
Bitwise Data Parallelism in Regular Expression Matching

Robert D. Cameron, Thomas C. Shermer, Arrvindh Shriraman,
Kenneth S. Herdy, Dan Lin, Benjamin R. Hull, Meng Lin

School of Computing Science
Simon Fraser University
Surrey, British Columbia

{cameron,shermer,ashriram,ksherdy,lindanl,bhull,linmengl}@sfu.ca

ABSTRACT
A new parallel algorithm for regular expression matching is
developed and applied to the classical grep (global regular
expression print) problem. Building on the bitwise data par-
allelism previously applied to the manual implementation of
token scanning in the Parabix XML parser, the new algo-
rithm represents a general solution to the problem of regular
expression matching using parallel bit streams. On widely-
deployed commodity hardware using 128-bit SSE2 SIMD
technology, our algorithm implementations can substan-
tially outperform traditional grep implementations based on
NFAs, DFAs or backtracking. 5X or better performance
advantage against the best of available competitors is not
atypical. The algorithms are also designed to scale with
the availability of additional parallel resources such as the
wider SIMD facilities (256-bit) of Intel AVX2 or future 512-
bit extensions. Our AVX2 implementation showed dramatic
reduction in instruction count and significant improvement
in speed. Our GPU implementations show further accelera-
tion.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming—parallel programming ; D.3.3 [Programming Lan-
guages]: Processors—compilers; F.2.2 [Analysis of Algo-
rithms and Problem Complexity]: Nonnumerical Algo-
rithms and Problems—pattern matching

Keywords
regular expression matching; parallel bit streams

1. INTRODUCTION
The use of regular expressions to search texts for pat-

terns has a long history and remains an important technique.
Thompson [21] is credited with the first construction to con-
vert regular expressions to nondeterministic finite automata

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PACT’14, August 24–27, 2014, Edmonton, AB, Canada.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2809-8/14/08 ...$15.00.
http://dx.doi.org/10.1145/2628071.2628079.

(NFA). Following Thompson’s approach, a regular expres-
sion of length m is converted to an NFA with O(m) states.
Using the NFA it is possible to search a text of length n in
O(mn) time. Frequently, a more efficient choice is to con-
vert an NFA into a deterministic finite automata (DFA). A
DFA maintains a single active state throughout the match-
ing process and hence, using a DFA it is possible to search
a text of length n in O(n) time1.

A significant proportion of the research in fast regular ex-
pression matching can be regarded as the “quest for efficient
automata” [15]. In [2], Baeza-Yates and Gonnet presented a
new approach to string search based on bit-level parallelism.
This technique takes advantage of the intrinsic parallelism
of bitwise operations within a computer word. Thus, given
a w-bit word, the number of operations that a string search
algorithms performs can be reduced by a factor w. Build-
ing on this observation, the Shift-Or algorithm simulates
an NFA using bitwise operations and achieves O(nm

w
) time

in the worst-case [13]. A disadvantage of the Shift-Or ap-
proach is an inability to skip input characters. Simple string
matching algorithms, such as the Boyer-Moore family of al-
gorithms [3, 7], skip input characters to achieve sublinear
times in the average case. The Backward Nondeterminis-
tic Dawg Matching (BNDM) pattern matching algorithm
[24] combines the advantages of the Shift-Or approach with
the ability to skip characters. The nrgrep tool is based on
the BNDM algorithm. It is generally considered the fastest
grep tool for matching complex patterns, and achieves simi-
lar performance to the fastest existing string matching tools
for simple patterns [13].

Recently, there has been considerable interest in the use
of parallel hardware such as multicore processors (CPUs),
graphics processing units (GPUs), field-programmable gate
arrays (FPGAs), or specialized architectures such as the
Cell Broadband Engine (Cell BE) to accelerate regular ex-
pression matching. Generally, speedups are achieved by us-
ing parallel hardware features to improve the throughput of
multiple instances of a matching problem at a time, i.e., by
matching against sets of patterns or multiple input streams.
In contrast, our approach uses parallelism to accelerate the
throughput of a single problem instance, i.e., a single regular
expression matched against a single input stream.

In related work targeting multicore hardware, Scarpazza
and Braudaway [20] demonstrated that text processing al-
gorithms that exhibit irregular memory access patterns can

1It is well known that the conversion of an NFA to an equiv-
alent DFA may result in state explosion, i.e., the number of
resultant DFA states may increase exponentially.

139

be efficiently executed. Pasetto et al [16] presented a flexible
tool that performs small-ruleset regular expression matching
at a rate of 2.88 Gbps per chip on Intel Xeon E5472 hard-
ware. Naghmouchi et al [18, 12] demonstrated that the Aho-
Corasick (AC) string matching algorithm [1] is well-suited
for parallel implementation on multicore CPUs, GPUs and
the Cell BE. Salapura et al [17] advocated the use of vector-
style processing for regular expressions in business analytics
applications and leveraged the SIMD hardware available on
multicore processors to achieve a speedup of greater than
1.8 over a range of data sizes. On the Cell Broadband En-
gine, Scarpazza and Russell [19] described a pattern match-
ing implementation that delivered a throughput of 40 Gbps
for a small dictionary of approximately 100 patterns and
a throughput of 3.3-3.4 Gbps for a larger dictionary con-
taining thousands of patterns. Iorio and van Lunteren [8]
presented a string matching implementation for automata
that achieved 4 Gbps on the Cell BE. On GPUs, Tumeo
et al [22] presented a chunk-based implementation of the
AC algorithm for accelerating string matching on GPUs.
Lin et al., proposed the Parallel Failureless Aho-Corasick
(PFAC) algorithm to accelerate pattern matching on GPU
hardware and achieved 143 Gbps raw data throughput, al-
though system throughput was limited to 15 Gbps [9]. Most
recently, Mytkowicz et al [11] have developed a method for
combining SIMD parallelism and data parallelism on multi-
core hardware. Of each of these related works, this approach
stands out since it also focuses on the acceleration of match-
ing against a single input stream.

Whereas the existing approaches to parallelization have
been based on adapting traditional sequential algorithms to
emergent parallel architectures, we introduce both a new al-
gorithmic approach and its implementation on SIMD and
GPU architectures. This approach relies on a bitwise data
parallel view of text streams as well as a surprising use of
addition to match runs of characters in a single step. The
closest previous work is that underlying bit-parallel XML
parsing using 128-bit SSE2 SIMD technology together with
a parallel scanning primitive also based on addition [4].
However, in contrast to the deterministic, longest-match
scanning associated with the ScanThru primitive of that
work, we introduce here a new primitive MatchStar that
can be used in full generality for nondeterministic regular
expression matching. We also introduce a long-stream addi-
tion technique involving a further application of MatchStar
that enables us to scale the technique to n-bit addition in
dlog64 ne steps. We ultimately apply this technique, for ex-
ample, to perform synchronized 4096-bit addition on GPU
wavefronts of 64 threads.

There is also a strong keyword match between the bit-
parallel data streams used in our approach and the bit-
parallelism used for NFA state transitions in the classical
algorithms of Wu and Manber [23], Baez-Yates and Gonnet
[2] and Navarro and Raffinot [14]. However those algorithms
use bit-parallelism in a fundamentally different way: repre-
senting all possible current NFA states as a bit vector and
performing parallel transitions to a new set of states us-
ing table lookups and bitwise logic. Whereas our approach
can match multiple characters per step, bit-parallel NFA
algorithms proceed through the input one byte at a time.
Nevertheless, with the BNDM extensions, the nrgrep [13]
program remains among the strongest competitors in regu-

lar expression matching performance, so we include it in our
comparative evaluation.

The remainder of this paper is organized as follows. Sec-
tion 2 briefly describes regular expression notation and the
grep problem. Section 3 presents our basic algorithm and
MatchStar primitive using a model of arbitrary-length bit-
parallel data streams. Section 4 discusses the block-by-
block implementation of our techniques including the long
stream addition techniques for 256-bit addition with AVX2
and 4096-bit additions with GPU SIMT. Section 5 describes
our overall SSE2 implementation and carries out a perfor-
mance study in comparison with existing grep implemen-
tations. Given the dramatic variation in grep performance
across different implementation techniques, expressions and
data sets, Section 6 considers a comparison between the bit-
stream and NFA approaches from a theoretical perspective.
Section 7 then examines and demonstrates the scalability of
our bitwise data-parallel approach in moving from 128-bit to
256-bit SIMD on Intel Haswell architecture. To further in-
vestigate scalability, Section 8 addresses the implementation
of our matcher using groups of 64 threads working together
SIMT-style on a GPU system. Section 9 concludes the paper
with a discussion of results and areas for future work.

2. REGULAR EXPRESSIONS AND GREP
We follow common POSIX notation for regular expres-

sions. A regular expression specifies a set of strings through
a pattern notation. Individual characters normally stand
for themselves, unless they are one of the special characters
*+?[{\(|^$. that serve as metacharacters of the notation
system. Thus the regular expression cat is a pattern for
the set consisting of the single 3-character string “cat”. The
special characters must be escaped with a backslash to pre-
vent interpretation as metacharacter, thus \$ represents the
dollar-sign and \\\\ represent the string consisting of two
backslash characters. Character class bracket expressions
are pattern elements that allow any character in a given
class to be used in a particular context. For example, [@#%]
is a regular expression that stands for any of the three given
symbols. Contiguous ranges of characters may be specified
using hyphens; for example [0-9] for digits and [A-Za-z0-

9_] for any alphanumeric character or underscore. If the
caret character immediately follows the opening bracket, the
class is negated, thus [^0-9] stands for any character except
a digit. The period metacharacter . stands for the class of
all characters.

Consecutive pattern elements stand for strings formed by
concatenation, thus [cd][ao][tg] stands for the set of 8
three-letter strings “cat” through “dog”. The alternation
operator | allows a pattern to be defined to have two alter-
native forms, thus cat|dog matches either “cat” or “dog”.
Concatenation takes precedence over alternation, but paren-
thesis may be used to change this, thus (ab|cd)[0-9] stands
for any digit following one of the two prefixes “ab” or “cd”.

Repetition operators may be appended to a pattern to
specify a variable number of occurrences of that pattern.
The Kleene star operator * specifies zero-or-more occur-
rences matching the previous pattern, while Kleene plus
+ specifies one-or-more occurrences. Thus [a-z][a-z]*

and [a-z]+ both specify the same set: strings of at least
one lower-case letter. The postfix operator ? specifies an
optional component, i.e., zero-or-one occurrence of strings
matching the element. Specific bounds may be given within

140

braces: (ab){3} specifies the string “ababab”, [0-9A-Fa-

f]{2,4} specifies strings of two, three or four hexadecimal
digits, and [A-Z]{4,} specifies strings of at least 4 consecu-
tive capital letters.

The grep program searches a file for lines containing
matches to a regular expression using any of the above nota-
tions. In addition, the pattern elements ^ and $ may be used
to match respectively the beginning or the end of a line. In
line-based tools such as grep, . matches any character ex-
cept newlines; matches cannot extend over lines. Normally,
grep prints all matching lines to its output. However, grep
programs typically allow a command line flag such as -c to
specify that only a count of matching lines be produced; we
use this option in our experimental evaluation to focus our
comparisons on the performance of the underlying matching
algorithms.

3. BIT-PARALLEL DATA STREAMS
Whereas the traditional approaches to regular expression

matching using NFAs, DFAs or backtracking all rely on a
byte-at-a-time processing model, the approach we introduce
in this paper is based on quite a different concept: a data-
parallel approach to simultaneous processing of data stream
elements. Indeed, our most abstract model is that of un-
bounded data parallelism: processing all elements of the in-
put data stream simultaneously. In essence, data streams
are viewed as (very large) integers. The fundamental op-
erations are bitwise logic, stream shifting and long-stream
addition.

Depending on the available parallel processing resources,
an actual implementation may divide an input stream into
blocks and process the blocks sequentially. Within each
block all elements of the input stream are processed to-
gether, relying on the availability of bitwise logic and ad-
dition scaled to the block size. On commodity Intel and
AMD processors with 128-bit SIMD capabilities (SSE2), we
typically process input streams 128 bytes at a time. In this
case, we rely on the Parabix tool chain [10] to handle the
details of compilation to block-by-block processing. On the
latest processors supporting the 256-bit AVX2 SIMD oper-
ations, we also use the Parabix tool chain, but substitute
a parallelized long-stream addition technique to avoid the
sequential chaining of 4 64-bit additions. Our GPU imple-
mentation uses scripts to modify the output of the Parabix
tools, effectively dividing the input into blocks of 4K bytes.
We also have adapted our long-stream addition technique
to perform 4096-bit additions using 64 threads working in
lock-step SIMT fashion.

A key concept in this streaming approach is the deriva-
tion of bit streams that are parallel to the input data stream,
i.e., in one-to-one correspondence with the data element po-
sitions of the input streams. Typically, the input stream is
a byte stream comprising the 8-bit character code units of a
particular encoding such as extended ASCII, ISO-8859-1 or
UTF-8. However, the method may also easily be used with
wider code units such as the 16-bit code units of UTF-16.
In the case of a byte stream, the first step is to transpose
the byte stream into eight parallel bit streams, such that bit
stream i comprises the ith bit of each byte. These streams
form a set of basis bit streams from which many other paral-
lel bit streams can be calculated, such as character class bit
streams such that each bit j of the stream specifies whether
character j of the input stream is in the class or not. Fig-

input data a453z--b3z--az--a12949z--ca22z7--

B7

B6 1...1..1.1..11..1.....1..11..1...

B5 111111111111111111111111111111111

B4 .1111...11...1...111111....1111..

B3111..111.111...1.1111....1.11

B2 .11..11...11..11....1..11.....111

B1 ...11..111...1....1...1..1.1111..

B0 1.11.11.1.111.1111.1.1.1111...111

[a] 1...........1...1.........1......

[z9]1....1...1.....1.11......1...

[0-9] .111....1........11111.....11.1..

Figure 1: Basis and Character Class Streams

ure 1 shows an example of an input byte stream in ASCII,
the eight basis bit streams of the transposed representation,
and the character class bit streams [a], [z9], and [0-9]

that may be computed from the basis bit streams using bit-
wise logic. Zero bits are marked with periods (.) so that the
one bits stand out. Transposition and character class con-
struction are straightforward using the Parabix tool chain
[10].

input data a453z--b3z--az--a12949z--ca22z7--

M1 .1...........1...1.........1.....

M2 .1111........1...111111....111...

M31........1.....1.11......1..

Figure 2: Marker Streams in Matching a[0-9]*[z9]

Marker Streams. Now consider how bit-parallel data
streams can be used in regular expression matching. Con-
sider the problem of searching the input stream of Figure
1 to finding occurrence of strings matching the regular ex-
pression a[0-9]*[z9]. Note that this is an ambiguous regu-
lar expression, which could match texts such as a12949z in
multiple ways. The matching process involves the concept
of marker streams, that is streams that mark the positions
of current matches during the overall process. In this case
there are three marker streams computed during the match
process, namely, M1 representing match positions after an
initial a character has been found, M2 representing positions
reachable from positions marked by M1 by further matching
zero or more digits ([0-9]*) and finallyM3 the stream mark-
ing positions after a final z or 9 has been found. Without
describing the details of how these streams are computed for
the time being, Figure 2 shows what each of these streams
should be for our example matching problem. Our conven-
tion that a marker stream contains a 1 bit at the next char-
acter position to be matched, that is, immediately past the
last position that was matched. Note that all three matches
from the third occurrence of a are correctly marked in M3.

MatchStar. MatchStar takes a marker bitstream and a
character class bitstream as input. It returns all positions
that can be reached by advancing the marker bitstream zero
or more times through the character class bitstream.

141

input data a453z--b3z--az--a12949z--ca22z7--

M1 .1...........1...1.........1.....

C = [0-9] .111....1........11111.....11.1..

T0 = M1 ∧ C .1...............1.........1.....

T1 = T0 + C1...1.............1......11..

T2 = T1 ⊕ C .1111............111111....111...

M2 = T2 ∨M1 .1111........1...111111....111...

Figure 3: M2 = MatchStar(M1, C)

Figure 3 illustrates the MatchStar method. In this figure,
it is important to note that our bitstreams are shown in nat-
ural left-to-right order reflecting the conventional presenta-
tion of our character data input. However, this reverses the
normal order of presentation when considering bitstreams
as numeric values. The key point here is that when we per-
form bitstream addition, we will show bit movement from
left-to-right. For example, 111. + 1... = ...1.

The first row of the figure is the input data, the second
and third rows are the input bitstreams: the initial marker
position bitstream and the character class bitstream for dig-
its derived from input data.

In the first operation (T0), marker positions that cannot
be advanced are temporarily removed from consideration by
masking off marker positions that aren’t character class po-
sitions using bitwise logic. Next, the temporary marker bit-
stream is added to the character class bitstream. The addi-
tion produces 1s in three types of positions. There will be a
1 immediately following a block of character class positions
that spanned one or more marker positions, at any character
class positions that weren’t affected by the addition (and are
not part of the desired output), and at any marker position
that wasn’t the first in its block of character class positions.
Any character class positions that have a 0 in T1 were af-
fected by the addition and are part of the desired output.
These positions are obtained and the undesired 1 bits are
removed by XORing with the character class stream. T2

is now only missing marker positions that were removed in
the first step as well as marker positions that were 1s in T1.
The output marker stream is obtained by ORing T2 with
the initial marker stream.

In general, given a marker stream M and a character class
stream C, the operation of MatchStar is defined by the fol-
lowing equation.

MatchStar(M,C) = (((M ∧ C) + C)⊕ C) ∨M

Given a set of initial marker positions, the result stream
marks all possible positions that can be reached by 0 or more
occurrences of characters in class C from each position in M .

MatchStar differs from ScanThru of the Parabix tool chain
in that it finds all matches, not just the longest match. This
is necessary for general matching involving possibly ambigu-
ous regular expressions.

Compilation. Using the marker stream and MatchStar
concept, we now outline our compilation algorithm. This
is implemented in a Java program. First the regular expres-
sion is parsed and represented as an abstract syntax tree.
Second, the various character classes used in the regular ex-
pression are extracted. The character class compiler of the

Parabix framework is invoked to generate the bit stream
equations required for each character class. Then the syn-
tax tree is walked to generate code for each type of regular
expression structure as follows.

• An initial marker stream M0 is set to be all ones, in-
dicating that every position in the input file is a po-
tential match if we have not yet examined any pattern
elements.

• If we have a regular expression formed as an alter-
nation of subexpressions, we compile each of these in
turn, providing the current input marker stream as
input to each of them. The final marker streams of
the compiled forms of each subexpression are then just
combined using a bitwise-or to produce the overall fi-
nal marker stream of the alternation. That is, a match
occurs at any position that can be reached by matching
any one of the alternatives.

• If we have a marker stream formed as a concatena-
tion of subexpressions, then we compile each of these
in turn, providing the output marker stream of each
compilation as the input marker stream for the com-
pilation of the next pattern element.

• If a regular expression is a character class expression or
a single character, then we form the bitwise-and of the
current marker stream and the character class stream
to filter out current marker positions that do not have
a match to the class. The result is then shifted forward
one position to identify the successful matches.

• If a regular expression is an optional expression of the
form R? for some subexpression R, then the output
marker stream is simply formed as the bitwise-or of the
input marker stream (zero occurrences of R matched)
and the output stream produced by compiling R in the
context of the current input marker stream (one oc-
currence matched).

• If a regular expression is a repetition of a character
class of the form C*, then the compiled form uses the
MatchStar operation to produce the output marker
stream from the input stream and the compiled stream
for character class C.

• If a regular expression is a repetition of a non char-
acter class of the form R*, then a Pablo while loop is
created conditioned on a control marker stream still
having bits marking match positions to be considered.
The body of the while consists of the compiled form of
the expression R, taking as input the marker stream at
the beginning of the iteration and producing as output
all positions that can be reached from the input posi-
tions in a single step. These output positions are can-
didates for further iteration, but positions that have
already been considered are removed. This guaran-
tees termination of the loop; iteration continues only
if a new marker position is reached that has not been
previously considered as an output. The final output
is the bitwise-or of matches determined in each loop
iteration.

• If a regular expression is a bounded repetition of the
form R{m,n}, then it is compiled according to the

142

equivalent form consisting of m concatenations of R

followed by n−m concatenations of R?.

• If a regular expression is a bounded repetition of the
form R{m,}, then it is compiled according to the equiv-
alent form consisting of m concatenations of R followed
by R*.

The output of the regular expression compiler is then fed
as input to the Pablo compiler of the Parabix tool chain.
The result is then compiled with a C++ compiler linked
with the Parabix run-time libraries.

4. BLOCK-AT-A-TIME PROCESSING
The unbounded stream model of the previous section must

of course be translated an implementation that proceeds
block-at-a-time for realistic application. In this, we pri-
marily rely on the Pablo compiler of the Parabix toolchain
[10]. Given input statements expressed as arbitrary-length
bitstream equations, Pablo produces block-at-a-time C++
code that initializes and maintains all the necessary carry
bits for each of the additions and shifts involved in the bit-
stream calculations.

In the present work, our principal contribution to the
Parabix tool chain is to incorporate the technique of long-
stream addition described below. Otherwise, we were able
to use Pablo directly in compiling our SSE2 and AVX2 im-
plementations. Our GPU implementation required some
scripting to modify the output of the Pablo compiler for
our purpose.

Long-Stream Addition. The maximum word size for addi-
tion on commodity processors is typically 64 bits. In order
to implement long-stream addition for block sizes of 256 or
larger, a method for propagating carries through the individ-
ual stages of 64-bit addition is required. However, the nor-
mal technique of sequential addition using add-with-carry
instructions, for example, is far from ideal.

We use the following general model using SIMD methods
for constant-time long-stream addition up to 4096 bits. Re-
lated GPU solutions have been independently developed[6],
however our model is intended to be a more broadly appli-
cable abstraction. We assume the availability of the follow-
ing SIMD/SIMT operations operating on vectors of f 64-bit
fields.

• simd<64>::add(X, Y): vertical SIMD addition of cor-
responding 64-bit fields in two vectors to produce a
result vector of f 64-bit fields.

• simd<64>::eq(X, -1): comparison of the 64-bit fields
of x each with the constant value -1 (all bits 1), pro-
ducing an f -bit mask value,

• hsimd<64>::mask(X): gathering the high bit of each
64-bit field into a single compressed f -bit mask value,
and

• normal bitwise logic operations on f -bit masks, and

• simd<64>::spread(X): distributing the bits of an f bit
mask, one bit each to the f 64-bit fields of a vector.

Here, the hsimd<64>::mask(X) and
simd<64>::spread(X) model the minimum communi-
cation requirements between the parallel processing units

(SIMD lanes or SIMT processors). In essence, we just need
the ability to quickly send and receive 1 bit of information
per parallel unit. The hsimd<64>::mask(X) operation gath-
ers 1 bit from each of the processors to a central resource.
After calculations on the gather bits are performed, we
then just need an operation to invert the communication,
i.e., sending 1 bit each from the central processor to each
of the parallel units. There are a variety of ways in which
these facilities may be implemented depending on the
underlying architecture; details of our AVX2 and GPU
implementations are presented later.

Given these operations, our method for long stream addi-
tion of two f × 64 bit values X and Y is the following.

1. Form the vector of 64-bit sums of x and y.

R = simd<64>::add(X, Y)

2. Extract the f -bit masks of X, Y and R.

x = hsimd<64>::mask(X)

y = hsimd<64>::mask(Y)

r = hsimd<64>::mask(R)

3. Compute an f -bit mask of carries generated for each
of the 64-bit additions of X and Y.

c = (x ∧ y) ∨ ((x ∨ y) ∧ ¬r)

4. Compute an f -bit mask of all fields of R that will over-
flow with an incoming carry bit. This is called the
bubble mask.

b = simd<64>::eq(R, -1)

5. Determine an f -bit mask identifying the fields of R that
need to be incremented to produce the final sum. Here
we find a new application of MatchStar.

i = MatchStar(c*2, b)

This is the key step. The mask c of outgoing carries
must be shifted one position (c*2) so that each outgo-
ing carry bit becomes associated with the next digit.
At the incoming position, the carry will increment the
64-bit digit. However, if this digit is all ones (as sig-
naled by the corresponding bit of bubble mask b, then
the addition will generate another carry. In fact, if
there is a sequence of digits that are all ones, then the
carry must bubble through each of them. This is just
MatchStar.

6. Compute the final result Z.

Z = simd<64>::add(R, simd<64>::spread(i))

Figure 4 illustrates the process. In the figure, we illustrate
the process with 8-bit fields rather than 64-bit fields and
show all field values in hexadecimal notation. Note that two
of the individual 8-bit additions produce carries, while two
others produce FF values that generate bubble bits. The
net result is that four of the original 8-bit sums must be
incremented to produce the long stream result.

A slight extension to the process produces a long-stream
full adder that can be used in chained addition. In this

143

X 19 31 BA 4C 3D 45 21 F1

Y 22 12 45 B3 E2 16 17 36

R 3B 43 FF FF 1F 5B 38 27

x 0 0 1 0 0 0 0 1

y 0 0 0 1 1 0 0 0

r 0 0 1 1 0 0 0 0

c 0 0 0 0 1 0 0 1

c*2 0 0 0 1 0 0 1 0

b 0 0 1 1 0 0 0 0

i 0 1 1 1 0 0 1 0

Z 3B 44 0 0 1F 5B 39 27

Figure 4: Long Stream Addition

case, the adder must take an additional carry-in bit p and
produce a carry-out bit q. This may be accomplished by
incorporating p in calculating the increment mask in the
low bit position, and then extracting the carry-out q from
the high bit position.

i = MatchStar(c*2+p, b)

q = i >> f

As described subsequently, we use a two-level long-stream
addition technique in both our AVX2 and GPU implemen-
tations. In principle, one can extend the technique to ad-
ditional levels. Using 64-bit adders throughout, dlog64 ne
steps are needed for n-bit addition. A three-level scheme
could coordinate 64 groups each performing 4096-bit long
additions in a two-level structure. However, whether there
are reasonable architectures that can support fine-grained
SIMT style at this level is an open question.

Using the methods outlined, it is quite conceivable that
instruction set extensions to support long-stream addition
could be added for future SIMD and GPU processors. Given
the fundamental nature of addition as a primitive and its
particular application to regular expression matching as
shown herein, it seems reasonable to expect such instruc-
tions to become available. Alternatively, it may be worth-
while to simply ensure that the hmask and spread operations
are efficiently supported.

5. SSE2 IMPLEMENTATION

Implementation Notes. Our regular expression compiler
directly uses the Parabix tool chain to compile regular ex-
pression into SSE2-based implementations. Our compiler
essentially scripts three other compilers to perform this
work: the Parabix character class compiler to determine ba-
sic bit stream equations for each of the character classes
encountered in a regular expression, the Pablo bitstream
equation compiler which converts equations to block-at-a-
time C++ code for 128-bit SIMD, and gcc 4.8.2 to gen-
erate the binaries. The Pablo output is combined with a
grep_template.cpp file that arranges to read input files,
break them into segments, and print or count matches as
they are encountered.

Comparative Implementations. We evaluate our bitwise
data parallel implementation versus several alternatives. We
report data for two of these: gre2p and nrgrep version 1.12.

The gre2p program is a grep version implemented using the
recently developed RE2 regular expression library, using a
systematic DFA-based approach (as well as some NFA fall-
back techniques) [5]. The NFA class is represented by nr-
grep, one of the strongest competitors in regular expression
matching performance. We also considered GNU grep 2.10,
agrep 3.41 as an alternative NFA-based implementation and
pcregrep 8.12 as a backtracking implementation, but do not
report data for them. GNU grep is a popular open-source
implementation that is claimed to be primarily DFA-based
with heuristics for important special cases. The agrep im-
plementation does not support some of the common regu-
lar expression syntax features and is limited to patterns of
at most 32 characters. As a backtracking implementation,
pcregrep supports more regular expression features, but is
not competitive in performance in any example we tested.

We performed our SSE2 performance study using an Intel
Core i5-4570 (Haswell) processor (3.2 GHz, 4 physical cores,
32+32 kB (per core) L1 cache, 256 kB (per core) L2 cache,
6 MB L3 cache) running the 64-bit version of Ubuntu 12.04
(Linux).

Our performance evaluation focuses on the running time
of the regular expression matching process itself, exclud-
ing the preprocessing time for regular expression compila-
tion. However, the overhead of the Parabix transform to bit
stream form is included in our reported results.

Test Expressions. Each grep implementation was evalu-
ated against the six regular expressions shown in Table 1.
@ matches the at-sign character. This expression demon-
strates the overhead involved in matching the simplest pos-
sible regular expression, a single character. Date, Email,
and URI provide examples of commonly used regular ex-
pression. This set of expressions were modified from the
Benchmark of Regex Libraries. Hex matches delimited byte
strings in hexadecimal notation, and enforces the constraint
that the number of hex digits is even. This expression illus-
trates the performance of a repetition operator implemented
using a while loop in our system. StarHeight is an artificial
expression designed to further stress while loop implemen-
tation with 4 levels of Kleene closure. All tests were run on
a version of a Linux 3Dfx howto file of 39,421,555 bytes.

Results. Figure 5 compares each of the grep implementa-
tions, with relative performance reported in CPU cycles per
byte.

The performance in matching the @ regular expression es-
tablishes the base line cost for regular expression processing.
All programs report 15,788 matching lines of the 1,086,077
lines in the file. The Parabix SSE2 implementation is clearly
the fastest in this case with a cost of 0.95 CPU cycles per
byte. The bulk of this represents the overhead of the Para-
bix transform, the bitwise logic to calculate the single [@]

character class stream is relatively trivial. It is interesting to
note that this example does not represent a baseline cost for
either nrgrep or gre2p, each of these benefit from character
skipping optimizations in their implementations.

Our results for the matching the Date expression to find
the 668 lines containing dates show an increase from 0.95 to
1.22 cycles per byte, corresponding to the additional logic
for the regular expression matching steps according to our
algorithm. For this relatively simple expression, however,
nrgrep outperforms our implementation by taking significant

144

Name Expression
@ @
Date ([0-9][0-9]?)/([0-9][0-9]?)/([0-9][0-9]([0-9][0-9])?)
Email ([^ @]+)@([^ @]+)
URI (([a-zA-Z][a-zA-Z0-9]*)://|mailto:)([^ /]+)(/[^]*)?|([^ @]+)@([^ @]+)
Hex [](0x)?([a-fA-F0-9][a-fA-F0-9])+[.:,?!]
StarHeight [A-Z]((([a-zA-Z]*a[a-zA-Z]*[])*[a-zA-Z]*e[a-zA-Z]*[])*[a-zA-Z]*s[a-zA-Z]*[])*[.?!]

Table 1: Regular Expressions

@ Date Email URI Hex StarHeight

0

10

20

30

40

C
y
cl

es
p

er
B

y
te

bitstreams nrgrep gre2p

Figure 5: Cycles per Byte

advantage of character skipping. Each time that nrgrep en-
counters a character that cannot appear in a date it jumps
six character positions rather than searching every character
in the input text. gre2p also shows a significant benefit from
the character skipping optimization.

The results for the Email expression illustrate the relative
advantage of the bitstreams method when the expression
to be matched does not permit character skipping in the
NFA- or DFA-based implementations. In this example, our
implementation outperforms nrgrep by a factor of 7X, and
gre2p by 23X. There are 15,057 lines matching the Email
regex.

The URI expression illustrates the performance of the grep
programs with additional regular expression complexity. All
three implementations require more time than for the Email
expression, with similar but slightly lower performance ra-
tios maintained. In this example, the performance advan-
tage of the bitstreams implementation drops to about 4.5X
over nrgrep and 19X over gre2p. 32557 lines are matched by
the URI regex.

The results for Hex expression illustrate the bitstreams
performance in the case of a Kleene-+ operator compiled
to a while loop. Performance is nevertheless quite good;
our implementation uses just 1.6 cycles per byte to find the
130,243 matching lines. The gre2p program performs quite
poorly here, off the chart at 114 cycles per byte. This is
lower than the bitstreams implementation by about 70X. In

@ Date Email URI Hex StarHeight

0

1

2

3

4

In
st

ru
ct

io
n
s

p
er

C
y
cl

e

bitstreams nrgrep gre2p

Figure 6: Instructions per Cycle

this example, nrgrep maintains its relative performance to
the bitstreams implementation, about 5.5X slower.

A more complex triply-nested repetition structure is re-
quired by the bitstreams implementation of the StarHeight
expression. In this case, there is a noticeable drop off in
the performance advantage of the bitstreams implementa-
tion over the nrgrep and gre2p. Nevertheless a 2X advantage
over nrgrep is still observed.

Figure 6 shows the efficiency of processor resource usage
achieved by the three programs on each of the test expres-
sion in terms of instructions per cycle (IPC). For the first
four expressions, in particular, the bitstreams implementa-
tion uses the processor resources quite efficiently, avoiding
penalties due to cache misses and branch mispredictions.
However, with the while loop structures in processing the
Hex and StarHeight expressions, branch mispredictions in-
crease considerably and there is a noticeable drop-off in IPC.
The gre2p program suffers from significant penalties for the
smaller expressions, but otherwise achieves a good IPC rate.
On the other hand, nrgrep IPC drops off with expression
complexity, suffering from significant penalties due to mis-
predictions in the character-skipping logic and cache misses
in table lookups.

Overall, the bitstreams SSE2 implementation significantly
outperformed both nrgrep and gre2p. In addition, the per-
formance of bitstreams generally scales well with regular ex-
pression complexity, although nested Kleene closures are an
issue.

145

6. RUNNING-TIME COMPARISON WITH
BASE NFA IMPLEMENTATIONS

Our experimental results indicate that regular expression
matching using bitstreams can outperform current imple-
mentations of NFA- (and DFA-) based matching. It is worth
exploring why this is so, and under what conditions one
might expect bitstreams to perform better than NFA- or
DFA-based matchers, and vice-versa.

The bitstream method starts with a preprocessing step:
the compilation of the regular expression using the algo-
rithm presented above as well as the compilers of the Para-
bix toolchain. Compilation is an offline process whose time
is not counted in our performance measures, as each of these
are research tools that have neither been optimized nor inte-
grated. This leads to a bias in our results, as our timings for
nrgrep and gre2p include the time taken for preprocessing.
We minimize the bias by performing our tests with reason-
ably large inputs, so that the text-scanning costs dominate
the preprocessing costs. We assume that the length m of
regular expressions is typically less than 100 bytes and that
data files are typically over 10 MB. Provided that a well-
engineered implementation of our regular expression compi-
lation algorithm together with the compilers of the Parabix
tool chain requires no more than 10000m cycles, the over-
head of compilation will not substantially increase the run-
ning time. As our regular expression algorithm is O(m), and
the other steps of the Parabix tool chain require O(m logm)
time, we expect that such performance is well within reason.
It is important to note that our algorithms construct neither
NFAs nor DFAs and so are no subject to the exponential-
time behaviour of NFA-to-DFA transformation.

For simplicity, we will first assume that the input regular
expressions are restricted to having Kleene closures only of
single characters or alternations of single characters. This is
a broad class of regular expressions, covering the majority
of common uses of grep.

Let Σ be our input alphabet and σ = |Σ|. As we are
comparing techniques in practice, we assume that Σ is a
standard input alphabet, such as ASCII (σ = 128), UTF-8
(σ = 256), UTF-16 (σ = 65536), or UTF-32 (σ = 1114112).
This assumption allows us to equate the number of bits in
the encoding of a character (a parameter for the bitstream
method) with log σ.

The bitstream method compiles a regular expression of
size m into bitstream code that is O(m log σ) statements
long (with one operation per statement; it is essentially
three-address code). This is translated to machine code and
placed inside a loop2 that executes once per w characters,
where w is the width of the processor’s word. Also inside
this loop is the transposition step that converts character-
encoded files into their bitstream representation; this trans-
position takes O(log σ log log σ) work per loop iteration.

In total, this is O(m log σ + logw + log σ log log σ) work
per iteration. In current practice, we have logw around
8 (for 256-bit architectures), and log σ at least 7. Thus,
m log σ will dominate logw with current and foreseeable
technology–we do not expect to see logw skyrocket. So we
can absorb the logw term and state the work as O(m log σ+

2Technically, it is inside two loops: an inner one that exe-
cutes once per w characters in a large buffer, and an outer
one that successively fetches buffers until the input is ex-
hausted.

log σ log log σ) per iteration. We multiply this by O(n
w

) it-

erations to give O(n(m+log log σ) log σ
w

) work.
We further note that all of the work in the loop is done

by superscalar instructions, with the exception of the ad-
ditions, which require carry propagation. There will be at
most C of these additions in the loop, where C is the number
of concatenation and Kleene star operations in the regular
expression; C < m.

Almost all intermediate bitstreams in the loop body can
be kept in registers, requiring no storage in memory. Good
register allocation–and limited live ranges for bitstream
variables–keeps register spillage to a minimum. For those
bitstreams that do require storage in memory, long buffers
are allocated, allowing the successive iterations of the loop
to access successive memory locations. That is, for the few
streams requiring it, memory is accessed in a sequential fash-
ion. As this is the best case for hardware prefetching, we
expect few cache misses with bitstream method.

We compare this with base NFA methods; by “base” here
we mean NFA methods that do not skip input characters.
The performance of input-skipping methods can be approxi-
mated by first analyzing the performance of the base method
and then multiplying this by the expected fraction of exam-
ined (non-skipped) input.

In the base NFA method, a state set of approximately
m states is kept as a bit set in m

w
machine words (or m

8
bytes). For each character c of the input, a precomputed
transition table, indexed by the c and the current state set,
is accessed. Since there are 2Θ(m) state sets, the transition
table will have σ2Θ(m) entries. Each entry is a new state
set, which requires m

8
bytes. Thus, the transition table is of

size σm2Θ(m), which is quite large: it can become expensive
to precompute, and it consumes a lot of memory. For even
fairly small m a table of this size will probably not fit in
cache memory. Thus, we would expect many cache misses
with this base method.

To improve the table size, several authors have separated
the transition table into several tables, each indexed by a
subset of the bits in the bit set representing the current
state. Suppose one uses k bits of the state set to index each
table. Ignoring ceilings, this requires m

k
tables, each with

σ2k entries of m
8

bytes apiece. Each table therefore takes

up m2k−3σ bytes, and so the collection of them takes up
m22k−3σ

k
bytes. At each character, the NFA algorithm does

one lookup in each table, combining the results with m
k
− 1

boolean OR operations.
The original NFA method of Thompson uses k = 1, which

gives a m tables of mσ
4

bytes each, along with m lookups
and m − 1 boolean OR operations to combine the lookups,
per character.

Navarro and Raffinot use k = m
2

, giving 2 tables of

2
m
2
−3mσ bytes each, two lookups per character, and 1

boolean OR operation per character to combine the lookups.
In Table 2, we summarize the theoretical analysis of these

NFA methods, listing the number of table lookups per input
character and the size of the tables for various values of m,
the number of states. We assume the ASCII character set
(σ = 128); any of the UTF character sets would yield larger
tables.

Of particular importance to the speed of NFA methods is
whether the table lookups result in cache hits or not. If the
tables are small enough, then they will fit into cache and

146

k 1 4 8 m
2

m
lookups m m

4
m
8

2 1
m

memory
(KiB)

5 0.8 1.6 12.5 1.3 2.5
10 3.1 6.2 50.0 10.0 160.0
15 7.0 14.1 112.5 120.0 7680.0
20 12.5 25.0 200.0 640.0 327680.0
25 19.5 39.1 312.5 6400.0 13107200.0

Table 2: lookups per character and memory con-
sumed by tables in NFA methods (in kibibytes)

lookups will all be cache hits, taking minimal time. In this
case, the time per input character will be a small constant
times the number of lookups.

If the tables are not small enough to fit into cache, some
proportion of the lookups will generate cache misses. This
will stall the processor and these stalls will come to domi-
nate the computation time. In this case, the time per input
character will be some large constant (a cache miss can take
about two orders of magnitude longer than a cache hit) times
the number of lookups.

Using 256KiB as an estimate of the size of a current stan-
dard data cache, we can consider those entries of Table 2
above 256 to be relatively slow. We can summarize these
theoretical predictions by saying that the NFA methods with
small k scale well with an increase in NFA states, but with
large k the method is limited to a small number of states.

We can now directly (but roughly) compare the NFA
methods with bitstream methods. Consider small-k (say,
k <= 4) NFA methods. For the reasonable range of m, the
tables fit into cache. The running time is predicted to be a
small constant times the m

k
>= m

4
lookups. The small con-

stant, which we will under approximate with 4 cycles, is for
the table addressing computation, combining the lookups
with boolean OR, and final state detection and handling.
Thus, the running time per input character may be lower-
bounded by 4 ∗ m

4
, or simply m, cycles.

Our method, on the other hand, takes time
O(m log σ+log log σ log σ

w
) per input character, where the

constant inside the big-Oh is approximately 2 for the
first part of the numerator and 6 for the second part.
Furthermore, we expect no cache misses due to the regular
stride of our memory accesses. For UTF-8 (or ASCII), this
time becomes at most 2 8m

w
+ 6 24

w
= 16m+144

w
cycles per

character.
For processors with a 128-bit word, this is 16m+144

128
=

m
8

+ 9
8

cycles per character. Comparing this with the at least
m cycles per character of the base NFA methods, we expect
these NFA methods to be competitive with our method only
when the size of the regular expression is 1. As the size
of the regular expression increases, we expect our method
to approach a factor-of-8 improvement over the base NFA
methods.

In theory, our improvement factor should scale closely
with the word size; so that for processors with a 256-bit
word, we expect an 16x improvement, and for processors
with a 512-bit word, we expect a 32x improvement. In prac-
tice, we expect some reduction in these improvement ratios
for various reasons, including the need for while-loops to
implement nested Kleene closures as well as processor limi-
tations in memory bandwidth, for example.

@ Date Email URI Hex StarHeight

0

1

2

3

A
V

X
2

In
st

ru
ct

io
n

R
ed

u
ct

io
n

bitstreams nrgrep gre2p

Figure 7: AVX2/SSE2 Instruction Reduction

7. SIMD SCALABILITY
Although commodity processors have provided 128-bit

SIMD operations for more than a decade, the extension
to 256-bit integer SIMD operations has just recently taken
place with the availability of AVX2 instructions in Intel
Haswell architecture chips as of mid 2013. This provides an
excellent opportunity to assess the scalability of the bitwise
data-parallel approach to regular expression matching.

For the most part, adapting the Parabix tool chain to the
new AVX2 instructions was straightforward. This mostly
involved regenerating library functions using the new AVX2
intrinsics. There were minor issues in the core transposition
algorithm because the doublebyte-to-byte pack instructions
are confined to independent operations within two 128-bit
lanes.

AVX2 256-Bit Addition. Bitstream addition at the 256-
bit block size was implemented using the long-stream
addition technique. The AVX2 instruction set di-
rectly supports the hsimd<64>::mask(X) operation us-
ing the _mm256_movemask_pd intrinsic, extracting the re-
quired 4-bit mask directly from the 256-bit vector. The
hsimd<64>::spread(X) is slightly more complex, requiring
a short sequence of instructions to convert the computed
4-bit increment mask back into a vector of 4 64-bit values.

We also compiled new versions of the egrep and nrgrep

programs using the -march=core-avx2 flag in case the com-
piler is able to vectorize some of the code.

Figure 7 shows the reduction in instruction count achieved
for each of the applications. Working at a block size of 256
bytes at a time rather than 128 bytes at a time, the bit-
streams implementation scaled very well with reductions in
instruction count over a factor of two in every case except
for StarHeight. Although a factor of two would seem an
outside limit, we attribute the change to greater instruction
efficiency. AVX2 instructions use a non destructive three-
operand form instead of the destructive two-operand form
of SSE2. In the two-operand form, binary instructions must

147

@ Date Email URI Hex StarHeight

0

0.5

1

1.5

A
V

X
2

S
p

ee
d
u
p

bitstreams nrgrep gre2p

Figure 8: AVX2/SSE2 Speedup

Expression
Bitstream/AVX2 grep Speedup

vs. nrgrep vs. gre2p vs. GNU grep -e

At 3.5X 34X 1.6X
Date 0.76X 13X 48X
Email 9.5X 28X 12X
URI 6.6X 27X 518X
Hex 8.1X 105X 267X

StarHeight 1.9X 7.6X 97X

Table 3: Bitsream Speedup vs. Comparators

always use one of the source registers as a destination regis-
ter. As a result the SSE2 object code generates many data
movement operations that are unnecessary with the AVX2
set.

As expected, there was no observable reduction in instruc-
tion count with the recompiled grep and nrgrep applications.

As shown in Figure 8 the reduction in instruction count
was reflected in a significant speedup in the bitstreams im-
plementation in all cases except StarHeight. However, the
speedup was considerably less than expected. The bit-
streams code on AVX2 has suffered from a considerable
reduction in instructions per cycle compared to the SSE2
implementation, likely indicating that our grep implemen-
tation has become memory-bound. However, the perfor-
mance of StarHeight deserves particular comment, with an
actual slowdown observed. When moving to 256 positions
at a time, the controlling while loops may require more it-
erations than working 128 positions at a time, because the
iteration must continue as long as there are any pending
markers in the block. Nevertheless, the overall results on
our AVX2 machine were quite encouraging, demonstrating
very good scalability of the bitwise data-parallel approach.
Significantly, the @ regular expression is matched at 0.63
cycles/byte using our AVX2 implementation indicating a
considerable reduction in the overhead cost of the Parabix
transform.

@ Date Email URI Hex StarHeight

0

0.2

0.4

0.6

0.8

1

1.2

R
u
n
n
in

g
T

im
e

(m
s

p
er

m
eg

a
b
y
te

)

SSE2 AVX2 GPU

Figure 9: Running Time

Table 3 shows the final performance results showing the
speedup factors achieved by the bitstreams/AVX2 imple-
mentation vs nrgrep and gre2p. We have also added com-
parison with GNU grep (version 2.16), as it is well known
and sometimes used as a basis for comparisons.

8. GPU IMPLEMENTATION
To further assess the scalability of our regular expression

matching using bit-parallel data streams, we implemented a
GPU version in OpenCL. We arranged for 64 work groups
each having 64 threads. The size of work group and num-
ber of work groups is chosen to provide the best occupancy
as calculated by the AMD App Profiler. Input files are di-
vided in data parallel fashion among the 64 work groups.
Each work group carries out the regular expression match-
ing operations 4096 bytes at a time using SIMT process-
ing. Although the GPU does not directly support the mask
and spread operations required by our long-stream addition
model, we are able to simulate them using shared memory.
Each thread maintains its own carry and bubble values in
shared memory and performs synchronized updates with the
other threads using a six-step parallel-prefix style process.
Others have implemented long-stream addition on the GPU
using similar techniques, as noted previously.

We performed our test on an AMD Radeon HD A10-
6800K APU machine. On the AMD Fusion systems, the
input buffer is allocated in pinned memory to take advan-
tage of the zero-copy memory regions where data can be
read directly into this region by the CPU and also accessed
by the GPU for further processing. Therefore, the expensive
data transferring time that is needed by traditional discrete
GPUs is hidden and we compare only the kernel execution
time with our SSE2 and AVX implementations as shown in
Figure 9. The GPU version gives up to 55% performance
improvement over SSE version and up to 40% performance
improvement over AVX version. However, because of imple-
mentation complexities of the triply-nested while loop for
the StarHeight expression, it has been omitted.

148

Although we intended to process 64 work groups with 4096
bytes each at a time rather than 128 bytes at a time on SSE
or 256 bytes at a time on AVX, the performance improve-
ment is less than 60%. The first reason is hardware limi-
tations. Our kernel occupancy is limited by register usage
and not all the work groups can be scheduled at the same
time. The second reason is that the long-stream addition im-
plemented on GPU is more expensive than the implemen-
tations on SSE or AVX. Another important reason is the
control flow. When a possible match is found in one thread,
the rest of the threads in the same work group have to exe-
cute the same instructions for further processing rather than
jump to the next block with a simple IF test. Therefore, the
performance of different regular expressions is dependent on
the number of long-stream addition operations and the total
number of matches of a given input. Perhaps surprisingly,
the overhead of the Parabix transformation was not a dom-
inant factor, coming in at 0.08 ms/MB.

9. DISCUSSION

Contributions. A new class of regular expression match-
ing algorithm has been introduced based on the concept of
bit-parallel data streams together with the MatchStar op-
eration. The algorithm is fully general for nondeterministic
regular expression matching; however it does not address
the nonregular extensions found in Perl-compatible back-
tracking implementations. Taking advantage of the SIMD
features available on commodity processors, its implemen-
tation in grep offers consistently good performance in con-
trast to available alternatives. For moderately complex ex-
pressions, 10X or better performance advantages over DFA-
based gre2p and 5X performance advantage over nrgrep were
frequently seen. While lacking some special optimizations
found in other engines to deal with repeated substrings or
to perform skipping actions based on fixed substrings, it
nevertheless performs competitively in all cases.

A model for parallelized long-stream addition has also
been presented in the paper, allowing our techniques to scale
beyond the blocks of 128 bytes we use with the SSE2 imple-
mentation. This model allowed straightforward extension to
the 256-byte block size used in our AVX2 implementation
and should continue to scale well up for SIMD vectors up to
4096 bytes in length based on 64-bit additions. The model
also supports GPU implementation with some additional ef-
fort.

Related Work. Much of the previous work in parallelizing
of regular processing has dealt with the problem of using
parallel resources to handle multiple instances of a match-
ing problem in parallel. It is thus complementary to our
approach which focuses on parallelization to accelerate the
matching of a single instance. From this perspective, the re-
cent work of Mytkowicz et al [11] stands out as an important
comparator in that it also focusses on acceleration of match-
ing for a single input stream. Mytkowicz use the SIMD
byte-shuffle capabilities found, for example, in the SSSE3
instruction sets to perform small-table parallel lookups for
multiple potentially active states of a FSM. Data parallelism
is achieved by initially considering all possible states at the
beginning of each data segment, but then relying on conver-
gence and range-coalescing optimizations to quickly reduce

the number of active states in play. Examining a large collec-
tion of regular expressions used in practice, these techniques
were found to be effective, allowing matching to proceed
with just one or two shuffles per input symbol.

However, the Mytkowicz approach is still fundamentally
considering input elements one byte at a time and would
be hard pressed to compete with our reported results of 1-
4 CPU cycles per input byte. It is also dependent on the
availability of the SIMD byte-shuffle operation, which is un-
available in SIMD instructions sets such as SSE2 and ARM
Neon, for example. Our SIMD implementation relies only on
the availability of SIMD pack operations to efficiently imple-
ment the Parabix transform; SIMD pack is widely available
in current SIMD instruction sets. It is also a special case
of the more general shuffle operations and hence available
on any processor that supports byte shuffle. The Parabix
approach also has the further advantage that performance
scales with increasing SIMD instruction width, as illustrated
by our AVX2 performance results in comparison to SSE2.

It is perhaps surprising that the classic nrgrep application
is still competitive in performance for expressions that allow
the BNDM algorithm to perform significant character skip-
ping. Although the length of possible skipping reduces with
the complexity of the input expression considered, many ap-
plications of grep searching tend to use simple expressions in
practice. Nevertheless, the Parabix approach offers consis-
tently high performance often faster than nrgrep by a factor
of 5X or more.

Ongoing and Future Work. Based on the techniques pre-
sented here a fully integrated grep version with a dynamic
code generator implemented with LLVM is being developed
by another team working with the Parabix technology (Dale
Denis, Nick Sumner and Rob Cameron). An initial version is
available at http://parabix.costar.sfu.ca/icGREP. With
icgrep-0.8, total compile-time overhead to translate our test
expressions into executable x86 code ranges from 0.002 sec-
onds to 0.008 seconds for our test cases. Although this rep-
resents a tolerable overhead of 0.64 cycles/byte for our 40
MB test file, we expect that a substantial reduction of this
overhead is feasible.

Further work on the compilation algorithms includes the
extending the algorithms to use MatchStar in Kleene-* rep-
etitions beyond those of single characters (bytes). Each such
extension would replace while-loop iteration with addition
and bitwise logic. For example, the repetitions of variable-
length UTF-8 byte sequences can be compiled without while
loops by taking advantage of synchronizing properties of
UTF-8.

Future work also includes the development of multicore
versions of the underlying algorithms to further acceler-
ate performance and to handle regular expression matching
problems involving larger rule sets than are typically en-
countered in the grep problem. Such implementations could
have useful application in tokenization and network intru-
sion detection for example. Additional GPU implementa-
tion work could take advantage of specialized instructions
available on particular platforms but not generally avaiable
through OpenCL. For both multicore and GPU implemen-
tations, data-parallel division of input streams could benefit
from techniques such as the principled speculation of Zhao
et al [25], for example.

149

Other area of interest include extending the capabilities of
the underlying method with addition features for substring
capture, zero-width assertions and possibly backreference
matching. Adding Unicode support beyond basic Unicode
character handling to include full Unicode character class
support and normalization forms is also worth investigat-
ing.

10. ACKNOWLEDGMENTS
This research was supported by grants from the Natural

Sciences and Engineering Research Council of Canada and
MITACS, Inc.

11. REFERENCES
[1] A. V. Aho and M. J. Corasick. Efficient string

matching: an aid to bibliographic search.
Communications of the ACM, 18(6):333–340, June
1975.

[2] R. Baeza-Yates and G. H. Gonnet. A new approach to
text searching. Communications of the ACM,
35(10):74–82, 1992.

[3] R. S. Boyer and J. S. Moore. A fast string searching
algorithm. Communications of the ACM,
20(10):762–772, 1977.

[4] R. D. Cameron, E. Amiri, K. S. Herdy, D. Lin, T. C.
Shermer, and F. P. Popowich. Parallel scanning with
bitstream addition: An XML case study. In Euro-Par
2011 Parallel Processing, pages 2–13. Springer, 2011.

[5] R. Cox. Regular expression matching in the wild, 2010.

[6] R. Crovella. Long stream addition with CUDA. Stack
Overflow question 12957116, 2012.

[7] R. N. Horspool. Practical fast searching in strings.
Software: Practice and Experience, 10(6):501–506,
1980.

[8] F. Iorio and J. V. Lunteren. Fast pattern matching on
the cell broadband engine. In 2008 Workshop on Cell
Systems and Applications (WCSA), affiliated with the,
2008.

[9] C. Lin, C. Liu, L. Chien, and S. Chang. Accelerating
pattern matching using a novel parallel algorithm on
GPUs. IEEE Transactions on Computers, 62(10),
2013.

[10] D. Lin, N. Medforth, K. S. Herdy, A. Shriraman, and
R. Cameron. Parabix: Boosting the efficiency of text
processing on commodity processors. In 18th
International Symposium on High Performance
Computer Architecture (HPCA), pages 1–12. IEEE,
2012.

[11] T. Mytkowicz, M. Musuvathi, and W. Schulte.
Data-parallel finite-state machines. In 19th
International Conference on Architectural Support for
Programming Languages and Operating Systems
(ASPLOS), pages 529–542, 2014.

[12] J. Naghmouchi, D. P. Scarpazza, and M. Berekovic.
Small-ruleset regular expression matching on
GPGPUs: quantitative performance analysis and
optimization. In Proceedings of the 24th ACM
International Conference on Supercomputing, ICS ’10,
pages 337–348, New York, NY, USA, 2010. ACM.

[13] G. Navarro. Nr-grep: A fast and flexible pattern
matching tool. Software Practice and Experience
(SPE, 31:2001, 2000.

[14] G. Navarro and M. Raffinot. A bit-parallel approach
to suffix automata: Fast extended string matching. In
Combinatorial Pattern Matching, pages 14–33.
Springer, 1998.

[15] G. Navarro and M. Raffinot. Fast and flexible string
matching by combining bit-parallelism and suffix
automata. ACM Journal of Experimental Algorithmics
(JEA), 5:2000, 1998.

[16] D. Pasetto, F. Petrini, and V. Agarwal. Tools for very
fast regular expression matching. Computer,
43(3):50–58, 2010.

[17] V. Salapura, T. Karkhanis, P. Nagpurkar, and
J. Moreira. Accelerating business analytics
applications. In 18th International Symposium on
High Performance Computer Architecture (HPCA),
pages 1–10. IEEE, 2012.

[18] D. P. Scarpazza. Top-performance tokenization and
small-ruleset regular expression matching.
International Journal of Parallel Programming,
39(1):3–32, 2011.

[19] D. P. Scarpazza and G. F. Russell. High-performance
regular expression scanning on the Cell/BE processor.
In Proceedings of the 23rd International Conference on
Supercomputing, pages 14–25. ACM, 2009.

[20] D. P. Scarpazza, O. Villa, and F. Petrinni. Fast string
searches & multicore processors mapping fundamental
algorithms on parallel hardware, 2008.

[21] K. Thompson. Programming techniques: Regular
expression search algorithm. Communications of the
ACM, 11(6):419–422, 1968.

[22] A. Tumeo, O. Villa, and D. Sciuto. Efficient pattern
matching on GPUs for intrusion detection systems. In
Proceedings of the 7th ACM International Conference
on Computing Frontiers, pages 87–88. ACM, 2010.

[23] S. Wu and U. Manber. Agrep - a fast approximate
pattern-matching tool. Usenix Winter 1992, pages
153–162, 1992.

[24] S. Wu and U. Manber. Fast text searching: allowing
errors. Communications of the ACM, 35(10):83–91,
1992.

[25] Z. Zhao, B. Wu, and X. Shen. Challenging the
“embarrassingly sequential”: parallelizing finite state
machine-based computations through principled
speculation. In 19th International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 543–558, 2014.

150

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move left by 7.20 points
 Normalise (advanced option): 'original'

 32

 D:20140627072719
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352
 Fixed
 Left
 7.2000
 0.0000

 Both
 10
 AllDoc
 10

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 11
 12
 11
 12

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move down by 23.83 points
 Normalise (advanced option): 'original'

 32

 D:20140627072719
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352

 Fixed
 Down
 23.8320
 0.0000

 Both
 10
 AllDoc
 10

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 11
 12
 11
 12

 1

 HistoryList_V1
 qi2base

