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Abstract—A central tenet behind accelerators is to partition a
program execution into regions with different behavior (e.g.,
SIMD, Irregular, Compute-Intensive) and then use behavior-
specialized architectures [1] for each region. It is unclear
whether the gains in efficiency arise from recognizing that
a simpler microarchitecture is sufficient for the acceleratable
code region or the actual microarchitecture, or a combination
of both. Many proposals [2], [3] seem to choose dataflow-based
accelerators which encounters challenges with fabric utilization
and static power when the available instruction parallelism is
below the peak operation parallelism available [4].

In this paper, we develop, Chainsaw, a Von-Neumann based
accelerator and demonstrate that many of the fundamental
overheads (e.g., fetch-decode) can be amortized by adopting
the appropriate instruction abstraction. The key insight is
the notion of chains, which are compiler fused sequences of
instructions. chains adapt to different acceleration behaviors
by varying the length of the chains and the types of instructions
that are fused into a chain. Chains convey the producer-
consumer locality between dependent instructions, which the
Chainsaw architecture then captures by temporally scheduling
such operations on the same execution unit and uses pipeline
registers to forward the values between dependent operations.
Chainsaw is a generic multi-lane architecture (4-stage pipeline
per lane) and does not require any specialized compound
function units; it can be reloaded enabling it to accelerate
multiple program paths. We have developed a complete LLVM-
based compiler prototype and simulation infrastructure and
demonstrated that a 8-lane Chainsaw is within 73% of the
performance of an ideal dataflow architecture, while reducing
the energy consumption by 45% compared to a 4-way OOO
processor.

1. Introduction
While it is clear that using customized hardware accelera-

tors exploiting specific program behaviors is a promising way
forward [1], it is not clear what is the particular accelerator
microarchitecture and how can we achieve this efficiency
while attaining the generality needed to support different
applications. We have made great strides in cases where the
hardware targets an already mature application domain (e.g.,
SIMD or GPUs). However, it is not clear how accelerators can
be developed to address other programs that exhibit diverse
control and memory behavior and instruction parallelism.

A central tenet of the modern accelerator proposals is
to split up the program into multiple phases [10], and
specialize the architecture for each behavior. Big and small

cores [11], [12]) adopt this approach, but they tend to use
a conventional front-end which dominates overall energy
consumption [13]. Other approaches have sought to improve
the general-purpose processor (herein referred to as OOO)
efficiency by detecting and caching the loops in a smaller
μop cache [14]. However, such approaches continue to rely
on the energy-hungry backend of the processor such as a
centralized register file and reorder buffer. Addressing these
concerns, many hardware accelerator based approaches have
eschewed the fetch-decode instruction model in favor of
dataflow architectures [3], [15], [16]. SIMD-based designs
amortize the cost of instructions across multiple data parallel
operations but restrict the types of instructions that can be
bundled and are closely allied to the hardware function unit.
A key limitation of such dataflow approaches is designing
for programs with varying levels of ILP. A reconfigurable
functional-unit fabric [3] may have low utilization (and
consequently higher static power) when the ILP in the
programs do not match the peak ILP available from the
hardware. It is hard to see how dataflow-based accelerators
[6], [16], [17] can adapt to varied instruction parallelism
both across applications and within an application. Section 3
discusses the tradeoffs in dataflow accelerators.

A promising approach to specialization is the notion of
“custom or magic instructions” [7], [9], [13]. The key idea be-
hind “magic” instructions is to use a single instruction to con-
cisely express the parallelism and communication amongst
frequently used groups of operations. Magic instructions
require compound function units with associated lightweight
storage elements that can execute these instructions efficiently.
Magic instructions effectively amortize the cost of instruction
fetch and decode across many operations. However, they tend
to be application specific. Finding these magic instructions
and then designing the custom function units that are
widely used is challenging and raises questions about the
generalizability of this approach. Nevertheless, the notion of
using magic instructions to express more information about
the program’s operation flow to the hardware is a promising
approach; except we focus on the question of what property
of the dataflow graph should magic instructions convey to
the hardware and how do we decouple the hardware from
the magic instruction itself .

Our Contribution
In this paper, we explore Chainsaw, a von neumann-style

accelerator, for executing Chains, which is a special type of
magic instruction. The key contribution is that chains are
decoupled from functional unit design, and are discovered at
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Figure 1: Chainsaw overview. Our compiler constructs control-free superblocks [5], [6] to eliminate branches from the
offload region. The compiler then fuses sequences of instructions in the dataflow graph to construct chains (C1, C2, C3
etc.) and statically schedules them on the Chainsaw multi-lane architecture at chain granularity. The unaccelerated program
regions continue to run on the OOO. Compared to prior work that fused subgraphs [7]–[9] chains only fuse only sequences
of operations and do not require specialized compound function units.

compile-time, thereby eliminating the tension between magic
instruction efficiency and generality, application coverage
and hardware design cost. A chain is a set of instructions that
exhibits a strictly sequential dependence pattern i.e., each
instruction in the chain strictly communicates only with the
next instruction in the sequence. Chains are a generalization
of the widely used fused multiply-and-accumulate instruction
(a chain of an add and a multiply operation) or paired
μops [18]. Converse to SIMD or VLIW instructions which
express parallelism, chains express the lack thereof. Figure 1
shows our overall LLVM-based compiler and architecture
framework and illustrates chains in the dataflow graph.

A chain concisely expresses producer-consumer locality
between operations similar to dataflow. The limited single-
producer to single-consumer locality expressed by chains
can be i) more easily expressed with narrower instructions
(i.e., no destination ops need to be specified) and ii) readily
exploited using pipeline registers. We reduce back-end
costs by temporally scheduling the entire chain on a single
functional unit and then leverage pipeline registers to directly
forward values between the instructions in the chain. This
stands in direct contrast to energy hungry writes to a register
file in an OOO and the operands transfers typically needed
over a dataflow fabric [19] While chains can have a varied
number of operations of various types, we restrict the number
of live-ins and live-outs per chain to simplify the chain
wakeup. Our accelerator, Chainsaw, exploits these chains to
deliver highly efficient execution. Note that there are sections
of the program where Chainsaw is not the most efficient
execution engine (e.g,. SIMD, unpredictable control).

Chainsaw itself is a simple multi-lane architecture not
too different from clustered [20]–[22] microarchitectures;
each lane is a simple 4-stage in-order pipeline. While chains
are mapped to individual lanes; the lanes execute at the
granularity of the individual operations within a chain.
Each lane executes only one chain at a time and does

not interleave operations between chains which minimizes
chain wakeup costs. The instruction parallelism is exploited
across the lanes. Registers are only needed for inter-chain
communication; bypass registers capture the intra-chain data
movement. Similar to embedded processors [21], Chainsaw
fixes the maximum number of instructions that can be
mapped to a lane to minimize the fetch-and-decode costs.
Chainsaw performs within 81% of an ideal CGRA accelerator.
Chainsaw overhead to the processor core while saving 45%
of the energy. Compared to a CGRA with 8× the resources
Chains save between 24—54% of the communication power
by localizing the communication and 21% of the static power
by improving utilization of function units. We make the
following contributions:

• We present a new instruction abstraction, Chains, that
localizes communication between dependent instruc-
tions to minimize energy consumption. Chains do not
require any custom function units.

• We develop a fully working prototype compiler based
on LLVM to extract chains.

• We analyze chain formation algorithms for maximiz-
ing chain lengths (MaxSize) and ILP (MaxILP) and
study the tradeoffs between increasing ILP and fusing
operations to localize communication.

• We design the Chainsaw accelerator and evaluate its
efficiency compared to a reconfigurable dataflow fabric
(CGRA); we demonstrate the efficiency of Chainsaw
for applications that do not possess high level of ILP.

The paper is organized as follows: Section 2 describes
related ideas which inspire Chainsaw; Section 3 discusses
the challenges with dataflow-based accelerators. Section 4
describes the tradeoff between different algorithms that the
compiler prototype and tradeoffs when constructing chains.
Section 5 describes the architecture and Section 7 presents
the evaluation.



2. Related Work
Instruction set customization

The instruction abstraction plays a key role in permitting
the compiler to express more information about the pro-
gram control and dataflow structure to the hardware; for
instance SIMD expresses data parallelism [20], [23], [24]
between operations and VLIW expresses instruction level
parallelism [20]. A pertinent question is what information
about the dataflow structure do we expect instructions to
express, can the information be expressed without increasing
the size of the instruction, and does it generalize. Dataflow ar-
chitectures [2], [3], [19] convey information about instruction
dependencies and static placement of operations.

Tensilica [8], CCA [9], DSFU [7] have sought to extract
commonly observed subgraphs of operations and then im-
plement these operations using custom function units with
associated storage elements. This effectively forms CISCy
instructions and minimizes the energy overhead of the front-
end. While this approach is promising for specific application
domains it is not quite clear how it can be generalized
especially given the need for specialized function unit. An
interesting approach is the separation of compile-time ISA
from the hardware ISA, an approach pioneered by Transmeta.
Some have applied this idea [18] in a limited context for
dynamically fusing pairs of x86 micro ops in a dynamic
compiler to reduce the front-end overheads of an OOO.

Observations: Instruction-based specialization is an
effective approach to reduce the overheads of the von neu-
mann architecture. Chainsaw generalizes this approach and
discovers new instructions from applications at compile time
by aggressively fusing a variable number of operations and
types of operations. An important challenge to be addressed is
state management; as an increase in the number of operations
expressed by an instruction makes it harder to manage the
associated state. In this paper, we use the abstraction of chains
which fuses only sequences of operations which minimizes
the amount of state that needs to be maintained.

Efficient General-purpose Processors
Clustering of execution resources [20], [22], [25] seeks

to scale up execution resources, localize communication
between instructions, and minimize the cost of issuing
instructions. These works minimized instruction-instruction
communication by steering instructions to individual clusters
of execution resources. In the past, these approaches have
been pursued largely because of wire delays challenging
pipeline design. Today, similarly with wire energy dominating
overall instruction execution, clustering approaches can help
improve energy efficiency. Another line of work [11], [12],
[26] has used heterogeneous backends and schedule low-ILP
or moderate ILP code regions on an inorder backend to save
energy. A key limitation of past work is that they primarily
focused on clustering backend resources while minimizing
changes to frontend which expends a large fraction of the
processor’s energy. Loop-accelerators [14] recognized that
the key to improving energy efficiency is to disable the front-
end for repeating instructions; they also continue to use the
backend of a general-purpose processor. Loop-accelerators

do not localize communication between instructions and
continue to use centralized register files, issue queues and
execution units. Other work on increasing the front-end
efficiency [27] has used out-of-order cores to generate
schedules for in-order cores to execute. However, our focus
is not just on in-order execution but also on minimizing
back-end energy by localizing communication. There has
been work in multi-level register files that have drawn ideas
from embedded computing to exploit data locality at the fine-
grain level between dependent instructions [21], [28]. A key
benefit of this approach is that it generalizes how compound
function units [6], [9], [15] achieve energy efficiency by using
low energy operand registers to help dependent instructions
directly communicate with each other.

Observations: When designing a von neumann based
execution engine, we need to distribute the front and backend
of execution to minimize the fixed overheads per instruction.
Chainsaw uses a distributed lane-based execution model to
localize communication between instructions and minimize
the energy required to move data between dependent instruc-
tions. Chainsaw uses the compiler to identify and exploit the
locality when moving values between dependent instructions.
Compared to prior work that also sought to leverage fine-
grain operand registers [21], Chainsaw develops a compiler
framework to carefully fuse and organize the instructions to
guarantee

Dataflow accelerators
Many recent proposals in hardware accelerators [2], [3],

[29], [30] have been inspired by past work in dataflow
architectures [19], [31]. These approaches have sought to
switch between the von neumann execution on the general-
purpose processor and the dataflow-based accelerator in a
fine-grained manner [15]. Dataflow accelerators statically
map at compile-time the program dependence graph to
a fabric of homogeneous or heterogeneous function units
to completely eliminate the overhead of fetch-and-decode.
They also distribute the execution and register resources to
improve scalability. However, dataflow accelerators tend to
spatially distribute dependent operations and expend energy
in moving data between the individual function units over
the communication network. Dataflow accelerators are also
by design more optimal when plenty of ILP is available
in the program region; when there is only moderate levels
of ILP they tend to idle the function units and have low
utilization (and consequently higher static power).

Observation: A key challenge with dataflow acceler-
ators is the energy required for moving values between
dependent operations mapped across function units. Chain-
saw temporally maps multiple dependent operations to the
same function unit to minimize data movement. Dataflow
architectures may seek to improve utilization by mapping
multiple operations temporally to the same function unit;
however, doing so would require a complex packet-based
network [19]. Current accelerators use fine-grain instruction
granularity PEs and implement circuit-switching; however
such designs require a data transfer over the network for
each producer-consumer dependency.



3. Background and Motivation
We motivate the chain abstraction for instructions using the

DFG in Figure 2a. We are focusing on frequently executed
regions that are free of control flow i.e. on hot paths or traces
since these regions are the best candidates for acceleration.
Therefore, the example dataflow graph (DFG) only depicts
data dependencies. The DFG has a typical structure that is
representative of hot paths in a wide variety of applications.
It is an inverted tree that consumes several input values to
output a few values at the bottom. The example DFG uses

values computed by nodes 4 , 13 , 10 , 7 , and, 23 , and

produces values that are visible outside the DFG in nodes

26 , and, 27 . It has an ILP of five in the early three levels;

in subsequent levels the ILP tapers off to two and then one.
Figure 2b and Figure 2c illustrate the differences between

dataflow execution and von neumann execution applied
to a subset of the DFG nodes. In the dataflow execution,
functional units (FUs) are configured for specific operations,
each node is statically mapped to a specific FU, and the
dependencies are converted to data value transfers between
the FUs. The von neumann execution shown here assumes
just two FUs. These FUs are temporally reused by different
nodes. To enable such temporal scheduling, instructions are
stored in local instruction buffers and fetched, decoded and
issued in order of dependence. The buffers may be local to
FUs (as shown in the diagram) or global (fused). The results
produced may be stored on the FU until it gets overwritten,
or in local or global register files.
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Figure 2: Execution of DFG on spatial fabric leads to higher
idleness in the spatial fabrics if the ILP in the application does
not match the peak ILP of the spatial fabric and consequently
static power will limit the overall power efficiency.

Fabric Utilization and Static Power: Executing the
example DFG on a dataflow architecture with a single
configuration pass will require at least as many FUs as

there are nodes in the DFG. However, since the maximum
ILP of this DFG at any level is five, at most five of the
FUs can be active at any given cycle. All other FUs will
be idle i.e. at least 17 FUs will be idle in any given cycle.
Indeed, multiple instances of the DFG can be pipelined
onto the dataflow architecture to reduce idleness, however
the amount of reduction depends on the initiation interval.
Unlike processor pipelines which are seeking to overlap
pipeline stages, pipelining a dataflow graph requires the loop
around the dataflow graph to be pipelineable i.e., overlapping
multiple operations depends on the loop carried dependencies
and unrolling factor. Even after pipelining iterations, the
utilization of individual function units may be affected by
the longest critical path in the DFG. For example, the FU

allocated to node 12 must hold the result for an additional

cycle (in cycle 3) while it waits for the result of 16 to

materialize. Thus, this FU must incur one cycle of idleness
as it is not on the critical path. Similarly, the function unit

mapping 25 in Figure 2b has to wait for 20 to complete.

Otherwise, a customized number of pipeline latches are

needed between 25 and 27 ; clearly challenging [32].

TABLE 1: Characteristics of CGRA execution (4x4 and 8x8).
Performance (cycles), Idle Cycles (cumulative function unit
idle cycles). ILP: dataflow instruction parallelism

#Ops in DFG Avg ILP CGRA 4X4 CGRA 8X8
Perf.
Cycles

Idle
Cycles

Perf.
Cycles

Idle
Cyles

gzip 59 5.1 117 1041 82 866
art 54 3.9 166 2076 128 1696

mcf 29 3.6 93 441 70 2612
equake 24 2.6 119 1106 96 3994
parser 38 4.7 102 1236 67 1958
bzip2 321 12.4 680 17856 437 35187

gcc 126 10.5 271 1782 183 1606
mcf 30 3.3 79 354 67 2474

namd 78 6 161 1158 137 7686
soplex 39 3.25 128 1522 122 3420
povray 95 6.78 191 1307 129 5373
hmmer 147 13.3 499 7792 287 14220

sjeng 99 5.8 219 4302 169 6356
h264ref 64 5.3 175 3420 157 10668

lbm 207 23 412 1847 242 13293
sphinx3 44 3.6 91 1350 88 4130
blacksc. 273 5.5 368 18257 275 25662
bodytra. 81 4.7 173 3780 118 6731

dwt53 33 3.6 102 1747 73 2480
fluidan. 70 4.1 184 2860 132 8676

Table 1 shows the idle cycle count for spatial fabrics of
size 4x4 and 8x8. In this table, idleness is defined as the total
number of cycles for which the function units are idle. In this
case, we are modeling an instruction granularity CGRA with
one function unit per PE, and we assume an ideal memory
system to eliminate the stalls due to the memory system. The
idle cycles in the table are hence indicative of the idleness
caused entirely by the mismatch between the ILP available
in the program and the ILP of the CGRA; making the CGRA
smaller would increase the reconfiguration frequency and
overhead. The idleness in the 8x8 (64 units) fabric is average
2× compared to the 4x4 (16 units) fabric (max: povray. 4×
the idleness). Idleness is a critical factor because it determines
the static power consumption of the fabric and as can be
seen, the cumulative idle cycles are many times the execution



latency. In some cases, the 4× can have idleness higher than
the 8x8; this may seem counter-intuitive; we discuss below.

Reconfiguration costs: Idleness could be reduced by
reducing the number of FUs available, however in that case,
the dataflow architecture must be reconfigured multiple times
to execute a single instance of the DFG, and the pipelining
opportunities are also limited. Since reconfiguration costs
are significant, this is not always a viable solution.

Table 1 shows the average number of operations in the
dataflow fabric. The fabric may need multiple passes to map
the dataflow graph since the number of operations exceeds
the number of function units in the fabric. However, the ILP
column indicates that the dataflow graph will typically not
be able to keep all the function units busy leading to uneasy
tradeoff between static power and reconfiguration overheads.
We illustrate the counter intuitive case introduced by the
reconfiguration in gzip; in gzip the 4x4 demonstrates more
idleness than the 8x8. Multiple reconfigurations introduce an
unbalanced execution in the 4x4; gzip has 59 ops requiring
3 reconfigurations on a 4x4 (16 units) fabric with the final
configuration leaving 5 PEs free for the entire duration of
running the final 11 operations on a small fabric. All 59 ops
can be mapped to 8x8 at once leading to lower idle cycles.

Data Movement Energy:
Dataflow accelerators at the instruction granularity main-

tain a 1:1 mapping between operations and function unit [32]
to enable the use of a circuit switched network for the
dataflow transfers. While this minimizes the per-transfer
overhead, every producer-consumer operation communica-
tion requires a network transfer. Under current technology
constraints we show that this can consume a significant
fraction of the overall power consumption [33].

Interestingly, while Von-Neumann architectures tempo-
rally map multiple operations to the same function unit.
This captures the locality between back-to-back dependent
operations by forwarding values through pipeline registers.
For example, just five FUs can capture the maximum ILP
presented by the example DFG, minimizing idle cycles. The
efficiency of von neumann architectures depends heavily on
instruction granularity [18]. Coarse-grain instructions can
potentially reduce front-end overhead and exploit locality
between operations [13] However, they may adversely affect
scheduling complexity due to dependency checks i.e. they
consume and produce more values. To make coarse-grain
instructions feasible we need to group operations without
increasing the number of external dependencies. Hot regions
in programs typically exhibit instruction sequences that
meet these requirements. The example DFG is composed
of several chains of computation that have the properties
we are looking for: (4,5,6), (13,14,15,16), (10,11,12),
(7,8,9), (23,24,26), and, (19,20). The Chainsaw accelerator
leverages such chains for greater efficiency.

4. Our proposal: Chains
In this section, we propose Chains as a new instruction

abstraction for representing computation to the hardware.
Chains are fused sequences of operations where at least one
of the instruction’s operands is produced by the previous

Listing 1: Algorithm for the MaxSize strategy.

f o r each edge {
s r c n o d e = s o u r c e ( edge ) ;
t g t n o d e = t a r g e t ( edge ) ;
s r c c h a i n = c h a i n ( s r c n o d e ) ;
t g t c h a i n = c h a i n ( t g t n o d e ) ;
i f ( s r c c h a i n == t g t c h a i n )

c o n t i n u e ;
t m p c h a i n =

c o n c a t ( s r c c h a i n , t g t c h a i n ) ;
i f ( l i v e i n s ( t m p c h a i n ) > 2)

c o n t i n u e ;
i f ( l i v e o u t s ( t m p c h a i n ) > 2)

c o n t i n u e ;
remove s r c c h a i n from dfg ;
remove t g t c h a i n from dfg ;
add t m p c h a i n t o dfg ;
i f ( d fg has c y c l e ) {

remove t m p c h a i n from dfg ;
d e s t r o y t m p c h a i n ;
add s r c c h a i n t o dfg ;
add t g t c h a i n t o dfg ;

} e l s e {
d e s t r o y s r c c h a i n ;
d e s t r o y t g t c h a i n ;

}
}

instruction. Also, the outputs of chains become visible to
other instructions only when the chain in entirety is com-
pleted regardless of when the values are actually produced,
to minimize dependence tracking and chain wakeup costs.

Figure 3a shows a possible decomposition of the dataflow
graph in Figure 2a into chains; there are five chains, C0—C4.
This decomposition has been produced using the Dilworth
chain decomposition algorithm [34]. Note that the original
Dilworth decomposition may produce dependency cycles
among chains, which are not allowable in our case since
such chains cannot be temporally scheduled. Therefore, we
applied Dilworth decomposition and then broke the cycles
by breaking the chains at cycle-forming dependencies.

Figure 3a also depicts a possible chain schedule if two
FUs are available. Each chain node has a height that is
directly proportional to its latency. Chains C4, C3 and C1
are scheduled on one functional unit in that order, while C0
and C2 are scheduled on the other unit in that order. Note
that 25 in chain C4 supplies a value to chain C1. This value

is produced before C4 completes execution; however since
C4 can only communicate the value at the chain boundary,
C1 is stalled until all the instructions in C4 complete.

Chains are essentially a ISA abstraction between the com-
piler and the hardware i.e., they do not need any specialized
function units. The computation within the chain is expressed
as stripped out instructions of the original processor ISA. The
communication to the operations within a chain are restricted.
One of the operands for each internal instruction will be
the produced by the predecessor instruction in the chain.
Leveraging this observation we eliminate the bits reserved
in an instruction for register ids, compresses the instruction
and reduce the fetch-decode penalty.



Chains provide the following benefits: 1) they localize a
large fraction of communication between dependent instruc-
tions and eliminate many register accesses 2) they reduce the
number of front-end events and exploit the ILP effectively.
For instance, while the dataflow graph had 21 dependencies
communicated through registers before chaining, chaining
reduces the number of register writes to 4. Finally, due to
the adoption of the von neumann model, we need fewer
FUs than a spatial fabric by temporally mapping multiple
operations to the same function unit, resulting in better
hardware utilization and larger dataflow graph mapping. In
this section, we explore questions that are critical to the
success of chains: 1) Are chains potentially beneficial? and,
2) Is chain management hardware-friendly?

4.1. Are chains potentially beneficial?
Before we explore the potential benefits of chaining,

we discuss the potential drawbacks and our strategies for
minimizing these drawbacks. Chaining potentially decreases
available ILP because instructions may need to wait for their
chain to be activated even though their input operands are

already available. The chain is activated only when the input
operands are available for all the constituent instructions.

This impact is visible in Figure 3a. Although instruction 13

is ready to run at the very outset, it cannot execute until the
chains C0, C2, C3, and, C4 have finished.

Therefore, to recover lost ILP, we break chains at inter-
chain dependencies as shown in Figure 3b. Thus, for example,

instructions 16 and 17 have been assigned to different

chains. Now, chain C1 can be scheduled at the beginning
since it does not depend on any other chain. Indeed, the
latency of the region decreases from 16 cycles to 13 cycles,
as shown in Figure 3b. We also ensure that both the live-in
count and the live-out count of each chain are limited to
two, for reasons that are discussed in Section 4.2. Breaking
at every live-in limits the number of chain inputs to two
because now a chain has at most one node that consumes
live-ins, and operations need at most two operands. However,
the value produced by a node may be consumed by more
than two nodes. In such a case, we introduce dummy fan-out
nodes to limit the fan-out of each node to two. Essentially,
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3 ops
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Dilworth Decomposition 2 FU Schedule

(a) Chains built using Dilworth decompo-
sition followed by cycle removal. Chain
schedule on two FUs; the height of a chain
is proportional to the number of ops in it.
Fusing operations to chains reduce inter-
chain register writes (21 to 4). Chains can
exploit ILP with only two FUs (latency: 16
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(b) Strategy MaxILP breaks chains at live-ins
and live-outs leading to shorter chains and
a higher chain count. More inter-chain data
movement but critical path reduces to 13 ops,
identical to the unchained DFG. Inter-chain
register writes increased to 9.
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(c) Strategy MaxSize merges chains greedily
to reduce data movement. Register writes
decreased to 4. Critical path length increased
to 14 ops.
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which is unsuitable for spatial fabrics, and has several long chains.

Figure 3: Chain Formation
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Figure 4: Potential for computation localization by chains.

each fan-out dummy node acts as a switch with a fan-in
of one, and a fan-out of two. We denote this strategy as
MaxILP.

Splitting chains reduces some of the benefits because
intra-chain dependencies are converted into inter-chain de-
pendencies which need register updates. For example, the
MaxILP strategy produces 9 inter-chain dependencies while
the baseline decomposition required 4. To offset the loss,
we merge back chains greedily as long as they do not form
cycles. We continue to limit both the live-in and live-out
counts of each chain to two. Listing 1 lists the pseudocode
for this strategy. It iterates over each edge, and if the edge
happens to be an inter-chain dependency, the algorithm
explores concatenating the source and sink chains. We denote
this chain formation strategy as MaxSize. For example, the
chain decomposition in Figure 3b is converted to the chain
decomposition in Figure 3c. The overall latency increases to
14 cycles, but the number of external dependencies reduces
to four.

Figure 3d shows the chained graph for a frequently
executed region in gzip. The colors red, blue, green, and,
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<20% blacksc., swaptio, lbm, mcf, hmmer, fluidan.

20—40% freqm., h264re., sjeng, parser, mcf, namd, streamc, art,
crafty

50% equake, bodytrack, gzip, sar-backprojection, povray,
sphinx3, sar-pfa-interp1, dwt53, soplex, bzip2

Figure 5: The amount of ILP mined from the dataflow graph
by the MaxILP and the MaxSize algorithms. MaxILP has
average ILP that is equal to the unchained dataflow graph’s
ILP. MaxSize shows notable ILP loss in some applications.

yellow depict the nodes and edges belonging to a particular
chain. Some binary operations such as multiply are shown
to have zero or one inputs because either the inputs are data
values produced outside the region, or are constants. The
dataflow graph shows varying amounts of ILP at different
levels which is unsuitable for spatial fabrics. At the same
time, the dataflow graph exhibits long chains that can be
exploited by Chainsaw.

There is a tension between chain size and average ILP.
Chains are beneficial if the ratio of intra-chain dependencies
to inter-chain dependencies is high and the impact on ILP is
minimal. Figure 4a shows the relative proportion of internal
and external dependencies using the MaxILP and MaxSize
strategies respectively. For the MaxSize strategy, 70-80%
of the dependencies have been converted to intra-chain
operations, which will lead to high efficiency benefits in
chained execution. The conversion rate is significantly lower
at 40-60% for the MaxILP strategy. Figure 4b elucidates
the reason for the high rate of conversion by the MaxSize
strategy. Each stacked bar shows the relative proportion of
dataflow graph nodes in chains of different lengths i.e. the
percentage of computation covered by chains of different
lengths. For MaxSize strategy, 50-80% of the nodes belong
to chains of length three or more i.e. most nodes belong
to reasonably long chains. bzip2, soplex, lbm and dwt53
have 50% of the chains with more than 5+ ops. equake,
blackscholes, and swaptions have dataflow graphs that are
closely interleaved leading to small chains; �35% of the
operations have only one op. Figure 5 shows the average
ILP in dataflow graphs for both the strategies as compared to
the ILP in the unchained state. Since the MaxILP algorithm
forcefully breaks the chain when any internal instruction



(a) # of chains generated by the MaxILP algorithm and the
MaxSize algorithms. MaxSize typically creates fewer chains
enabling.
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(b) Average chain lengths generated by MaxSize algorithm.

Figure 6: Properties showing the feasibility of implementing
a chain–based architecture.

has an external dependency it attains as much ILP as the
original unchained dataflow graph. The MaxSize algorithm
may potentially lose ILP, when an internal operation in the
chain is delayed from waking up a remote chain. The loss
in ILP may also manifest as an increase in the critical path
when compared to the ideal unchained dataflow graph. Our
model here assumes every instruction in the critical path has
the same latency to eliminate effects of memory operations.
Overall, we find that in 6 applications chains increase the
critical path by <20% and lose avg. 20% of the ILP. In
5 applications (sphinx3, sar-pfa, dwt53, soplex, bzip2) we
reduced the ILP by 2× compared to the ideal dataflow graph.
Note that these are averages and in many cases as long as
we don’t restrict the ILP at particular points of the dataflow
graph (e.g., memory ops) the overall performance won’t
necessarily suffer. In summary, chains have a high potential
for improving energy-efficiency.

4.2. Chain Distribution
Figure 6b shows the distribution of chains by size per ap-

plication. The average chain size per application is presented

at the top of the chart. Overall, the average chain length is
2.6 operations across benchmarks Apart from 4 applications
(183.equake, blackscholes, sar-pfa and swaptions), all other
applications have 50% or more chains with size greater than
2. Figure 6a shows the number of chains per application.
The MaxILP approach produces significantly more chains
than the MaxSize approach as described previously in § 4.
There are 30 chains per workload on average, 10 workloads
have fewer than 20 chains. Only 482.sphinx3 has more than
60 chains (avg. size 3). In conclusion, the number of chains
per workloads is a tractable for frequently executed regions.

5. Architecture
Figure 7 describes the overall Chainsaw design. Chainsaw

is a multi–lane design consisting of lanes, each of which
contains a 4–stage single–issue pipeline which fetches and
decodes instructions from an instruction buffer. Each chain is
scheduled in entirety on a single lane to exploit the intra-chain
locality within the lane’s pipeline registers. The instruction
buffer stores the execution sequence for multiple chains and
chains are executed out-of-order as they are activated. Chains
communicate with each other through registers; the live-in
register bank holds the values for the duration of a chain’s
execution. Chains only write out the live–out values into the
register once they complete all the operations in the sequence.
Each lane has a pair of input registers, IN0, and, IN1 to
hold the live-in values for the duration of an executing chain;
these are refilled from the live-in register file when a chain
is scheduled on the lane. If a chain produces values that
will be consumed outside itself, these values are placed in
a pair of output registers, OUT 0, and, OUT 1. The INs and
the OUT s essentially act as a local register file (refilled and
written back at chain boundaries).
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Figure 7: Block diagram of the Chainsaw accelerator. It is
composed of lanes. Each lane has a INT and FPU with
forwarding registers, two input/output registers (INs and
OUT s), a live-in register bank, and an instruction buffer.
Instruction fields: op=opcode, IN0/1: Operand consumes
IN0 or IN1 live in value, WR: does instruction produce
live-out?, FWD: Foward value to subsequent instruction, L/R
Op: operand order (is the IN the left or right operand of
the instruction), the other operand is the forwarded value.
OUT0/1=write output to register OUT0 or OUT1.

They help indirectly minimize the fetch-decode energy by
restricting the number of bits required to encode the register
names i.e., instructions within a chain can only refer to 2 INs



or 2 OUT s (2 bits for encoding) as opposed to register names
(8 bits or more). When a chain finishes, a bus routes values
in the output registers to the appropriate bank if required.
Finally, a scheduler determines when to schedule each chain
in the DFG. Each lane includes a Chain Read bitmap
which specifies the chains ready for execution. The number
of entries in this table specifies the maximum number of
chains that can be mapped to that lane; each entry is 10 bits
wide; two 4–bit fields specifying the live-in register ids in
the bank and two flag bits for registering the completion
of the parent chains. All other structures also need to be
proportionately scaled based on the Chain Ready bitmap
(N), where N is the number of chains; the number of live-
in registers is (2×N) which the compiler guarantees when
forming the chains. The number of entries in the instruction
buffer determine the maximum size of each chain; here we
set it to the average sizeof(Chain)×N. The number of lanes
is proportional to the ILP available.

Execution
The instruction buffers in each lane are preloaded before

Chainsaw starts execution; the reconfiguration involves writ-
ing the instructions into the instruction buffer. Chains are
statically mapped onto lanes to ensure that the requirements
for the instruction buffer and the live-in register bank does
not exceed availability. However, chain activation is carried
out dynamically to improve latency. When a lane becomes
available, the scheduler checks for chains that are ready
i.e. chains that have been mapped to the available lane by
the compiler and whose live-in values are all available. It
activates one of the ready chains by loading its live-in values
from the live-in register bank to the IN0 and IN1 registers.
The scheduler also signals the fetch/decode unit in the lane
to start issuing instructions. During chain execution, if an
instruction produces a value that serves as a live-in to another
chain, the value is written out to the one of the OUT 0 or
OUT 1 registers. When the chain finishes executing, the
values in the OUT registers are routed to the appropriate
live-in register bank by the bus. Figure 8 shows a simple
chained DFG that we use to demonstrate the architecture
functions. Figure 8 also shows the execution sequence of
chains belonging to this DFG, in their respective lanes. We
assume a latency of one cycle for each operation. C0 executes
first followed by C1 and C2.

C0
C1

C2
Scheduler Buffer

Chain Lane Live-in 0 Live-in 1 Child 0 Child 1

C0 Lane 0 - - C1 C1

C1 Lane 1 Reg 0 Reg 1 C2 -

C2 Lane 1 Reg 2 - - -

Instruction Fields

op IN0/1 WR FWD L/R OUT0/1

cvt 1 0 0 x 0

sub 0 1 1 1 1

sext x 0 1 x 0

Schedule
Cycle Lane 0 Lane 1

0 - -
1 C0 -
2 C0 -
3 C0 -
4 - -
5 - C1
6 - C1
7 - C1
8 - -
9 - C2

Figure 8: Example DFG execution on Chainsaw.

Chain Scheduling and Wakeup
Figure 8 shows the scheduler table in the compiler for this

DFG when mapped to a 2-lane ChainSaw. In this table, every
row corresponds to a chain. The fields in a row respectively
store the lane mapping, the register bank locations for live-
ins, and the children chains. Since both the number of live-in
values and live-out values are limited to two, it is sufficient
to specify two children for each chain. For example, the row
for C1 indicates i) the chain is mapped to execution lane 1,
ii) the live-in values are stored at locations at register 0 and
register 1 in the Live-in bank, and that C2 is its only child
chain. The Chain Ready bits specify the chains mapped
to the lane and whose dependencies are satisfied and ready
for execution. When execution begins, all lanes are available.
In the example, only C0 is ready to execute. Therefore, C0
is scheduled onto Lane0. When it finishes executing, its live-
out values are present in register OUT 0 and OUT 1, both of
which will be consumed by C1. The scheduler table entry
for C1 gives the locations where these values must be routed
to and the compiler inserts the appropriate move operations
to terminate the chain. The bus routes these values, while
C1 gets scheduled onto Lane1. Similarly, when C1 finishes,
C2 is scheduled onto Lane1.

Instruction Issue
The fetch-decode unit in a lane sequentially fetches,

decodes and issues instructions from the instruction buffer.
The FU presents a simple 4-stage pipeline with the following
stages: fetch, decode, execute, write register. Figure 8 shows
the instruction buffer fields for chain C1. The op field gives
the operation to be performed. C1 has three operations
in the following sequence :cvt(convert), sub(subtraction),
and, sext(sign extend). There are five 1-bit fields in each
instruction: IN0/1, WR, FWD, L/R, OUT0/1. The FWD
indicates whether one of the operands is available through
bypassing i.e. the operand is the result of the previous chain
operation. This field is clear for the first chain operation
and set for subsequent chain operations. IN0/1 indicates
whether the instruction must read one live-in value from the
IN0 register. For unary operations, this field is meaningful
only if the operand is not available through value bypassing.
For binary operations, this field is always meaningful because
one of the inputs must be a live-in. Therefore this field is set
in the first instruction as the only input is a live-in residing in
IN0. This field is clear for the subtraction because, although
it consumes a live-in, the value resides in IN1. This field
is meaningless for the last instruction because it does not
consume any live-ins. L/R, indicates the ordering among
the operands. Ordering is meaningless for unary operations.
However, for binary operations that are not commutative (e.g.
subtraction), this field is necessary. Therefore, the subtraction
defines this field whereas the other instructions do not. The
WR determines whether the instruction produces a live-out.
This flag is only set for the subtraction because it emits a live-
out that is consumed by C2. The flag OUT0/1 determines
which of the OUT registers the value must be written to. It is
set if the the destination is OUT0, and clear if the destination
is OUT1.



6. Framework
We have built a LLVM–based toolchain for profiling,

extracting chains and generating code for Chainsaw.

Profiling. The applications are profiled using gprof which
identifies the critical functions and the function call hier-
archy. Based on the gprof profile, we identify top-level
functions that consume the largest amount of execution
time. We then inline all functions called by this identified
function in a bottom–up recursive manner. This LLVM–
based infrastructure identifies paths [5] in the function.
Enumerated paths are profiled using large representative
inputs (eg. ref for SPEC benchmarks). Paths which include
“unacceleratable” characteristics (such as external library
calls, memory allocation) are pruned from the set.

We profile our workloads to understand how much “cov-
erage” is provided by each path. Coverage of a path is
calculated as the number of operations in the path times
frequency of execution, represented as a fraction of the
whole routine. Table 2 summarizes the coverage of the top
five ranked paths in each workload. On average the coverage
provided by the top five traces is 69% (median 88%). The
five highest ranked paths by coverage are selected for chain
extraction.

TABLE 2: ∑Coverage top five traces

∑5Cov. Avg Workloads

0-25 19% sjeng, 401.bzip2
25-50 40% blackscholes, bodytrack
50-75 64% fluidanimate, freqmine, art

75-100 92% h264ref, mcf, mcf, dwt53, namd, parser, soplex, gcc,
gzip, equake, sphinx3, povray, hmmer, lbm

Chain Extraction. At the basic block granularity, there
are no control dependences (basic blocks are terminated by
branches). While chains can be derived from basic blocks,
the blocks themselves are quite small in size (11 operations
on avg, max 150 for namd). The Chainsaw architecture
relies on the extraction of longer chains to reduce energy
overheads by internalizing communication. To extract larger
chains, we use an approach inspired by dynamic just-in-
time compilers. All branches in the previously described
outlined functions are converted to control flow assertions.
The Chainsaw incorporates store buffers to export an atomic
view of Chainsaw invocation. The average number of stores
for all paths is 3, the maximum is 25. 97% of profiled paths
had less than 16 stores.

The dataflow graph of the control free outlined function
is constructed by examining each LLVM instruction and its
operand. Chains are formed via the decomposition algorithms
described in Section 4. The unmodified dataflow graph also
serves as the basis of the CGRA timing simulation. We
choose an optimistic CGRA schedule with no constraints.

Code Generation. The chain dataflow graph is derived from
decomposing the original dataflow graph. The compiler adds
the following information to the program binary: 1) markers
to indicate regions that carry Chain information, 2) start

addresses and lengths of chains in the region, 3) the depen-
dencies among the chains belonging to the region, and 4)
the stripped chain instructions (13 bits).

7. Evaluation
Simulation. We have developed a detailed cycle accurate
simulator1 that models the host core, the Chainsaw accel-
erator, and spatial fabrics of parameterizable size. The host
OOO core pipeline is modelled using MacSim [35]. We
assume that Chainsaw is an accelerator that communicates
with the OOO core via the L1 cache. We model a CGRA, a
spatial homogeneous fabric accelerator similar to [2], [3].
The memory hierarchy is modelled using Ruby [36]. We
assume an aggressive non-blocking interface to memory.
To accurately model the host-accelerator interaction via
the memory system, we capture a window of memory
accesses prior to the accelerator invocation and warm up
the caches.The memory accesses for host execution and the
accelerator are collected apriori using Intel Pin [37]. All
memory operations from the host are collected in a trace.
Memory operations at the IR level may not translate to an
x86 instruction in the binary for the accelerated path.Thus
IR level memory operations are marked in the binary during
acceleration extraction in LLVM; the pin tool recognizes
these accesses during tracing and dumps them to a separate
accelerator trace. Each memory operation in the accelerator
trace contains a unique identifier which maps it to a particular
node in the dataflow graph. The Chainsaw and CGRA
simulations use this trace to issue memory operations with
addresses consistent with the host core.

We model all operations of the Chainsaw architecture as
described in Section 5. To model the CGRA, we traverse
the activity of the dataflow graph cycle-by-cycle, generating
any requisite memory operations in a cycle and stalling the
appropriate operations as necessary. To model the power
consumption, we adopt an event-based power model similar
to Aladdin [38]. Table 3 shows the characteristics of the
architectures that we model.

TABLE 3: System parameters

Host Core 2 GHz, 4-way OOO, 96 entry ROB, 4 INT, 4 FPU,
INT RF (64 entries), FP RF (64 entries)
32 entry load queue, 32 entry store queue

L1 64K 4-way D-Cache, 3 cycles
LLC 4M shared 16 way, 8 tile NUCA, ring, avg. 25 cycles.

Directory MESI coherence.
Memory 200 cycles.

Accelerators
CGRA8 8× 8 function units or
Chainsaw Lane sizes:1,2,4,8,16 #instruction-

s/lane:256,128,64,32,16.
Energy Parameters (Static and Dynamic)

OOO Mcpat [39]; ARM A9 2Ghz template.
CGRA8 CGRA Network (650 fJ/switch), Function units (510

fJ/INT,1500fJ/FP)
Chainsaw
Lane

Instruction buffer (16 entries, 120 fJ/read, 220 fJ/write),
Decode (100 fJ/ instruction)

Chainsaw
Comm.

Pipeline forwarding (250 fJ), Live-in Registers (Read:
180fJ and Write: 250fJ), Bus (1100fJ/access)

1. The following six workloads crafty, freqmine, sar-back, sar-pfa,
streamc.,swaptio. were not supported on our simulator.
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Figure 9: Performance of various architectures normalized to the IDEAL performance. We don’t plot CGRA8 on this plot
since in all applications the CGRA8 attains the performance of IDEAL. Higher is better.

Synthesis and Area Overhead . We designed the Chainsaw
pipeline based on the RISC-V 4-stage IMAFD pipeline using
our own custom instruction encoding. For synthesis, we used
the Synopsys design compiler (Vision Z-2007.03-SP5) 45nm
technology library. To tease out the impact of the main
design tradeoffs we fix the design parameters of a single
lane. The primary parameter that influences the complexity
or overhead of a lane is the number of instruction buffer
entries supported; our evaluation assumed 16 instructions
per lane. Given that each instruction requires 13 bits (see
Section 5) the entire instruction buffer in each lane requires
26 bytes and is single ported since the lanes are single issue.
We picked this parameter to minimize the fetch overhead.
The largest components in the lane design are the register
banks which directly correlate with how many chains we
would like to support and the number of chain dependencies
which are the only communication that requires registers
(see Figure 5). The sample configuration we synthesized and
simulated supports 8 chains; given the maximum fan–in for
many workloads is 1–2, we assumed a total of 2×8 registers
per lane (i.e., 16 x 32 bit = 64 bytes). The register banks are
dual ported to supply the chain registers in a single cycle.
The scheduler, unlike OOO, consists of only one wakeup
component; it does not require any tag matches since the
compiler explicitly encodes the dependent children; each
entry in the chain wakeup flag is 9 bits (1 bit for ready and
two 4–bit live–in register ids). The chain wakeup matrix has
as many entries as the number of chains per lane; (8×9 bits).
Overall, the per lane overhead � 100 bytes (64 bytes for the
16 entry register bank, 26 bytes for the 8 entry instruction
buffer, and 9 bytes for the chain wakeup flag). Overall, we
found that the area for a 16 lane design (� 1.6 KB) is 0.21
mm2 (including the functional units).

7.1. Performance Comparison

To understand the performance characteristics of the Chain-
saw architecture, we compare Chainsaw8 and Chainsaw16
to a 4-wide OOO processor, an IDEAL-CGRA i.e. an

unbounded CGRA that is only limited by the application2 ILP.
Figure 9 shows the performance of the OOO, Chainsaw8
and Chainsaw16 normalized with respect to the IDEAL-
CGRA. Higher bars are better, i.e performance is closer to
an IDEAL-CGRA.

For 10 of the 20 workloads (gzip, art, gcc, namd, soplex,
hmmer, h264ref, lbm, bodytrack, and, fluidanimate), we find
that performance of OOO < Chainsaw8 < Chainsaw16.
In these benchmarks, the unchained DFG ILP (4–23 , see
Table1) is greater than the width of the OOO core, therefore
OOO is unable to exploit all the available ILP. The chained
DFG ILP in the range 3–16, thus performance improves
as the Chainsaw architecture is able to exploit more ILP.
Of these there are three workloads (gcc, hmmer, and, lbm)
with ILP in the range 6–16, for which Chainsaw16 performs
significantly better than Chainsaw8 due to increased hardware
resources.

For 6 workloads (mcf, equake, parser, bzip2, sphinx3, and,
dwt53) the performance of the Chainsaw8 was the same as
Chainsaw16. For all these workloads the chained DFG ILP
is less than 8, thus Chainsaw16 is over-provisioned. In 3 of
these workloads (mcf, equake and dwt53) the performance
of the OOO is better than Chainsaw architectures. The
chained ILP for each of these is less than the unchained
ILP (see Figure 5) as well as the average memory–level
parallelism being lower than 3. For the remaining workloads,
the Chainsaw is able to exploit more MLP than OOO and
improve performance.

For the remaining 4 workloads (mcf, povray, sjeng,
blackscholes) we see an interesting pattern where the perfor-
mance of the OOO is higher than Chainsaw8 but lower than
Chainsaw16. In blackscholes, the OOO is marginally better
than Chainsaw8 as the CPI is 8% less on average while the
ILP is � 4. However, Chainsaw16 is significantly better than
both the OOO and Chainsaw8 (upto 21%). Chainsaw16 is
able to enqueue more long latency floating point operations
in parallel than Chainsaw8. The number of idle cycles, cycle

2. We do not include the CGRA8x8 in this comparison as the fabric size
restricts the number of operations. Of the 20 workloads we study, only 9
execute without reconfiguration (< 64 ops, see Table1).
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by network energy.
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(b) Communication Energy Breakdown (Chainsaw8). Localized
computation in CHAINSAW8 reduces communication costs signif-
icantly compared to dataflow architectures. The dominant energy
component in both CHAINSAW8 and CGRA8 is the network
transfers required between producer-consumer operations.

Figure 10: Dynamic Energy Comparison

count of ready chains blocked due to resource contention, is
3.4× for Chainsaw8 when compared to Chainsaw16. For the
remaining 3 workloads, we see a common pattern of wide
(>8) issue potential in the chain graph with long latency
memory operations. The performance of the OOO with
respect to Chainsaw8 is marginally better as the average ILP
is only 3.4. The performance of Chainsaw16 is significantly
better (average 9%) as it is able to overlap the long latency
memory operations.

To summarize, in 8 of 20 workloads the performance of
the Chainsaw architectures is within 90% of an unbounded
dataflow. Across all workloads, the performance of Chain-
saw16 is 81% and Chainsaw8 is 73% of an unbounded
CGRA. Chainsaw architectures outperform an OOO core
by 20.3% on average (17 out of 20 applications) with most
significant improvements for gcc and hmmer.

7.2. Energy Comparison
Chainsaw and CGRA architectures represent two accelera-

tor designs with different tradeoffs on various components of
the total energy consumption. We first discuss dynamic power
components, followed by static power. CGRA8 statically
maps ops to the FUs, whereas Chainsaw incurs fetch-decode
overhead per instruction. Chainsaw also incurs energy costs
on chain activation and chain completion. On the other
hand, Chainsaw attempts to minimize data movement, while
CGRA8 moves data for every producer-consumer instruction
pair. With regard to static power, CGRA8 is expected to have
significant static power costs due to larger fabric size which
leads to more idle cycles. Chainsaw improves utilization and
limits static power.

Dynamic Energy Figure 10a shows the dynamic energy
consumed by CGRA8 and Chainsaw8 normalized to func-
tional unit energy. Across workloads the energy of the
OOO (numbers above each bar) is � 5× the functional
unit energy. The least is found in blackscholes (50% floating
point operations) and the most in gzip (only INT ops, no
memory). The dynamic energy of the consumption of the

CGRA8 is � 3.3× the functional unit energy where the
least is blackscholes. The most however is gcc where the
link energy dominates due to the high connectivity of the
dataflow graph. Similarly for the Chainsaw8, the average is
� 2.8×. The net dynamic energy consumption is reduced
via internalizing communication within chains.

Communication Costs Figure 10b shows the total energy
expended by Chainsaw in communication, normalized to
CGRA8 communication energy. Each benchmark is repre-
sented by a stacked bar, which shows the relative proportions
of energy spent in the bus, pipeling forwarding, and register
(INs/OUT s) communication by Chainsaw. The CGRA8
communication energy includes the fabric overhead and the
latches at each PE. The reduction in communication cost
is a motivation for the Chainsaw accelerator, because fetch-
decode, which is the other component of dynamic power, is
an essential component of von neumann style architectures.
The chart shows that Chainsaw improves communication
cost significantly, on average 38%. The variation in energy
reduction is well illustrated by Figure 4a.

Although Chainsaw reduces bus events as far as possible,
bus communication still consumes majority of the power.
The dynamic energy cost of registers is related to the bus
cost as each inter-chain dependence scheduled on a different
lane triggers a bus access as well as a register access. Note
that a bus access is 3.5× as expensive as pipeline forwarding.
An inter-lane register write and then read is 44% more than
forwarding. On average, forwarding events are 21% more
frequent, with the highest occurrence in hmmer (2.2×). For
3 out of 20 workloads (equake, blackscholes, fluidanimate),
the bus events are more frequent (average 30%) due to small
chain formation (average size < 2 ops) coupled with greedy
scheduling. The scheduling strategy is tuned for performance
which seeks to schedule chains on free lanes to extract
maximal ILP.

Overall, the dynamic communication energy is 38% lower
for Chainsaw8 compared to CGRA8 due to conversion of
link transfers to internal pipeline forwarding.



7.3. Static Power:

Figure 11: Static Power. CGRA8 and CHAINSAW8 normal-
ized to CGRA8. IDLE : the static power expended while
waiting for scheduled operations to be ready to run. FREE
indicates the static power due to over-provisioning resources
compared to the available ILP i.e., the PE or Lane does not
have any instruction scheduled to execute.

Figure 11 shows the static power consumption normalized
to the static power consumption of the CGRA8. The static
power component is broken down into two components: the
IDLE power and the FREE power. In lane or PE based
execution such as Chainsaw and CGRA, a particular hard-
ware resource might be inactive due to either the instruction
assigned to the PE/lane has not been woken up yet since
the producer instructions have not completed (IDLE), or the
PE/Lane may have completed all the instructions assigned
to it (FREE). The CGRA fabric for instruction-granularity
accelerators [32] is scaled based on the number of operations
to be accelerated while the Chainsaw is scaled based on the
instruction parallelism available. Hence, in many cases the
CGRA is excessively provisioned and is underutilized unless
there is data parallelism to be exploited. This leads to an
interesting case where the static power in the CGRA8 (64
units) is dominated by the FREE power; the FREE power
may be curtailed by power-gating the PEs or the execution
lanes. Chainsaw8 improves overall utilization and consumes
much less FREE power but may introduce contention for the
lanes or PEs by mapping multiple operations onto the same
PE; this leads to an overall increase in IDLE power due to
chain operations being stalled due to other unrelated chains
occupying the lane. Note that both CGRA and Chainsaw
will suffer from IDLE power since they statically map the
operations to the resources.

Chainsaw8 reduces overall static energy by �21%. From
Figure 11, we see 11 of the 20 applications reduce energy by
20% to 40%. In equake, povray, hmmer, sjeng and lbm we
see little to no reduction in overall static energy consumption.
In all these applications a large fraction of the operations are
long latency operations (FP or memory) thus increasing the
IDLE’ness of the Chainsaw8. For 15 out of 20 workloads,
there is more IDLE’ness in the Chainsaw architecture. In the
remaining 5 workloads (namd, sjeng, blackscholes, bodytrack,
fluidanimate), the IDLE’ness of the CGRA8 is more than the

Chainsaw as even an unconstrained mapping leaves resources
available due to the number of operations.

8. Conclusions
In this paper, we presented a new instruction abstraction,

Chains, to exploit the producer-consumer locality between
instructions. Chains present an effective strategy to localize
communication between dependent instructions and save
communication energy. Chains also enable the accelerator
design to amortize the front-end costs. We have developed an
end-to-end compiler prototype based on LLVM that extracts
hot paths from applications, decomposes the dataflow graph
into chains and prepares them for the Chainsaw architecture.
Chainsaw is a lane-based architecture that leverages chains
to achieve dynamic energy efficiency proportional to CGRA
architectures, while minimizing idle and communication
energy.
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