ....
3 /*------------ Task Blocks -------------*/
4 val task_for = new Main()
5 val task_scalar = new Sum()
6 val task_tensor = new Tensor2D()
7 /*------------ Structures -------------*/
8 val hw_mem_scalar = new Scratchpad()
9 val hw_mem_tensor = new Scratchpad()
10
11 task_scalar.io.task <||> task_for.io.task(0)
12 task_tensor.io.task <||> task_for.io.task(1)
13
14 hw_mem_scalar.io.Mem <==> task_scalar.io.Mem
15 hw_mem_tensor.io.Mem <==> task_tensor.io.Mem
16
17 io.Mem.port(0) <==> hw_mem_scalar.io.AXI
18 io.Mem.port(1) <==> hw_mem_tensor.io.AXI
19 }

Schematic: Blue: Task blocks, Yellow: Hardware structures, Red: Ports. <||> : task

Spawn/Sync interface <==> : Req.-Resp. interface with hardware structures.

Figure 4: Cilk Example auto-translated to µIR specification (please view in color for syntax highlights)

input programs into LLVM compiler IR. Our tool automatically trans-
lates the program specification to a µIR hierarchical graph using the
compiler IR as an intermediary step. We iterate over the µIR graph
in a hierarchical fashion and lower the µIR graph into synthesizable
Chisel. Lowering implies as we iterate over the graph, we create the
Chisel code instantiating the code and connecting it to other compo-
nents. This stage relies on a µIR library of components. µIR itself
is simply implemented as a data structure and we provide a µopt, a
C++ framework, to manipulate and transform the microarchitecture
graph prior to the Chisel generation. This will expert designers to cre-
ate graph hardware optimization passes for which "end-users" could
choose some ordering and parameters for existing transformations.

We first describe the overall design of µIR (§ 3.1). Then we explain
the components used to describe a whole accelerator circuit (§ 3.2)
followed by the components used to describe the dataflow within each
block (§ 3.3). We provide an overview of memory and control in § 3.4
and § 3.5. In § 3.6 we provide pseudo-code to illustrate converting
behavior-oriented compiler IR graph to a structural µIR graph.
3.1 µIR Design Overview

The µIR graph represents the accelerator architecture as a latency-
agnostic structural graph. Components in a µIR graph execute in
parallel and communicate via sequence of atomic tokens passed over
unbounded edges. This representation is particularly suited for spec-
ifying microarchitecture, because of its “patience“ i.e., timing and
latency of individual components has no impact on the functional
correctness of the accelerator architecture. The main benefits of µIR
is i) designers are free to transform the µIR graph, prior to RTL gen-
eration, and this permits many microarchitectural design options to be
explored. ii) components can be locally refined during performance

tuning without requiring global schedule changes e.g., change the
number of execution units to improve throughput, iii) it promotes
modular, re-usable hardware components for an accelerator.

The components in the µIR graph are organized in a hierarchy. Our
motivation is similar to compilers, which organize their IR in a hier-
archy: modules →functions→basic-blocks→instructions. Compilers
rely on this hierarchy to demarcate the scope of optimizations e.g.,
local constant propagation targets functions, while global constant
propagation targets whole program. Similarly, we separate concur-
rency and locality optimizations operating on the whole-accelerator
circuit from local function unit optimizations. µIR uses a hierarchy
of components to separate the data structures, iterators, and API used
to implement these transformations.
3.2 Whole-Accelerator Circuit in µIR: Task blocks,

Structures, and Connections
In this subsection, we use a Cilk [34] parallel program to illustrate

the different whole-accelerator components in µIR. Figure 4 provides
the code listing. A parallel loop; in the odd iterations, the loop spawns
a task for performing 2D tensor (2×2 tile) multiplications and in the
even iterations it performs an integer multiplication. The spawns in
Cilk create a concurrent task while the parallel loop continues onto
subsequent iterations. Figure 4 also includes the structural description
of the accelerator microarchitecture as an µIR graph, generated from
the Cilk program. The Chisel RTL is auto-generated from the µIR
graph. Computer architects do not deal with the RTL; we have shown
it here to illustrate how a microarchitecture graph looks when it is
lowered to Chisel.

The whole-accelerator circuit is represented as a structural, concur-
rent graph of task blocks, connections and structures. Tasks represent
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an asynchronous (may run and complete concurrently) execution
block. In the example, there are three task blocks, the root for-loop
task, and two children, a scalar task and a tensor task. (see Figure 4-
Line:5--8 in the structural specification). A task block is analogous
to a closure (not unlike a function call) in software which takes ar-
guments and produces a set of values after running to completion.
Representing the accelerator as a pipeline of asynchronous task blocks
has two benefits i) it helps avoids centralized control stores and stall
signals in the hardware ii) we can implement arbitrary heterogeneous
parallel patterns (including nested loops and recursion). Tasks are
inspired by seminal work on threaded dataflow machines [16].

In the RTL specification in Figure 4 Line 13—16 specify the task
connections (<||>). Inter-task connections (<||>) establish a logical
parent-child relationships between tasks. Finally, Line 9—11 declare
the scratchpad hardware structures. In µIR, hardware structures
are used to encapsulate elements that have no representation in the
software e.g., local FIFO or RAM. In the example, two structures in
the µIR encapsulate corresponding local memory spaces for holding
the data to be streamed into and out of the task blocks. Lines 20—
23 specify connections (<==>) between tasks and the scratchpad.
The task blocks interface with scratchpads through a non-blocking
request-response interface.

Execution and Memory Model: The execution flows need to be con-
sidered at two levels, whole-accelerator level, and the local dataflow
within each task. Figure 5 provides an exploded view. µIR represents
the whole accelerator as a graph of concurrently running dynamic task
blocks. In this example, only the child tasks (task_scalar and
task_tensor) perform actual work, and the parent task_for is
used only for creation and coordination of the workers. task_for
creates N/2 instances of task_scalar and N/2 instances of the
task_tensor. µIR models each task block as having a local task
queue that stores ready and pending tasks. The task block is free to
process the ready tasks in any order. In the overall execution, parents
spawn children to run concurrently and children terminate and re-
turn values to parents at sync. Tasks communicate either through
memory or through registers in the connection. The memory model is
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Figure 5: Execution Model of µIR at all levels. We have exploded
each component to show the internal execution flow.

a partitioned global address space. A hardware designer could intro-
duce any number of memory spaces in the µIR graph to interface with
the task blocks. These address-spaces are incoherent with each other,
but coherent with DRAM and the CPU through AXI. µIR includes
two abstractions for representing local address spaces, scratchpads
and caches. Caches are implicitly managed by a hardware controller,
while scratchpads are managed with DMA.

The execution within each task block is modeled as a pipelined
latency-agnostic dataflow. Individual nodes in the dataflow handshake
with each other through a ready/valid flow-control protocol. The flow-
control can apply back pressure to handle stalls (like control signals
in a microprocessor pipeline) and permits arbitrary insertion and
removal of buffering between nodes. Every node in the dataflow oper-
ation is considered to occur completely asychronously. The pipelined
dataflow enables multiple concurrent invocations to be outstanding at
the same time on dataflow and improves throughput. Unlike a tagged
dataflow architecture [6], concurrent invocations complete in-order
of invocation. This leads to a simpler RTL implementation.
3.3 A Task’s Dataflow, Nodes, and Connections

Figure 6 lists the structural specification of the Tensor2D block’s
dataflow. Line 4—8 declare the different nodes within the dataflow
and line 10–12 specify the dependency connections. The abstraction
of a node in the µIR intuitively represents a function unit allocated
to implement the required operation. Currently, our hardware library
supports all operations specified by the LLVM IR, including FP and
vector.

Nodes are flexible. They can either represent i) a single-cycle
combinatorial logic (e.g., fixed-point add), ii) a multi-cycle latency
node, where the node itself is potentially internally pipelined (e.g„ an
FP add), iii) or a non-deterministic multi-cycle operation, in which
the node only serves as a transit point to route values into the dataflow
from an external unit shared amongst multiple nodes (e.g., the ld
ops in Figure 6). This final representation is useful for composing
hardware blocks, and implementing software patterns as function calls
and nested loops. Connections represent “polymorphic” 1-1 dataflow
between a producer and consumer nodes. Polymorphism implies that
the designer only has to specify the data types of individual nodes, and
during RTL generation, µIR implicitly infers and sets up the physical
wire widths and flit sizes for the ports. This enables computer architect
to perform generic dataflow pipeline transformations without having
to consider each type.

1 class Tensor2D extends TaskModule(Tensor2D) {
2 ...
3 /*------- Dataflow specification -------*/
4 val load_0 = new Load(Tensor2D)
5 val load_1 = new Load(Tensor2D)
6 val op_0 = new ComputeNode(opCode = "mul")
7 (Tensor2D)
8 val store_0 = new Store(Tensor2D)
9 ....
10 op_0.io.LeftIO <> load_0.io.Out(0)
11 op_0.io.RightIO <> load_1.io.Out(1)
12 store_0.io.data <> op_0.io.Out(0)
13
14 /*------------ Junctions --------------*/
15 val mem_junc = new Junction(R=2,W=1) (Tensor2D)
16 mem_junc.io.Read(0) <==> load_0.io.Mem
17 mem_junc.io.Read(1) <==> load_1.io.Mem
18 mem_junc.io.Write(0) <==> store_0.io.Mem
19 ...
20 }Figure 6: Autogenerated RTL description for Tensor2D task

block. Corresponds to line 12:Cilk program in Figure 4

3.4 Memory: Load/Store Operations
Figure 7 illustrates the flow of a memory operation. In µIR, the

loads and stores only serve as transit points for passing data between
the memories and other computation nodes in the dataflow. “Poly-
morphism” is the central idea behind memory nodes in µIR. Memory
operations nodes can support scalar, vector or tensor loads and stores.
The design is based on this observation: although the shape and word
layout are different, the fundamental hardware resources, such as
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on-chip data storage and interconnect, are very similar. Hence, we
centralize all of this logic in the databox component and during RTL
generation lower to different implementations.

The databox 1) converts the type (e.g., Tensor2D) to word granu-
larity accesses and issues them to the cache/scratchpad 2) coalesces
the responses required from the cache to complete a request (e.g., 4
word responses for a Tensor2D), and 3) shifts and masks the data
to handle alignments and sub-word operations. The databox fetches
words required by single load in parallel, and fetches multiple loads
in parallel.

Finally, a key question is how to interface all the distributed set
of memory nodes to the appropriate scratchpad/caches. For this, the
µIR includes Junctions, which represent generic 1:N, N:1, and M:N
connections. In the structural specification of the task in Figure 6, Line
10 declares a 1:N junction and line 15–18 specify the connections
between the memory operations and the junctions i.e., all the memory
operations in the task are time-multiplexed over the junction. One
possible implementation of junctions is a static tree network or a local
bus. We have parameterized the junctions in µIR so that the designer
can control the physical network that junctions lower to.
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ule and transfers to/from a cache or scratchpad.

3.5 Control Flow and Loops
µIR supports arbitrary control-flow from input algorithm. For

forward branches, µIR implements dataflow predication i.e., trigger
the node in dataflow for flow control, but bypass the actual logic and
poison the output. With backward branches and loops there are three
challenges i) Live ins: We extract each loop into the a task block,
buffer the live ins from other parts of the circuit, and feed it into
the dataflow. ii) Loop carried dependencies: We introduce buffering,
latency-insensitive edges, and registers to break the combinatorial
loop when implementing backward edges. This is similar to Arvind
and Nikhil’s seminal work on dataflow machines [6]. iii) Loop nests:
In µIR each nested loop is disassociated from its outer loop, and
is encapsulated within a task block. Intuitively, each nested loop is
enclosed in a separate function that can run in pipeline parallel fashion
with the parent. To the outer loop, the nested loop appears as a variable
latency non-deterministic operation with request-response interface.
Finally, recursion is handled similar to loops. We use LLVM to convert
recursion to a iterative pattern prior to translating the program into an
µIR graph (see recursive mergesort and fib in § 5).

3.6 µIR Front-end: Tranforming programs to µIR graph
The generation of µIR graph from compiler IR proceeds in three

stages. In Stage 1 we transform the compiler IR to a µIR task graph.
A task block in µIR represents a set of basic blocks that needs to be
asynchronously scheduled in hardware, either because the amount
of work is statically unknown or it may be profitable to dynamically
schedule.

Algorithm 1: Generating µIR graph from
Compiler IR.

1 function Stage1_µIR_Taskgraph:
2 µIR_TaskGEdges = Map{}
3 µIR_TaskGNodes = Map{}
4 TaskQueue = {main()}
5 while TaskQueue != φ :
6 Current = TaskQueue.pop()
7 µIR_TaskNodes[Current] = List{}
8 for bb in Current.BasicBlocks :
9 if StaticSchedule(bb) :

10 µIR_TaskGNodes[Current].add(bb)
11 else:
12 Child = new Task(bb)
13 µIR_TaskGEdges[Current].add({Current,

Child]})
14 TaskQueue.push(Child)
15 end
16 end
17 end
18

19 function Stage2_Schedule(Task node):
20 ComputeNodes = {}; DataflowEdges = {}
21 ControlNodes = {}; ControlEdges = {}
22 MemoryNodes = {}
23 for bb in Task.BasicBlocks :
24 for node in bb :
25 if node is Compute :
26 ComputeNode.add(node)
27 DataflowEdges.add({node,

node.dependents})
28 elif node is Control :
29 ControlNodes.add(node)
30 ControlEdges.add({node,

node.target})
31 elif node is Memory :
32 MemoryNodes.add(node)
33 GlobalMemory.connect(node)
34 end
35 end

Algorithm 1 shows the pseudocode of step 1. µIR_TaskGEdges

and µIR_TaskGNodes collectively represent the task-level mi-
croarchitecture graph. We iterate over LLVM program-dependence-
graph in breadth-first fashion and aggregate basic blocks(line 9: if
block). Basic blocks that terminate dynamically schedulable re-
gions e.g., loops, function calls, concurrent tasks in Cilk, Tensor-flow
intrinsics, start a new task and restart the aggregation process (line 11:
else block). Our compiler pass then extracts the task’s basic blocks
from the surrounding program-graph and creates a closure that cap-
tures the scope i.e., live-ins, live-outs and control dependencies. This
enables the task region to be invoked through a timing-agnostic asy-
chronous interface. The asynchronous interface lowers to a hardware
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issue-queue (during the Chisel elaboration stage). Based on program
flow the hardware queue, at run time, determines if an execution tile
has to assigned for the task region, and if so which execution tile (see
Section 3.2:Execution Model). The design is fully parameterized and
a user can vary the number of execution tiles for each task region.

In Stage 2: we create the datapath for each task-block.
µIR_TaskGNodes is a dictionary that specifies for each node in
the task graph, the corresponding region of basic blocks in LLVM. Al-
gorithm 1 lists the pseudocode, Stage2_Schedule. In this stage,
the body of each task block contains only forward branches3. We
lower the set of basic blocks to a hyperblock and embed it as sub-
graph within the node in a task graph. The conversion to µIR graph is
a literal translation of the data flow graph. In the baseline, every com-
piler op lowers to a decoupled node, every node internally implements
the functional unit and edges are pipelined connections between the
function units. Subsequently, we connect memory operations to a
global memory unit at the top-level of the graph. Section 3.5 and 3.4
provides more details on control-flow and memory implementation
of stage 2.

4 Microarchitecture optimizations (µopt)
The key benefit of µIR is the ability to generate multiple mi-

croarchitectures with different design tradeoffs for the same software
functionality. In this section we demonstrate five microarchitecture
optimizations from the µopt framework that successively expose op-
portunity for each other — Figure 8 shows the order in which these
passes optimize the design, using the example from Figure 4.
Pass 1: Task Block Queuing (Goal 1: § 2.1). The hardware designer
has the ability to modify the queuing and asynchrony between tasks in
the whole-accelerator circuit. This permits the individual task blocks
to proceed at different rates and enables subsequent optimization
passes. This pass is achieved by controlling how inter-task connec-
tions (<||>) in µIR map to RTL. One choice would be to introduce
FIFO queues on the interface between the for-loop task block and
tensor task block only, while leaving the low latency scalar block
coupled. The tensor block has higher latency and we require more
decoupling to ensure the for-loop block can run at a higher rate.
Pass 2: Execution Tiling (Goal 1,4: § 2.1). The higher latency of the
tensor block could potentially lead to longer queuing delays. Hence,
we need to increase the throughput of the tensor block by replicating
it by N (a tunable parameter). The key challenge that µIR deals with
during the RTL generation is creating buses and crossbar to route
tasks to different execution units. This change can be achieved locally
without affecting the other parts of the accelerator circuit.
Pass 3: Localized Type-specific scratchpads (Goal 3:§ 2.1). The
shared scratchpad compromise the execution of both the tensor and
scalar blocks, due to contention. The tensor block (multiplying 2×2
tiles) reads 8 words and writes back 4 words per cycle, while the
scalar reads 2 words and writes back 1. To solve this, µIR creates
local per-task scratchpads. The scratchpads also expose their type
to µIR and during RTL generation, we optimize the shape of the
data movement over physical wires and change the data organization.
Another option would be introducing a separate writeback buffer for
writing out the data.

3Loops are treated as self-scheduling asychronous tasks.
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Pass 4: Scratchpad Banking (Goal 4:§ 2.1) To deal with the higher
throughput introduced by multiple execution blocks in Pass 2, we also
have to increase the throughput of the tensor memory system. For the
tensor scratchpad we need to supply 2 tiles (each four words) in a
cycle. The options are to either use four dual-port SRAM blocks and
stripe the words across them or use a dual-ported SRAM with wide
eight-word reads. The scalar scratchpad will use two port SRAM.
Pass 5: Op Fusion and Pipelining (Goal 2:§ 2.1) Finally, the for-
loop block is on the critical path of the entire accelerator circuit. The
dataflow itself is entirely serial and the pipeline has five stages: Buffer
→ φ → i++ → i==0 → Cond-Branch. This implies that each
iteration takes atleast five cycles, and limits the throughput of the
scalar task (only 2 cycles for execution). To re-time the pipeline to
two stages, the pass fuses all of the operations into a single node. µIR
enables re-time the pipeline with having to modify the RTL.
4.1 µopt: Codifying microarchitecture transformations.

In this section, we illustrate a pass that uses iterators for both the
whole-accelerator and local dataflow of each task block. Algorithm 2
shows the pseudocode for this optimization. The optimization cod-
ifies pass 3 and 4 in Figure 8 — the goal is to partition the address
space and direct un-related loads to different scratchpad banks. The
optimization itself requires two sub-passes i) Analysis, which identi-
fies the memory space to which each memory operation belongs. ii)
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Algorithm 2: Scratchpad Banking
// Temporary map from address space to list of memory

ops. ID 0: Global. 1--N:Different address spaces
Global: Mem groups = Map[ID, List(MemOps)]
Analysis:

1 def getMemoryAccess(Circuit):
2 foreach task in Circuit do
3 foreach mem in task.getMemops() do
4 space_id = LLVMPointsto(mem)
5 Mem_groups[ space_id ].insert(mem)
6

Transformation:
7 def scratchpadBanking(Circuit):
8 foreach (ID, items) in Mem_groups do

// Get memory parameters for each memory space
9 Param = getMemParams(items)

10 Mem = new RAM(Param)
11 foreach op in items do

// Connecting memory ops to the new RAM
12 op.connect(Mem)

Transformation, which creates separate scratchpads in the microarchi-
tecture graph for each memory space. The analysis pass can invoke
any helper function, including software compiler (e.g., here we in-
voke the LLVMPointsto() which returns a unique id identifying
the memory space). The transformation pass shows the flexibility
of µIR. We can tune each scratchpad (e.g., number of ports, banks
etc). It also demonstrates that µopt helps automate repetitive RTL
modifications. For instance, the pass also has to repeatedly route each
memory operation to its corresponding scratchpad. µopt provides
helper API (connect) to automate the underlying RTL generation.

5 Quantitively Evaluating µopt and µIR
The primary purpose of µIR and µopt is to provide a fertile play-

ground for computer architects to see their ideas reflected in RTL
of accelerators. Here we try to answer the following: i) What is the
quality of the baseline accelerators (no optimizations). Our goal is
to establish a performance bar to isolate the benefits of the individ-
ual optimizations, ii) How do the baseline accelerator architectures
compare to those generated by commercial HLS tools. iii) How do
different optimization passes improve the performance. We consider
each optimization individually, § 6.1—§ 6.4, and together§ 6.5
5.1 What is the quality of baseline accelerators?

Observation 1: µIR-generated accelerators can attain high fre-
quency. 200-500 Mhz on FPGA. 1.6—-2.5Ghz on ASIC. Observation
2: µIR-generated accelerators can achieve low power. 500-1200 mW
on FPGA, 20-150 mW on ASIC.

Here, we try to establish the performance and power characteris-
tics of the baseline accelerator, which we further optimize in § 6. We
evaluate on two backends, an FPGA Intel Arria 10 and ASICs synthe-
sized using the Synopsys Design Compiler (UMC 28nm techology).
Table 2 summarizes the results. All our workloads were unmodified.

Overall, even pre-optimization, µIR produces competitive accel-
erators. The floating point workloads (benchmarks with F ) attain
frequency between 350-400Mhz. For the FP macros, during RTL
generation µIR plugs in the IP cores and for ASIC we use an in-house
version of Berkley hardfloat. Here we use single precision throughout.
For FP workloads, ASICs improve the power 20—50x vs. the FPGAs.

Compute intensive workloads use plenty of registers and FPGA
ALMs and typically consume 1—1.2W in power on the Arria 10

e.g., COVAR, CONV.,2MM 3MM, SOFTM, FFT. In workloads with
higher compute density and simpler operations, SAXPY, CONV,
SOFTM, RELU, 2MM[T] the ASICs improved clock frequency 4—
6×, compared to the FPGA.

Finally, the Cilk accelerators, achieved a lower target frequency,
between 200-300Mhz on the FPGA (compared to non-Cilk work-
loads). This is primarily a result of the queueing and buffering logic
required to manage asynchronous task blocks being on the critical
path.

Table 2: Synthesizing Baselinr µIR on Arria10 FPGA

FPGA Backend. Arria 10 SoC. ASIC. 28nm
Bench MHZ mW ALMs Reg. DSP nnnmmm222 mW Ghz

Polybench or Machsuite [39, 45]
GEMMF 373 946 4480 7936 1 42.9 28 1.66

COVAR.F 354 1496 11448 20415 4 73.6 150 1.66
FFTF 425 1109 6548 12347 4 91.3 47 1.66

SPMVF 388 868 3386 6048 2 36.9 24 1.66
2MMF 385 1080 6126 12198 4 84.5 24 1.66
3MMF 377 1202 8150 15216 1 97.38 52 1.66

Cilk Benchmarks
FIB 307 751 1818 2614 0 — — — #

M-SORT 314 959 4943 6767 0 — — —#

SAXPY 214 609 1667 2252 2 17.4 20 2.5
STENCIL 207 812 4123 6134 2 82.6 94 2.5

IMG. Scale 206 705 2484 3582 2 83.4 96 2.5
Tensorflow Benchmarks [38]

CONV. 363 1071 6354 10698 1 75.3 60 2.5
DENSE8F 362 914 4025 7218 1 45.8 37 2

DENSE16F 381 923 4070 7222 1 46.5 37 2
SOFTM8F 375 1171 7787 13232 0 60.6 54 2

SOFTM16F 347 1171 7842 10698 0 61.2 53 2
In-house

RELU[T] 460 547 840 1169 14 15.9 19 2.5
2MM[T] 496 568 1073 1566 14 91.1 27 2.5

CONV.[T] 397 618 1717 2714 14 14.6 17 2.5
Footnotes: Table 2: F - Floating point benchmarks [T ]: Tensor

operations. Synopsys DC Compiler. ASIC umc 28nm.

5.2 µIR vs High-level synthesis
Observation 1 Starting from the same program specification, µIR-

generated accelerators attain 20% higher Mhz compared to HLS
toolchains, due to dataflow execution

Observation 2 Many workloads exploit higher clock to achieve
overall better performance (10—30%). On some workloads, HLS can
generate better streaming buffers and achieves 10% better perfor-
mance.

An apples-to-apples comparison with prior HLS toolflows is not
feasible since i) HLS primarily targets loop parallelism, and ii) they
rely on streaming memory behavior (otherwise memory accesses
are serialized). To ensure a fair comparison, we manually modified
programs to be HLS compatible. We ported all the Machsuite and
Tensorflow to HLS. 4. Our set-up, i) we switched on all the compiler

4We had to rely on two toolchains, Legup [10] and Intel HLS, as neither one supported
all the workloads
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optimizations, since HLS relies on them), ii) we disable all µopt
optimizations and tool-specific optimizations [8, 13, 14, 26], iii) we
ensure that for RAMs and FP we use vendor-specific IP.

Figure 9 plots the baseline µIR’s (no optimizations) performance
normalized to HLS. The main reason for the performance improve-
ment under µIR is the fundamentally different execution models and
architecture generated by µIR. HLS relies on a state machine to coor-
dinate execution. µIR however adopts a decentralized dataflow-based
execution model. This leads to deeper operation pipelines and hence
20% higher frequency than HLS. In workloads like fft, gemm, 2mm
and 3mm, which they have nested loops the µIR’s pipeline depth is 30
(2MM) — 40(GEMM) stages; even workloads with few loops such
as Dense8 have 15 stages. GEMM, Covar, 2MM, and 3MM: µIR
exploits better operation parallelism as HLS serialize the nested loop
executions — overall performance improvement is 20–30% (execu-
tion cycle improvement and clock frequency improvement contribute
equally). In Conv, µIR’s dataflow achieves nearly 80% improvement
in target clock (overall 60% improvement in execution time). In FFT
and Dense, HLS generates streaming buffers and improves the mem-
ory system (we were unable to turn it off), µIR relies on a less efficient
cache.
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Figure 9: µIR vs HLS. Normalized performance. HLS = 1. < 1:
µIR is better. > 1 HLS is better.

6 Evaluating the benefit of passes (µopt)
Table 3 summarizes the different optimization passes we study. It

is not our intention to claim that the optimizations themselves are
novel. Our goal is to implement and evaluate these optimizations as
an µIR graph transformation.

Our microarchitecture transformations can be broadly classified
into three categories. i)Timing: The microarchitecture graph exposes
latency and contention through connection edges. We study three
specific optimizations that improve the communication latency be-
tween operations (op-fusion, scratchpad/cache banking). ii) Spatial:
All nodes and structures in the µIR graph can be replicated to im-
prove throughput. We study spatial optimization in four components,
function units, scratchpad, cache and task blocks. iii) Higher-Order
Ops: µIR provides an opportunity for specializing the compute node
implementations on a per-type basis (for example, single-cycle tensor
operations). For each pass we list the benchmarks that benefited from
our optimization.

Table 3: Summary of µopt passes

Opt Type Bench. Sec. Perf
Impro.

Op fusion Timing FFT, SPMV, COVAR.,
SAXPY

§ 6.1 1.4×

Task tiling Spatial STENCIL, SAXPY, IMG.
SCALE, FIB, M-SORT

§ 6.2 6×

Tensor Ops Higher Ops RELU[T], 2MM[T],
CONV.[T]

§ 6.3 8×

Memory local-
ization

Timing&
Spatial

SPMV, CONV., SAXPY, CO-
VAR.

§ 6.4 1.3×

Cache banking Timing&
Spatial

SAXPY, RELU, RGB2YUV § 6.4 1.5×

All Opt § 6.5

6.1 Auto Pipelining and Op-Fusion
Result: Reduces execution time between 1.17 — 1.7×
Related research: [11, 21, 23]
µIR scope: Task dataflow, nodes and connections

This pass iterates over and transforms the dataflow graph of a task
block. We auto balance the dataflow pipeline and fuse nodes in a
greedy fashion. The baseline µIR makes no scheduling decisions and
hence requires pipeline handshaking on all dataflow edges. Fusing
nodes, to balance the pipeline eliminates the handshaking and pipeline
register (Figure 10). The op fusion pass iterates over the dataflow in
depth first fashion to search for opportunities to fuse nodes with their
successors. During fusion, we seek to try to ensure that the resulting
fused pipeline’s frequency is not penalized (compared to the baseline).
Combining multiple low-latency nodes together reduces the number
of pipeline stages (and consequently latency) without introducing
frequency-robbing critical stages.

& �
�

<< >>

Max Fused

& �
�

<< >>

Baseline IR

& �
�

<< >>

& �
�

<< >>
Figure 10: Illustration of Auto-Pipelining and Op-Fusion pass.
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Figure 11: Execution time improvement due to Op-Fusion.

Figure 11 shows the normalized execution comparison with the
baseline implementation on four benchmarks, FFT, SPMV, COVAR.
and SAXPY. The overall execution time reduces by 1.2× to 1.6×.
These were chosen due to their compute intensity. This pass primar-
ily target compute intensive dataflows where there are long chains
of fusable nodes and inexpensive operations like shift and bit-wise
operations.
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6.2 Concurrency Tiling
Result: Reduces execution time between 1.5—6×
Related research: [16, 19, 25, 49, 50]
µIR scope: Task blocks

Figure 8:Pass 2 in § 4 provides an overview of this optimization.
µIR permits each task block to independently increase the number of
execution units. This effectively achieves a “multi-core” effect with
multiple execution units running and completing in parallel.

Figure 12 plots the performance when varying the number of execu-
tion units per task. The baseline accelerator µIR specifies 1 execution
unit for each task. We only study Cilk benchmarks as they exploit
higher-level parallelism. The accelerator exploits all the available par-
allelism exposed by the applications and scale with increasing FPGA
resources (1.5–6×). Saxpy improves with the addition of a second
tile, but the benchmarks become quickly memory bound. Stencil and
Image-scaling accelerators are more computationally intense (scale
up to 8 cores). Both fib and merge-sort have extensive parallelism
and scale well upto 4—8-way parallelism before being limited by the
memory system.
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Figure 12: Reduction with in execution time by increasing num-
ber of parallel execution units.
6.3 Tensor Higher-Order Ops
Result: Reduces execution time between 4 — 8×
Related research: [12]
µIR scope: Nodes and connections

In this section, we introduce tensor operators in the microarchitec-
ture. They are highly optimized hand designed library (in Chisel) of
operations that µIR can incorporate during the construction of the
dataflow. Our µIR library includes support for 2D tensors, whose
shape the designer can control i.e., for instance 2×2 in this exam-
ple (Figure 13). In µIR all the microarchitecture components are
typed and reflect the type specification of the macro operation. The
microarchitecture transformations do not have to be involved in the
actual implementation of the operations itself, but can flexibly use
them within the dataflow. The actual hardware function unit for the
tensor operations are incorporated in from the library of components.
Figure 13 lists tiled matrix multiplication.

Figure 14 shows an optimized reduction-tree implementation of
tensor multiplication for 2×2 shapes. Compared to the baseline which
implements the operation through the pipeline, this is more efficient
and also embarrassingly parallel. µIR also parameterizes the type of
the intrinsic itself i.e., one of the parameters for a scratchpad is the
shape of the data (2x2 in this case). µIR autogenerates RTL for the
appropriate RAMs.

We implemented operator for all common tensor math (e.g., +,*,conv)
and evaluated their benefit in improving 3 benchmarks RELU[T],

2MM[T], and CONV[T]. We find that the tensor operator increases
leads to 4—8× improvement in performance (Figure 15). The cause
for this improvement i) ≃4× increase in computational density and
DSP blocks compared to baseline ii) the operand networks are all
widened to implicitly transfer all the elements of the Tensor2D at one
time iii) the fusion of scalar ops into a single higher order operator
eliminates the pipeline handshaking.

for (int i = 0; i < NTiles; i++)
for (int j = 0; j < NTiles; j++)
for (int k = 0; k < NTiles; k++) {
/** Tensor Intrinsics **/
Tensor2D* a = loadTile(&A[i][j]);
Tensor2D* b = loadTile(&B[i][j]);
Tensor2D *mul = mulTile(a,b);
storeTile(addTile(&C[i][j],mul),&C[i][j]);

}

Figure 13: Implementation of 2MM with Tensor ops
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Figure 14: Multiplier unit for Tensor2D. C2×2 = A2×2 × B2×2
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Figure 15: Performance improvement due to tensor ops.

6.4 Localizing and Banking Memory
Result: Reduces execution time between 1.05—1.8×
Related research: Universal µIR scope: Memory

The baseline microarchitecture used a shared scratchpad for local
accesses and an L1 cache for all global accesses. Here, we focus on
further increasing the number of scratchpads and L1 cache banks.
First, we leverage algorithm 2 listed in section 4.1 to create multiple
local memory address spaces. Second, we bank the L1 cache to
parallelize the global accesses. µIR auto-generates the RTL logic
for i) for routing loads/stores to the different memory banks, and ii)
managing shared ports.

Figure 16 shows the performance improvement of these optimiza-
tions. SPMV, SAXPY, and CONV2D benefit from localized scratch-
pads as they stream data. SAXPY and CONV2D read in two matrices
and hence do not benefit from four-way memory partitioning. The
amount of improvement for benchmarks depends on memory level
parallelism of each workload and whether working set size fit in cache
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(64KB here). For instance workloads such as GEMM and FFT benefit
from parallel access to local caches. 2MM, and 3MM see no benefit
because the data maps to the same cache bank and does not benefit
from the increased port and banks. COVAR. is compute intensive.
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Figure 16: Effect of cache banking (1–4 Banks)

6.5 Stacking Multiple optimizations
Observation : Applying multiple optimizations, leads to cumula-

tive benefits — overall between 20%—4.2× improvement in perfor-
mance Our goal is to study the best performance achievable with
the set of optimization we study in this paper. Figure 17 shows the
overall performance improvement. We group together all the Cilk
accelerators, as the concurrency tiling optimization applies only to
them. SAXPY and STENCIL: the tiling pass increases parallelism.
To accommodate the higher compute parallelism, memory localiza-
tion increases the memory parallelism as well. GEMM, FFT and
SPMV: Most of the performance improvement is attributable to Op-
Fusion since it improves loop initiation interval and improves pipeline
parallelism between loops. In 2MM and 3MM, both Op-fusion and lo-
calization are helpful to improve the performance. Finally, in COVAR,
CONV, DENSE and SOFTM, the primary optimization that results in
performance improvement is memory localization and banking.
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Figure 17: Effect of stacking multiple µopt optimizations

6.6 µIR vs. an ARM A9
µIR accelerators perform 2–17× better than an ARM A9.

Figure 18 compares the perform of µIR-optimized accelerators
against an ARM A9 1Ghz dual issue out-of-order processor. In this
case, we compare the best version of each accelerator with all the
µopt optimizations applied. There are three main reasons for the
better performance of µIR accelerators i) More ILP: GEMM, FFT,
RELU and 2MM accelerators can issue more operations per cycle than
the dual-issue ARM. ii) More compute density: Relu[T], 2MM[T],
and Conv[T] leverage tensor function unit to pack more ops/cycle
into the execution; CPU pipeline limits compute density. iii) Reduced
overhead: the dataflow execution model eliminates the latency penalty
of the front-end in CPUs.
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Figure 18: Optimized µIR vs ARM A9 1Ghz. ARM = 1. > 1: µIR
is better. < 1 ARM is better. Note: ARM does not support Cilk.
7 Quantifying µIR productivity vs FIRRTL

In this section, we compare µIR against a hypothetical HLS system
in which we lower the programs to FIRRTL (a lower level circuit-IR).
We compare the % of nodes and edges that would have to be manip-
ulated in a FIRRTL graph compared to a µIR graph to apply µopt
optimizations. We believe this would be indicative of the conciseness
with which µIR optimizations could be expressed. To conduct this
study, We picked the workloads that supported all the optimizations
across Section 6 on which we applied all of our optimizations passes,
SAXPY, STENCIL and IMAGE scaling. We also quantify the number
of graph nodes in FIRRTL and µIR representations of the hardware.
Table 4 shows the result of this comparison; µIR is capable of more
succinctly expressing and effecting architectural changes.

8 Summary
In this paper, we are proposing a toolchain and methodology to

help with complexity of designing hardware accelerators. Our con-
tribution: i) we developed an intermediate-representation, µIR, for
designing hardware at microarchitecture (more informative than RTL)
level. ii) we also developed µopt, a framework that cast microarchi-
tecture optimization as a transformation of the µIR graph. We will be
releasing the framework open-source.

Table 4: Conciseness of µIR vs FIRRTL (All µopt)
Execution Tile 1 to 2 Add one more SRAM Fused Operation # Graph

µ IR FIRRTL µ IR FIRRTL µ IR FIRRTL FIRRT L
µ IR∆Node ∆Edge ∆Node ∆Edge ∆Node ∆Edge ∆Node ∆Edge ∆Node ∆Edge ∆Node ∆Edge

Saxpy 1 4 39 92 6 18 26 68 4 8 8 18 9.3×
Stencil 1 4 68 144 8 24 38 78 14 9 36 68 12.4×
Image SCA. 1 4 46 128 6 18 26 68 12 8 26 18 8.4×
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renewed case for the reduced instruction set computer: Avoiding isa bloat with
macro-op fusion for risc-v. arXiv preprint arXiv:1607.02318, 2016.

[12] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Q. Yan, Haichen
Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and
Arvind Krishnamurthy. TVM: an automated end-to-end optimizing compiler for
deep learning. In 13th USENIX Symposium on Operating Systems Design and
Implementation, 2018.

[13] Jongsok Choi, Stephen Dean Brown, and Jason Helge Anderson. From pthreads to
multicore hardware systems in legup high-level synthesis for fpgas. IEEE Trans.
VLSI Syst., 25(10), 2017.

[14] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang. High-
level synthesis for fpgas: From prototyping to deployment. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 30(4), 2011.

[15] Jason Cong, Peng Wei, Cody Hao Yu, and Peng Zhang. Automated accelerator
generation and optimization with composable, parallel and pipeline architecture.
2018.

[16] David E Culler, Anurag Sah, Klaus E Schauser, Thorsten von Eicken, and John
Wawrzynek. Fine-grain parallelism with minimal hardware support: a compiler-
controlled threaded abstract machine. In Proc. of PROC of the 4th ASPLOS, 1991.

[17] A DeHon, J Adams, M deLorimier, N Kapre, Y Matsuda, H Naeimi, M Vanier, and
M Wrighton. Design patterns for reconfigurable computing. In Proc. of the 12th
FCCM, 2004.

[18] Stephen A Edwards. The Challenges of Synthesizing Hardware from C-Like
Languages. IEEE Design & Test of Computers, 23(5):375–386, 2006.

[19] Vladimir Gajinov, Srdjan Stipic, Osman S Unsal, Tim Harris 0001, Eduard Ayguadé,
and Adrián Cristal. Supporting stateful tasks in a dataflow graph. In Proc. of PACT,
2012.

[20] Nithin George, HyoukJoong Lee, David Novo, Tiark Rompf, Kevin J Brown,
Arvind K Sujeeth, Martin Odersky, Kunle Olukotun, and Paolo Ienne. Hardware
system synthesis from Domain-Specific Languages. In Proc. of FPL, pages 1–8.
IEEE, 2014.

[21] Shantanu Gupta, Shuguang Feng, Amin Ansari, Scott Mahlke, and David Au-
gust. Bundled execution of recurring traces for energy-efficient general purpose
processing. In PROC of the 44th MICRO, 2011.

[22] James Hegarty, John Brunhaver, Zachary DeVito, Jonathan Ragan-Kelley, Noy
Cohen, Steven Bell, Artem Vasilyev, Mark Horowitz, and Pat Hanrahan. Darkroom
- compiling high-level image processing code into hardware pipelines. ACM Trans.
Graph., 33(4):1–11, 2014.

[23] S Hu, I Kim, M H Lipasti, and J E Smith. An approach for implementing efficient
superscalar CISC processors. In PROC of the 12th HPCA, 2006.

[24] Adam Izraelevitz, Jack Koenig, Patrick Li, Richard Lin, Angie Wang, Albert Mag-
yar, Donggyu Kim, Colin Schmidt, Chick Markley, Jim Lawson, et al. Reusability is
firrtl ground: Hardware construction languages, compiler frameworks, and transfor-
mations. In Proceedings of the 36th International Conference on Computer-Aided
Design, pages 209–216. IEEE Press, 2017.
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