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Abstract—One of the key scalability challenges of on-chip
coherence in a multicore chip is the coherence directory, which
provides information on sharing of cache blocks. Shadow tags
that duplicate entire private cache tag arrays are widely used to
minimize area overhead, but require an energy-intensive asso-
ciative search to obtain the sharing information. Recent research
proposed a Tagless directory, which uses bloom filters to summarize
the tags in a cache set. The Tagless directory associates the sharing
vector with the bloom filter buckets to completely eliminate the
associative lookup and reduce the directory overhead. However,
Tagless still uses a full map sharing vector to represent the sharing
information, resulting in remaining area and energy challenges
with increasing core counts.

In this paper, we first show that due to the regular nature
of applications, many bloom filters essentially replicate the same
sharing pattern. We next exploit the pattern commonality and
propose SPATL1 (Sharing-pattern based Tagless Directory). SPATL
exploits the sharing pattern commonality to decouple the sharing
patterns from the bloom filters and eliminates the redundant copies
of sharing patterns. SPATL works with both inclusive and non-
inclusive shared caches and provides 34% storage savings over
Tagless, the previous most storage-efficient directory, at 16 cores.
We study multiple strategies to periodically eliminate the false
sharing that comes from combining sharing pattern compression
with Tagless, and demonstrate that SPATL can achieve the same
level of false sharers as Tagless with '5% extra bandwidth.
Finally, we demonstrate that SPATL scales even better than an
idealized directory and can support 1024-core chips with less than
1% of the private cache space for data parallel applications.

Keywords: Directory coherence, Cache coherence, Multicore
scalability, Tagless, Bloom Filters

I. INTRODUCTION

In order to utilize the growing on-chip real estate, designers
are increasingly turning toward larger numbers of independent
compute engines or cores, whether homogeneous or heteroge-
neous. To provide fast data access, data is replicated/cached
in core-local storage to exploit locality. Further, to ease
communication among these compute cores, the potentially
multiple copies of data are often kept coherent in hardware.
The larger core counts require more bandwidth both for data
access and to keep the caches coherent. Cache coherence
needs to track information about the various copies of cached
blocks in order to keep them consistent with each other.
A directory is typically used to provide precise information
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1SPATL is pronounced as Spatial

on the presence of replicas so as to minimize coherence
communication.

A typical directory-based coherence protocol [5] maintains
a bit vector (the sharing pattern) per coherence unit, represent-
ing the processors that currently share the memory locations,
resulting in space overhead that is proportional to the number
of cores and the size of the shared level of memory. By
limiting the communication to a multicast among the actual
sharers instead of a broadcast, the bandwidth requirement
of directory-based protocol scales better than typical snoop-
based protocols.

Several optimizations to reduce the area overhead of
the directory have been proposed. For example, a directory
cache [1], [15] stores sharing information for a subset of lines
in the shared memory. A compressed sharer vector [6], [8],
[16] uses fewer bits to represent sharer information, thereby
losing some precision in determining the exact sharers. Such
techniques also can represent only a limited number of shar-
ing patterns and suffer inelegant sharp performance losses for
specific types of sharing patterns. Pointers [2], [11] provide
precise sharing information for a limited number of sharers
of each cache line, resorting to introducing extra hardware
and software overhead when the number of sharers exceeds
the number of hardware-provided pointers.

Alternatively, shadow tags are used, for example, in Ni-
agara2 [17], in which the tags from the lower level caches
are replicated at the shared level. An associative search of
the shadow tags is used to generate the sharer vector on
the fly. Although shadow tags achieve good compression by
maintaining only information for lines present in the lower
level caches, the associative search used to generate the sharer
vector is energy hungry, especially at larger core counts.

Recently, two different approaches have been used to
achieve directory compression without loss in precision or
extra energy consumption. The Tagless directory [19] starts
with the shadow tag design and uses bloom filters per private-
level cache set to encode the presence of the tags in each
private-level cache. The buckets in the bloom filter repre-
sent the sharing pattern. This approach has two advantages,
namely, it eliminates the energy-hungry on-the-fly sharing
pattern generation, and the shadow tag space is also no longer
proportional to the size of the tag.

SPACE [20] was designed for inclusive caches and lever-
ages the observation that many memory locations in an
application are accessed by the same subset of processors and
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hence have identical sharing patterns. In addition, the number
of such patterns is small, but varies across applications and
even across time. SPACE proposes the use of a sharing pattern
table together with pointers from individual cache lines to the
table. Graceful degradation in precision is achieved when the
table’s capacity is exceeded.

In this paper, we extend the observation made in [20]
that sharing pattern commonality across memory locations
can be used to compress the directory without significant
loss in precision, to apply to non-inclusive caches. Specif-
ically, we combine the energy and compression benefits of
the Tagless and SPACE approaches in a system we call
SPATL (Sharing-pattern based Tagless Directory). As in the
Tagless approach, tags within individual sets are combined
in a bloom filter. However, rather than containing sharer
vectors, the individual buckets in the bloom filter contain
pointers to a table of sharing patterns. As in SPACE, only
the sharing patterns actually present due to current access
to shared data are represented in the sharing pattern table.
This combination allows directory compression with graceful
degradation in precision for both inclusive and non-inclusive
cache organizations. Our results show that the use of a sharing
pattern table can be used to compress the Tagless directory,
resulting in compounded area reductions without significant
loss in precision. SPATL is 66% and 36% the area of the
Tagless directory at 16 and 32 cores, respectively. We study
multiple strategies to periodically eliminate the false sharing
that comes from combining sharing pattern compression with
Tagless, and demonstrate that SPATL can achieve the same
level of false sharers as Tagless with '5% extra bandwidth.
Finally, we demonstrate that SPATL scales even better than
an idealized directory and can support 1024-core chips with
less than 1% of the private cache space for data parallel
applications.

II. BACKGROUND

In a multicore chip like the one shown in Figure 1, there
are private caches associated with each core (or set of cores).
In our baseline design, we also have a shared L2 cache
that is tiled across the various cores. While conceptually a
centralized structure, the directory is distributed across the
various tiles. Each cache block is assigned a home tile and the
directory associated with the home tile is assigned the task
of providing sharer information for cache blocks that map
to that tile. For maximum precision, the coherence directory
must maintain sharing information for each unique tag in the
private caches.

Designs that use an inclusive shared L2 cache piggyback
on the L2 tags to implement the tags required by the directory.
This requires the addition of a P bit sharing vector (P : #
of cores) per L2 tag. Unfortunately, since shared caches are
many times larger than private caches, many entries contain
no information. For example, if the Niagara2 (8 cores, 8KB
L1/core, 4MB shared L2) were to implement an in-cache
directory it would consume 64KB of space, which is 100%
of the cumulative size of L1 caches across all the 8 cores.

An alternative to piggybacking on the L2 tags is to use a
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Fig. 1: Tiled 16 processor multicore. Coherence directory
distributed to each tile.

directory cache to maintain information only for lines present
in the L1. Since each cache line in each core could be unique,
to guarantee no loss of information, the directory cache would
need to contain as many entries as the sum of the number
of cache lines in each L1, along with an associativity that
is at least the aggregate associativity of all the L1s (i.e.,
even on the 8 core Niagara2, we would need a 32 way
directory cache). Practical directory cache designs have much
lower associativity and pay the penalty of associativity-related
eviction of directory information for some blocks. While
recently there have been proposals [7] to use sophisticated
hash functions to eliminate associativity conflicts, optimizing
the directory cache organization is a hard problem.

Many current multicore chips (e.g., Niagara2) use a sim-
plified form of directory cache consisting of replicas of the
tag arrays of the L1 cache (i.e., maintain shadow tags). An
associative search of the shadow tags is used to generate the
sharer vector on the fly. Although shadow tags achieve good
compression by maintaining only information for lines present
in the lower level caches, the associative search used to
generate the sharer vector imposes significant energy penalty.

Recently, the Tagless coherence directory [19] was pro-
posed to eliminate the associative lookup. Instead of repre-
senting each tag exactly, a bloom filter concisely summarizes
the contents of each set in every L1 cache. Overall, we would
need only NL1sets ∗P bloom filters (32–64bits per bloom filter)
to represent the information in all the L1 caches. The probing
required per L1 in shadow tags is replaced with a simple read
of a bloom filter, which eliminates all the complex associative
search of shadow tags. Unfortunately, for large multicores
the cost of the bloom filters grows proportionately (similar
to the sharing pattern vector) and constitutes significant
overhead. For example, for an 8 core Niagara2, it would
require 3KB (per hash function), but extrapolating to 1024
cores, it would require 3MB, which imposes significant area
and energy penalty for sharing pattern information access. We
briefly describe the overall architecture of Tagless below and
highlight the challenges.

A. Tagless Coherence Directory

Tagless coherence directory uses a set of bloom filters to
summarize the contents of the cache. Figure 2 shows the
bloom filter associated with each set of the private L1 cache.
Essentially, the Tagless directory consists of a NL1sets ∗ P
set of bloom filters (NL1sets : number of sets in the L1
cache. P : Number of cores). Each bloom filter per set is a
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k
sh

ar
in

g
ve

ct
or

s
ca

n

be
ac

ce
ss

ed
in

pa
ra

ll
el

,
w

he
re

k
is

th
e

nu
m

be
r

of
ha

sh
fu

nc
ti

on
s.

A
n

ex
am

pl
e

im
pl

em
en

ta
ti

on
us

es
a

si
ng

le
-p

or
te

d,
tw

o-
di

m
en

si
on

al

S
R

A
M

ar
ra

y
fo

r
ea

ch
ha

sh
fu

nc
ti

on
,

w
he

re
th

e
se

t
in

de
x

se
le

ct
s

a
ro

w
,

an
d

th
e

ha
sh

fu
nc

ti
on

se
le

ct
s

a
sh

ar
in

g
ve

ct
or

,
as

sh
ow

n
in

F
ig

ur
e

3(
b)

.
A

s
a

pr
ac

ti
ca

l
ex

am
pl

e,
S

ec
ti

on
5

sh
ow

s
th

at
a

T
L

de
si

gn
w

it
h

fo
ur

ha
sh

ta
bl

es
an

d
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F
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2:
(a

)
A

na
ïv

e
im

pl
em

en
ta

ti
on

w
it

h
on

e
fil

te
r

pe
r

co
re

.(
b)

C
om

bi
ni

ng
al

lo
f

th
e

fil
te

rs
fo

r
on

e
ro

w
.

3.
T

he
w

ri
te

r
w

ai
ts

un
ti

li
tr

ec
ei

ve
s

ac
kn

ow
le

dg
em

en
ts

fr
om

al
l

th
e

sh
ar

er
s.

O
ne

of
th

es
e

ac
kn

ow
le

dg
em

en
ts

w
il

l
co

nt
ai

n

th
e

da
ta

.
A

lt
er

na
tiv

el
y,

th
e

w
ri

te
r

w
il

l
re

ce
iv

e
th

e
da

ta
fr

om

m
em

or
y.

4.
T

he
w

ri
te

r
no

ti
fi

es
th

e
di

re
ct

or
y

th
at

th
e

tr
an

sa
ct

io
n

is
co

m
-

pl
et

e.

T
L

op
er

at
es

id
en

ti
ca

ll
y

ex
ce

pt
fo

r
w

he
n

it
se

le
ct

s,
in

st
ep

2(
b)

,a

pr
ov

id
er

th
at

do
es

no
t

ha
ve

th
e

da
ta

.
In

pr
ac

ti
ce

,t
he

pr
ob

ab
il

it
y

of

th
e

se
le

ct
ed

sh
ar

er
no

th
av

in
g

a
co

py
is

ve
ry

lo
w

;t
hu

s,
th

e
co

m
m

on

ca
se

fo
r

T
L

pr
oc

ee
ds

th
e

sa
m

e
as

th
e

or
ig

in
al

pr
ot

oc
ol

.
In

th
e

le
ss

co
m

m
on

ca
se

,
w

he
n

th
e

pr
ov

id
er

do
es

no
t

ha
ve

a
co

py
,

it
se

nd
s

a

N
A

ck
to

th
e

w
ri

te
r

in
st

ea
d

of
an

ac
kn

ow
le

dg
em

en
t.

T
hi

s
le

av
es

th
re

e
po

ss
ib

le
sc

en
ar

io
s:

1.
N

o
co

py
ex

is
ts

:
T

he
w

ri
te

r
w

il
l

w
ai

t
to

re
ce

iv
e

al
l

of

th
e

ac
kn

ow
le

dg
em

en
ts

an
d

th
e

N
A

ck
,

an
d

si
nc

e
it

ha
s

no
t

re
ce

iv
ed

an
y

da
ta

,i
tw

il
ls

en
d

a
re

qu
es

tt
o

th
e

di
re

ct
or

y
w

hi
ch

th
en

as
ks

m
em

or
y

to
pr

ov
id

e
th

e
da

ta
.3

2.
A

cl
ea

n
co

py
ex

is
ts

:
F

or
si

m
pl

ic
it

y,
th

is
is

ha
nd

le
d

id
en

-

ti
ca

ll
y

to
fi

rs
t

ca
se

.
A

ll
sh

ar
er

s
in

va
li

da
te

th
ei

r
co

pi
es

an
d

da
ta

is
re

tr
ie

ve
d

fr
om

m
em

or
y

in
st

ea
d.

T
hi

s
m

ay
re

su
lt

in

a
pe

rf
or

m
an

ce
lo

ss
if

it
ha

pp
en

s
fr

eq
ue

nt
ly

,
bu

t
S

ec
ti

on
5

sh
ow

s
th

at
no

pe
rf

or
m

an
ce

lo
ss

oc
cu

rs
in

pr
ac

ti
ce

.

3.
A

di
rt

y
co

py
ex

is
ts

:
O

ne
of

th
e

ot
he

r
sh

ar
er

s,
th

e
ow

ne
r,

w
il

l

be
in

th
e

M
od

ifi
ed

or
O

w
ne

d
st

at
e.

T
he

ow
ne

r
ca

nn
ot

di
sc

ar
d

th
e

di
rt

y
da

ta
si

nc
e

it
do

es
no

t
kn

ow
th

at
th

e
pr

ov
id

er
ha

s
a

co
py

.
A

cc
or

di
ng

ly
,t

he
ow

ne
r

al
w

ay
s

in
cl

ud
es

th
e

da
ta

in
it

s

ac
kn

ow
le

dg
em

en
t

to
th

e
w

ri
te

r.
In

th
is

ca
se

,
th

e
w

ri
te

r
w

il
l

re
ce

iv
e

th
e

pr
ov

id
er

’s
N

A
ck

an
d

th
e

ow
ne

r’
s

va
li

d
da

ta
an

d

ca
n

th
us

co
m

pl
et

e
it

s
re

qu
es

t.
If

th
e

pr
ov

id
er

ha
s

a
co

py
as

w
el

l,
th

e
w

ri
te

r
w

il
l

re
ce

iv
e

tw
o

id
en

ti
ca

l
co

pi
es

of
th

e
da

ta
.

S
ec

ti
on

5.
5

de
m

on
st

ra
te

s
th

at
th

is
is

ra
re

en
ou

gh
th

at
it

do
es

no
tr

es
ul

ti
n

an
y

si
gn

ifi
ca

nt
in

cr
ea

se
in

ba
nd

w
id

th
ut

il
iz

at
io

n.

In
al

l
ca

se
s,

al
l

tr
an

sa
ct

io
ns

ar
e

se
ri

al
iz

ed
th

ro
ug

h
th

e
di

re
ct

or
y,

so
no

ad
di

ti
on

al
ra

ce
co

ns
id

er
at

io
ns

ar
e

in
tr

od
uc

ed
.

S
im

il
ar

ly
,

th
e

un
de

rl
yi

ng
de

ad
lo

ck
an

d
liv

el
oc

k
av

oi
da

nc
e

m
ec

ha
ni

sm
s

re
m

ai
n

ap
pl

ic
ab

le
.

3
T

hi
s

re
qu

es
ti

s
se

ri
al

iz
ed

th
ro

ug
h

th
e

di
re

ct
or

y
to

av
oi

d
ra

ce
s

w
it

h

ev
ic

ts
.

3.
2.

3
E

vi
ct

io
ns

an
d

In
va

li
da

te
s

W
he

n
a

bl
oc

k
is

ev
ic

te
d

or
in

va
li

da
te

d
T

L
tr

ie
s

to
cl

ea
r

th
e

ap
pr

op
ri

at
e

bi
ts

in
th

e
co

rr
es

po
nd

in
g

B
lo

om
fi

lt
er

to
m

ai
nt

ai
n

ac
cu

ra
cy

.
E

ac
h

B
lo

om
fi

lt
er

re
pr

es
en

ts
th

e
bl

oc
ks

in
a

si
ng

le
se

t,

m
ak

in
g

it
si

m
pl

e
to

de
te

rm
in

e
w

hi
ch

bi
ts

ca
n

be
cl

ea
re

d.
T

he
ca

ch
e

si
m

pl
y

ev
al

ua
te

s
al

l
th

e
ha

sh
fu

nc
ti

on
s

fo
r

al
l

re
m

ai
ni

ng
bl

oc
ks

in

th
e

se
t.

T
hi

s
re

qu
ir

es
no

ex
tr

a
ta

g
ar

ra
y

ac
ce

ss
es

as
al

l
ta

gs
ar

e

al
re

ad
y

re
ad

as
pa

rt
of

th
e

no
rm

al
ca

ch
e

op
er

at
io

n.
A

ny
bi

tm
ap

pe
d

to
by

th
e

ev
ic

te
d

or
in

va
li

da
te

d
bl

oc
k

ca
n

be
cl

ea
re

d
if

no
ne

of

th
e

re
m

ai
ni

ng
bl

oc
ks

in
th

e
se

t
m

ap
to

th
e

sa
m

e
bi

t.
W

he
n

us
in

g

an
in

cl
us

iv
e

L
2

ca
ch

e,
as

in
ou

r
ex

am
pl

e,
it

is
su

ffi
ci

en
t

to
ch

ec
k

on
ly

th
e

on
e

L
2

ca
ch

e
se

t.
If

th
e

L
2

ca
ch

e
is

no
t

in
cl

us
iv

e,
th

en

ad
di

ti
on

al
L

1
ac

ce
ss

es
m

ay
be

ne
ce

ss
ar

y.

3.
3

A
P

ra
ct

ic
al

Im
pl

em
en

ta
ti

on
C

on
ce

pt
ua

ll
y,

T
L

co
ns

is
ts

of
an

N
×

P
gr

id
of

B
lo

om
fi

lt
er

s,

w
he

re
N

is
th

e
nu

m
be

r
of

ca
ch

e
se

ts
,

an
d

P
is

th
e

nu
m

be
r

of

ca
ch

es
,

as
sh

ow
n

in
F

ig
ur

e
1(

c)
.

E
ac

h
B

lo
om

fi
lt

er
co

nt
ai

ns
k

bi
t-

ve
ct

or
s.

F
or

cl
ar

it
y

w
e

w
il

l
re

fe
r

to
th

e
si

ze
of

th
es

e
bi

t
ve

ct
or

s
as

th
e

nu
m

be
r

of
bu

ck
e
ts

.
In

pr
ac

ti
ce

,
th

es
e

fi
lt

er
s

ca
n

be
co

m
bi

ne
d

in
to

a
fe

w
S

R
A

M
ar

ra
ys

pr
ov

id
ed

th
at

a
fe

w
co

nd
it

io
ns

ar
e

m
et

:
1)

al
l

th
e

fi
lt

er
s

us
e

th
e

sa
m

e
se

t
of

k
ha

sh
fu

nc
ti

on
s,

an
d

2)
an

en
ti

re

ro
w

of
P

fi
lt

er
s

is
ac

ce
ss

ed
in

pa
ra

ll
el

.
T

he
se

re
qu

ir
em

en
ts

do
no

t

si
gn

ifi
ca

nt
ly

af
fe

ct
th

e
ef

fe
ct

iv
en

es
s

of
th

e
B

lo
om

fi
lt

er
s.

C
on

ce
pt

ua
ll

y,
ea

ch
ro

w
co

nt
ai

ns
P

B
lo

om
fi

lt
er

s,
ea

ch
w

it
h

k
ha

sh
fu

nc
ti

on
s.

F
ig

ur
e

2(
a)

sh
ow

s
on

e
su

ch
ro

w
.

B
y

al
w

ay
s

ac
ce

ss
in

g
th

es
e

fi
lt

er
s

in
pa

ra
ll

el
us

in
g

th
e

sa
m

e
ha

sh
fu

nc
ti

on
s,

th
e

fi
lt

er
s

ca
n

be
co

m
bi

ne
d

to
fo

rm
a

si
ng

le
lo

ok
up

ta
bl

e,
as

sh
ow

n
in

F
ig

ur
e

2(
b)

,
w

he
re

ea
ch

ro
w

co
nt

ai
ns

a
P

-b
it

sh
ar

in
g

ve
ct

or
.

A
s

a
re

su
lt

,
ea

ch
lo

ok
up

di
re

ct
ly

pr
ov

id
es

a
P

-b
it

sh
ar

in
g

ve
ct

or
by

A
N

D
-i

ng
k

sh
ar

in
g

ve
ct

or
s.

S
in

ce
ev

er
y

ro
w

of
B

lo
om

fi
lt

er
s

us
es

th
e

sa
m

e
ha

sh
fu

nc
ti

on
s,

w
e

ca
n

fu
rt

he
r

co
m

bi
ne

th
e

lo
ok

up
ta

bl
es

fo
r

al
ls

et
s

fo
r

ea
ch

ha
sh

fu
nc

ti
on

,a
s

sh
ow

n
in

F
ig

ur
e

3(
a)

.

T
he

se
lo

ok
up

ta
bl

es
ca

n
be

th
ou

gh
t

of
as

a
“s

ea
of

sh
ar

in
g

ve
ct

or
s”

an
d

ca
n

be
or

ga
ni

ze
d

in
to

an
y

st
ru

ct
ur

e
w

it
h

th
e

fo
ll

ow
in

g

co
nd

it
io

ns
:

1)
a

un
iq

ue
se

t,
ha

sh
fu

nc
ti

on
in

de
x,

an
d

bl
oc

k
ad

dr
es

s

m
ap

to
a

si
ng

le
un

iq
ue

sh
ar

in
g

ve
ct

or
;a

nd
2)

k
sh

ar
in

g
ve

ct
or

s
ca

n

be
ac

ce
ss

ed
in

pa
ra

ll
el

,
w

he
re

k
is

th
e

nu
m

be
r

of
ha

sh
fu

nc
ti

on
s.

A
n

ex
am

pl
e

im
pl

em
en

ta
ti

on
us

es
a

si
ng

le
-p

or
te

d,
tw

o-
di

m
en

si
on

al

S
R

A
M

ar
ra

y
fo

r
ea

ch
ha

sh
fu

nc
ti

on
,

w
he

re
th

e
se

t
in

de
x

se
le

ct
s

a
ro

w
,

an
d

th
e

ha
sh

fu
nc

ti
on

se
le

ct
s

a
sh

ar
in

g
ve

ct
or

,
as

sh
ow

n
in

F
ig

ur
e

3(
b)

.
A

s
a

pr
ac

ti
ca

l
ex

am
pl

e,
S

ec
ti

on
5

sh
ow

s
th

at
a

T
L

de
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w

it
h

fo
ur

ha
sh

ta
bl
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an

d
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F
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2:
(a

)
A

na
ïv

e
im

pl
em

en
ta

ti
on

w
it

h
on

e
fil

te
r

pe
r

co
re

.(
b)

C
om

bi
ni

ng
al

lo
f

th
e

fil
te

rs
fo

r
on

e
ro

w
.

3.
T

he
w

ri
te

r
w

ai
ts

un
ti

li
tr

ec
ei

ve
s

ac
kn

ow
le

dg
em

en
ts

fr
om

al
l

th
e

sh
ar

er
s.

O
ne

of
th

es
e

ac
kn

ow
le

dg
em

en
ts

w
il

l
co

nt
ai

n

th
e

da
ta

.
A

lt
er

na
tiv

el
y,

th
e

w
ri

te
r

w
il

l
re

ce
iv

e
th

e
da

ta
fr

om

m
em

or
y.

4.
T

he
w

ri
te

r
no

ti
fi

es
th

e
di

re
ct

or
y

th
at

th
e

tr
an

sa
ct

io
n

is
co

m
-

pl
et

e.

T
L

op
er

at
es

id
en

ti
ca

ll
y

ex
ce

pt
fo

r
w

he
n

it
se

le
ct

s,
in

st
ep

2(
b)

,a

pr
ov

id
er

th
at

do
es

no
t

ha
ve

th
e

da
ta

.
In

pr
ac

ti
ce

,t
he

pr
ob

ab
il

it
y

of

th
e

se
le

ct
ed

sh
ar

er
no

th
av

in
g

a
co

py
is

ve
ry

lo
w

;t
hu

s,
th

e
co

m
m

on

ca
se

fo
r

T
L

pr
oc

ee
ds

th
e

sa
m

e
as

th
e

or
ig

in
al

pr
ot

oc
ol

.
In

th
e

le
ss

co
m

m
on

ca
se

,
w

he
n

th
e

pr
ov

id
er

do
es

no
t

ha
ve

a
co

py
,

it
se

nd
s

a

N
A

ck
to

th
e

w
ri

te
r

in
st

ea
d

of
an

ac
kn

ow
le

dg
em

en
t.

T
hi

s
le

av
es

th
re

e
po

ss
ib

le
sc

en
ar

io
s:

1.
N

o
co

py
ex

is
ts

:
T

he
w

ri
te

r
w

il
l

w
ai

t
to

re
ce

iv
e

al
l

of

th
e

ac
kn

ow
le

dg
em

en
ts

an
d

th
e

N
A

ck
,

an
d

si
nc

e
it

ha
s

no
t

re
ce

iv
ed

an
y

da
ta

,i
tw

il
ls

en
d

a
re

qu
es

tt
o

th
e

di
re

ct
or

y
w

hi
ch

th
en

as
ks

m
em

or
y

to
pr

ov
id

e
th

e
da

ta
.3

2.
A

cl
ea

n
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Fig. 2: Tagless Coherence Directory [19].

partitioned design that consists of hashN hash functions each
of which map to a k bucket (k bitmap) filter. If the size of
the bloom filter is comparable to a cache tag, overall this
essentially improves the space over shadow tags by a factor
of NL1ways

#o f hash f unctions .
Tagless directory uses this representation to simplify the

insertion and removal of cache tags from the bloom filter.
Each bloom filter summarizes the cache tags in a single cache
set. Inserting a cache block’s address requires hashing the
address and setting the corresponding bucket (note that each
address maps to only one of the buckets). Testing for set mem-
bership consists of reading the bucket corresponding to the
cache tag in the set-specific bloom filter of each processor and
collating them to construct the sharing pattern (in Figure 2,
each bucket represents a sharing pattern). Having a bloom
filter per set also enables Tagless directory to recalculate
the filter directly on cache evictions. While conceptually,
the Tagless directory consists of NL1sets ∗ P bloom filters,
these filters can be combined since each core uses the same
bloom filter organization. A given cache block address maps
to a unique set and a unique bucket in the bloom filter.
Combining the buckets from all the bloom filters, a P bit
sharing pattern is created, which is similar to the sharing
pattern in a conventional full-map directory.

Multiple addresses could potentially hash to the same
bucket and hence introduce false positives. Using multiple
hash functions enables addresses to map to different buckets
and possibly eliminate false positives. Simply ANDing the
sharing vector from the buckets that an address maps to
in each hash function will eliminate many false positives.
Consider an implementation with hashN hash functions, k
buckets per hash function, Nsets L1 cache sets, and P cores.
The Tagless directory requires a P-bit pattern for each of the
k buckets, giving rise to an overhead of hashN * k * P * Nsets
bits.

Scalability Challenges. For large multicore chips (256+
cores) the storage overhead of the Tagless directory is dom-
inated by P. This introduces challenges to scalability with
increasing core counts. Furthermore, reading a large P-bit
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Fig. 3: Left (a): Storage overhead of Tagless directory per
core; X axis: # of cores (Bloom Filter size); Y axis: KB of
coherence directory per core. Right (b): Access energy of
Tagless directory tile per core; X axis: (# of cores); Y axis:
pJ.

wide vector from this coherence directory will not be energy
efficient. Figure 3a shows the per-core area of the Tagless
directory while increasing the number of cores. Since the
number of addresses that are mapped to a bloom filter grows
with the number of cores, the possibility of false positives
increases when using a fixed bloom filter size. We therefore
increase the number of buckets per bloom filter so as to
maintain the same level of false positives as our baseline
design. If we project to a Niagara2 design with a number of
cores from 256–2048, the Tagless directory adds significant
overhead. At 2048 cores, the total directory overhead is
16MB, which is 100% overhead since the aggregate size
of all the L1s in this system is 16MB. We assume that the
directory is uniformly distributed amongst all the cores and
hence the per-core overhead grows more gradually from 2KB
at 256 cores to 8KB at 2048 cores. Figure 3b plots the energy
overhead of reading from a directory tile. The size of sharing
pattern block read varies linearly with the cores. We see a
significant increase in the read energy from 5pJ at 256 cores
to 12pJ at 2048 cores.

III. SPATL :
HYBRID COHERENCE DIRECTORY

A. Sharing Patterns in the Directory

At PACT 2010, the SPACE [20] design was proposed as
a promising technique that compresses directory space for
inclusive cache designs. SPACE was based on observations of
application semantics that showed the regular nature of inter-
thread sharing, resulting in many cache blocks having the
same or similar sharing patterns. Thus, the in-cache directory
has a lot of redundancy and replicates the same pattern for
many cache blocks. SPACE decouples the sharing vectors
from the L2 tag and stores the unique sharing patterns in
a pattern table; multiple cache lines with the same pattern
would point to a common entry in the pattern table. The
sharing bit vector per cache tag is replaced with a pointer
whose size is proportional to the number of unique sharing
patterns. Unfortunately, while this provides better scalability
than the base in-cache directory design (reduces the directory
overhead to '40KB for the Niagara2), lines not present at
the L1s continue to bear the pointer overhead, which limits
the overall benefit.

In this work, we extend the idea of eliminating sharing
pattern redundancy to the Tagless buckets. Figure 4a shows
the maximum number of patterns displayed in an application
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during its execution, with and without the Tagless directory
(system configuration described in Table I in Section V). The
relatively small number of patterns present in the applications
compared to the total number of possible patterns suggests
an opportunity to design a directory that holds only the
sharing patterns present. In the Tagless directory, each bucket
combines and holds the union of sharing patterns of cache
blocks that map to that bucket. This in some cases causes
an overall increase in the total number of patterns since two
addresses with different sharing patterns could map to the
same bucket (causing false positives). Despite this possibility,
as the figure shows, the number of sharing patterns is much
smaller than the total number of buckets (65,536 in our
experiments), indicating that the same sharing pattern gets
replicated across multiple hash table buckets.

Patterns in cache Patterns in Tagless Dir.
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Fig. 4: (a) The maximum number of patterns present for a spe-
cific application for Apache. (b) The cache block distribution
over different number of sharers for Apache. For example,
'9,000 cache blocks have a private access pattern (only one
processor is accessing the block).

Figure 4b shows the degree of sharing for a snapshot
of the application Apache with and without the use of the
Tagless directory. Each bar in the histogram represents the
number of cache lines with patterns with a certain number
of processors sharing the cache line. Private cache lines are
the dominant sharing pattern for Apache, exhibited by over
75% of the cache lines. We observe that the percentage of
cache lines tagged as private reduces to 40% for the Tagless
directory. Some cache lines with private patterns are tagged
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Fig. 5: Hybrid Tagless-Pattern directory approach. Each
bucket includes a pointer to the sharing pattern.

as 2-sharer or 3-sharer because of conflicts in Tagless’s bloom
filter buckets.

Based on our analysis, we observe that despite the pos-
sibility of conflicts, the common sharing patterns across
many cache blocks continues to be exhibited across many
buckets in the Tagless approach. We also observe that the
number of patterns that are frequently referenced is small
(as corroborated by results in [20]). In our experiments, the
number of patterns that applications exhibit is 5.6% (Apache,
SPECjbb), 0.8% (SPLASH2), and 3.8% (PARSEC) of the
total number of buckets in the Tagless directory. Thus, we
propose a solution to enable Tagless directory scalability to a
large number of cores by eliminating the redundant copies
of sharing patterns. The compression of sharing patterns
will complement the compression achieved by the Tagless
directory.

B. SPATL Architecture

As shown in the conventional Tagless directory, every
bucket in the bloom filter specifies the sharing pattern for
blocks mapping to that bucket. We propose to decouple the
sharing pattern for each bucket and hold the different unique
sharing patterns observed in the Tagless directory in a separate
pattern directory table. This eliminates redundancy across the
Tagless directory where the same sharing pattern is replicated
across different buckets. With the directory table storing the
patterns, each bucket now includes a pointer to an entry in
the directory, not the actual pattern itself.

We organize the directory table as a two-dimensional
structure with NDir.ways ways and NDir.sets. Each bucket points
to exactly one entry in the directory table and multiple buckets
pointing to the same entry essentially map to the same sharing
pattern. The size of the pattern directory table is fixed (derived
from the application characteristics in Section III-F) and is
entirely on-chip. Hence, when the table capacity is exceeded,
we have a dynamic mechanism to collate patterns that are
similar to each other into a single entry.

In this section, we describe our directory implemented
on a multicore with 16 processors, with 64KB private, 2-
way L1 caches per core, and a Tagless directory with 2
hash functions and 64 buckets per hash function. The con-
ventional Tagless directory design incurs an overhead of
HashN ∗Nbuckets ∗Pcores bits = 2 * 64 * 16 bits per set of the



5

L1 cache. Figure 5 illustrates the SPATL approach. We have a
table with NDir.entries (= NDir.ways ∗NDir.sets) entries, each entry
corresponding to a sharing pattern, which is represented by
a P-bit vector. The directory table itself is a NDir.entries ∗P bit
array; at a moderate number of cores, it does not constitute the
dominant overhead. For each bucket in the Tagless directory,
we replace the sharing vector with a dlog2(NDir.entries)e bit
pointer to indicate the sharing pattern. Every time the sharer
information is needed, the bucket is first hashed into, and the
associated pointer is used to index into and get the appropriate
bitmap entry in the directory table, which represents the sharer
bitmap for the cache tags that map to that bucket. The main
area savings in SPACE comes due to the replacement of the
P-bit vector per bucket with a dlog2NDir.entriese-bit pointer.

The next two sections describe how SPATL inserts entries
into the Tagless buckets and directory table, how patterns
are dynamically collated when there aren’t any free entries,
and how sharing patterns are recalculated on cache block
evictions.

C. Cache Block Insertion

When a cache line is brought in and a sharing pattern
changes (or appears for the first time), the block needs to
modify the sharing pattern associated with its bucket in the
Tagless directory. To achieve this, the set index of the cache
line is used to index to the specific bloom filter, and the tag
is used to map to the specific bucket. When a cache line is
inserted into a specific core i, logically, it modifies Core i’s
sharing bit in the bucket mapped to. This operation is carried
out in SPATL as a sharing pattern change. The current sharing
pattern pointed to by the pointer in the bucket is accessed,
and Core i’s bit is set in the pattern to form the new pattern.

The newly generated pattern needs to be inserted into the
directory table. The pattern table is organized as a two-way
table with Nrows and Ncols. Initially, the incoming sharing
pattern hashes into a particular row and then compares itself
against patterns that already exist in that row (Figure 5). Once
a free entry is found in the directory table, the row index
and column location are used by the bucket to access the
specific entry. Intuitively, the hash function that calculates
the row index in the pattern table has to be unbiased so as to
not increase pollution in any given row. We also require that
similar patterns map to the same row so as to enable useful
collation of sharing patterns that do not differ by many bits
when the protocol runs out of free directory entries.

To satisfy these two seemingly contradictory goals, we use
a simple hash function to calculate the row index into the
pattern table. We use a coarse bit-vector representation of
the original sharing pattern as an index. For example, in a
pattern directory with 16 rows, we could use a coarse-grain
four-bit representation as the encoding to indicate which of
the possible four-core clusters is caching the data. It ensures
that patterns that map to the same row will differ only in
topologically adjacent bits, enabling intelligent collation of
patterns, i.e., without excessive extra traffic due to false
sharers, by limiting this traffic to neighbors or a specific
set of sharers (when there are no free patterns available).
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Fig. 6: Steps involved in inserting a new cache line.

Since private and globally-shared (all processors cache a
copy) patterns appear to be common patterns across all the
applications, SPATL dedicates explicit directory indices for
these P+ 1 patterns (where P is the number of processors)
without the need for actual directory space.

Eviction of cache blocks. When a cache block is evicted
from a core i, the bloom filter must be modified accordingly.
Merely accessing the bucket to which the block hashes and
resetting the bit corresponding to core i in the sharing pattern
specified by the bucket does not suffice, since other blocks in
the same core’s cache set may map to the same bit. Instead,
the Tagless directory will recalculate the ith bit (associated
with core i) of the bloom filter buckets by rehashing all tags
in the set to detect collisions.

In SPATL we cannot simply recalculate and reset (if
necessary) core i’s bit in the sharing pattern pointed to by
the bucket since other buckets could be pointing to this same
sharing pattern. Instead, we treat such recalculations of the
bloom filter as essentially sharing pattern changes. When core
i’s bit needs to be reset in a bucket, we first access the sharing
pattern pointed to by the bucket. Following this, we reset core
i’s bit and try to reinsert into the pattern table as a new sharing
pattern.

Illustration : Cache line insertion and eviction. Figure 6
illustrates the steps involved in inserting a cache line into
SPATL’s directory. Currently, set S holds cache lines X1,X2,
...XN in its N ways and we would like to insert cache line
Y and displace cache line XN . Not all buckets are affected
as a result of this change, only the buckets that XN and Y
hash into. Hence, in y1, the L1 cache at core P calculates
the current Bloom summary, the new bloom summary with
Y inserted in place of XN , and the difference between the two
summaries. The difference will include at most two buckets.
If Y is the first address in the set to hash into a bucket
from the set S, then Core P’s bit in that bucket needs to
be set (indicated by Set-Bucket in Figure 6). If no other
address hashes into the same bucket as XN then Core P’s bit
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needs to be reset on the bucket to prune out false positives
(indicated by Reset-Bucket). The tuple consisting of (Core
id (P), Set id (S), Set-Bucket, Reset-Bucket) is sent to the
Tagless directory. In y3, the Tagless directory refers to the
pattern pointed to by the Reset-Bucket, resets Core P’s bit,
inserts the new pattern into the pattern table, and swings
Reset-Bucket’s pointer to point to the new pattern. In y4,
the Tagless directory refers to the pattern pointed to by the
Set-Bucket, Sets Core P’s bit, inserts the new pattern into
the pattern table, and swings Set-Bucket’s pointer to point to
the new pattern. We do not unset Core P’s bit directly in the
pattern table because there could be potentially other buckets
pointing to the same pattern. Similarly, we do not set Core
P’s bit directly in the pattern table because this could induce
an extra false sharer for buckets already pointing to the entry.

D. Merging Patterns

A key challenge of fixed size superset representation is
the combining of patterns from different cache blocks. In
the hybrid approach, which combines Tagless and the pattern
directory, sharing patterns need to be merged at two different
levels. At the first level, the Tagless directory essentially
associates a single sharing pattern vector with each bucket.
When cache blocks with different sharing patterns hash into
the same bucket, then the Tagless directory will need to store
a union of the sharing patterns of each cache block. This
arises due to the false positives introduced by bloom filters.

The other form of merging occurs when there are more
sharing patterns in the system than the pattern directory
can support. Figure 7 illustrates the process of inserting a
pattern into the pattern table. When inserting a pattern in
the directory, we index into the pattern table and search for
a matching entry. If there are no matching or free entries
that can be allocated from the set, the incoming pattern is
combined with some existing pattern. Note that this merging
does introduce extra false positives for the buckets that
already point to that entry. The pattern directory tries to
minimize pollution by merging the incoming pattern with the
sharing pattern that is closest in terms of hamming distance
(number of sharers in which they differ). This ensures that the
extra sharers/false positives caused by the merging is kept to a
minimum. Existing Tagless directory buckets that point to the
sharing patterns will experience new false positives, but by
ensuring that the merged patterns are similar to each other,
we can limit the number of extra sharers and the resulting
potential for extra coherence traffic.

Bucket's Pattern 

... ...
...

Pattern Table
N Cols1010 0000 0000 0001

Encode

1001
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Merge with 
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 R

ow
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Fig. 7: Inserting and merging a pattern into the pattern table.

Removal of sharing patterns. The last challenge that
needs to be addressed is to ensure that entries in the directory
are re-usable once no bucket has the sharing pattern in the
entry. We use a simple scheme of reference counting to detect
when an entry is no longer in use. A counter is associated with
each entry in the directory. This counter is incremented when
a new bucket starts pointing to the entry and is decremented
when a bucket pointing to the entry changes its pointer. The
entry can be reclaimed when the counter reaches zero.

E. Directory Accesses

An interesting challenge that SPATL introduces is that it
is possible for the directory to provide an inaccurate list
of sharers to the coherence protocols. Coherence protocols
use the sharers list in multiple ways. On a write access, the
sharing pattern is used to forward invalidations and obtain
the latest version of a cache block if any of the processors is
holding a modified version. In such cases, we adopt a parallel
multicast approach in which the pattern directory pings all
possible sharers indicated by the sharing pattern. Cores will
respond based on their state; whether they have a modified
copy, have simply read it, or do not even cache the block.

Whether the shared cache is inclusive or exclusive deter-
mines whether the information in the directory is needed to
retrieve data on read misses. Consider an inclusive cache
in our baseline system with private caches and shared L2.
With an inclusive L2 cache, the shared L2 has a copy of
each L1 cache block. In case of a read miss on a clean
cache block, the L2 can directly source the data and save
the effort of forwarding messages to one of the L1 sharers.
We only need to add information in the coherence directory
about the new sharer. The directory information is needed
for invalidation on write misses and to locate the modified
copy when transitioning from modified to shared state. With
a non-inclusive (or exclusive) shared L2, on a read miss that
doesn’t find the block at the L2 level, we cannot separate
the condition when the block does not reside at all on-chip
from when the block is cached by one of the L1s without
examining the directory. We have no choice but to check the
directory and ping each of the sharers to see if they have
a copy. Extra sharers/false positives in the directory affect
read miss performance and the directory design has to be
comparatively more robust than inclusive caches.

F. Challenge: Two-Level Conflicts

The base SPATL design without optimization exhibits
much higher false positives when compared to the Tagless
design. The reason for the increase in false positives is the
double conflicts in the Tagless buckets and the pattern table.
As we can see from Figure 4b the Tagless table in general
introduces new sharing patterns because of conflicts at the
Tagless buckets. The pattern table introduces further false
positives after merging patterns. The conflict itself is not a
problem if the original patterns can be recovered when a cache
line is evicted as in the Tagless design. Unfortunately, with
the base hybrid design this recovery ability is lost since the
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Fig. 8: Two levels of false positives. Dashed lines indicate operations.

pattern table introduces new sharing patterns by ORing with
other unknown patterns.

To illustrate the problem, consider the example with 4
processors shown in Figure 8. Cache line A has the (private)
pattern 0001, while cache line B has the (private) pattern
1000. A and B map to same the bucket in the Tagless
directory. This causes the first level of false positives, and the
bucket creates the pattern 1001, and inserts it into the pattern
table ( y1). In the pattern table, the pattern gets merged with
pattern 1101. Pattern 1101 is now stored in the pattern table,
and the bucket stores the pointer pointing to the pattern 1101
( y2).

Now consider when cache line B is evicted. In the SPATL
design, on a cache line eviction, we read the pattern table
entry (1101) and reset Core 0’s bit, which leaves us with 1100.
The false positive from Core 2 caused by merging patterns
in the pattern table cannot be cleared since we do not know
whether Core 2’s bit was set due to pollution in the Tagless
or the Pattern table. With private patterns being the common
patterns, the situation described occurs frequently, leading to
pattern table pollution, and soon enough the pattern table does
not have free entries, leading to more pollution. In the Tagless
design, the signature is recalculated, and the pattern would
naturally become 1000, which is the accurate pattern again.

To clean up the polluted entries, we use pattern recalcu-
lation messages at the time of cache evictions. At the time
of cache evictions, we look up the pattern table and multicast
a pattern recalculation message to other sharing processors
(in this case, when Core 0 evicts B, the Tagless directory
multicasts messages to Core 2 and Core 3 as indicated by the
pattern.) Each individual processor recalculates its signature
of the set and sends back the information. Now, we are able
to reconstruct the precise pattern for the set and place it in
the pattern table. For example, in this case we will be able
to precisely recalculate the pattern for the set as 1000. The
recalculation results in increased messages in the system as
shown in Figure 11. However, the messages are not in the
critical path because they are incurred only on cache evictions.
We investigated a few simple optimizations to address the
increase in traffic in Figure 11. Instead of recalculating
the pattern on every eviction, we use simple decision logic
to decide when to recalculate based on the importance of
the cache line. We evaluate the importance of whether a
pattern recalculation is needed based on information such
as the number of sharers in the pattern, and the number
of entries pointing to the pattern. This information already

exists in the base design and we demonstrate that employing
such optimizations minimizes the bandwidth cost of pattern
recalculation messages.

IV. ANALYTICAL MODEL: BIT BUDGET TRADE-OFFS

We analyze and compare the different coherence directory
schemes in order to understand their reasons for efficiency
using an analytical model. In the following analysis, we
assume that the total number of cores in the system is P,
i.e., P private caches need to be kept coherent and each
cache has S sets and W ways. The total number of blocks
that can be cached across all the L1 caches is P× S×W .
However, typically there are fewer unique blocks due to
data sharing. Assuming f is the fraction of blocks that are
unique in the total number of blocks (0 ≤ f ≤ 1), then a
coherence directory essentially needs only f ∗S∗W ∗P entries
to support coherence operations. Hence, the total bit budget
for an idealized directory will be : f ∗P ∗ S ∗W ∗ (Tb +P),
where Tb is number of tag bits (typically 48 bits on a 64
bit machine). For large multicores if P >> Tb, then the Ideal
Directory = f ∗P∗S∗W ∗P and ∝ O(P2).

The shadow tags approach that completely replicates the
L1 tags has a bit budget as P∗S ∗W ∗Tb, which is suited to
the case when most cache lines across the cores are private.
Shadow tags has a smaller overhead than the ideal directory
when all tags are unique ( f = 1), because the shadow tags do
not store the actual sharing patterns required by coherence.
Every coherence access needs a W ∗ P-way search on Tb-
bit tag fields. Even on small multicores, this is an energy-
intensive associative search. Tagless Directory is built on the
shadow tags approach. It adopts shadow tags’ approach of
using the directory to represent the tags in the L1, but unlike
shadow tags, it only represents a summary of the tags in each
set using a bloom filter. Its overall budget is :

Tagless Budget = S∗B∗Hn ∗P
B and Hn are related based on false positives

E[False positives] = (P−1)∗ (1− (1− 1
B
)W )Hn

B: Buckets/Hash function ; Hn : # of Hash functions

With a large number of cores, P will dominate the relation,
resulting in significant area overhead. SPATL improves over
Tagless by decoupling Tagless’ relation to P and relates
it to the actual sharing patterns in the application. SPATL
allows the designer to carefully consider the application suite
targeted and appropriately size the pattern table. If the pattern
table stores 2Ip patterns, then the Tagless table needs Ip bits
per entry, which is smaller than P. Therefore, in SPATL the
pattern table grows linearly with P, but the Tagless table itself
grows as log(pattern table size). Overall, SPATL performs
better than Tagless under the following conditions

[S∗B∗Hn ∗ Ip(Tagless Table)+2Ip ∗P(Pattern Table)]
< S∗B∗Hn ∗P

In many cases for large multicores P >> Ip, which implies
that (P− Ip) can be approximated as P, so the condition can
be reduced to 2Ip < S∗B∗Hn.
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V. EVALUATION

A. Experimental Setup

To evaluate the SPATL design, we use a Simics-based [12]
full system execution-driven simulator, which models the
SPARC architecture. For cache and memory simulation, we
use Ruby from the GEMS toolset [13]. Our baseline is a 16-
tile multicore with private L1 caches and a 16-way shared
inclusive L2 distributed across the tiles. We employ a 4x4
mesh network with virtual cut-through routing. We simulate
two forms of packets: 8-byte control packets for coherence
messages and 72-byte data payload packets for the data
messages. Table I shows the parameters of our simulation
framework.

We use a wide range of workloads, which include com-
mercial server workloads [3] (Apache and SPECjbb2005),
scientific applications (SPLASH2 [18]), and multimedia ap-
plications (PARSEC [4]). We also include two microbench-
marks, migratory and producer-consumer, with known sharing
patterns. Table II lists all the benchmarks and the inputs used
in this study. The table also includes the maximum number of
access patterns for each application, which can be correlated
with the performance of a given SPATL directory size.

We compare against the following coherence directory
designs:

Tagless Directory (TAGLESS). This design studies the
original Tagless approach presented at Micro 2009. The
number of hash functions is fixed at two, and the number
of buckets per set is varied from 16 to 64.

SPATL-N (TAGLESS-SPACE Approach). We also study
a range of SPATL design points varying the directory ta-
ble from 512 — 2048 entries. We evaluate two versions,
namely, SPATL-NOUPDATE (SPATL1024noupdate in chart)
and SPATL. The SPATL-NOUPDATE is a baseline design for
the combined approach. SPATL includes extra optimizations
(discussed in Section III-F) geared to eliminating the transient
false-positives that arise due to conflicts in the TAGLESS
table. For the SPATL design, each tile contains a segment
of the directory table. We charge a 2-cycle penalty for each
SPATL lookup.

B. How accurate is SPATL?

SPATL can achieve false positives similar to the base
Tagless design. We do require extra logic in the design to
eliminate the pollution arising out of two levels of compres-
sion. We eliminate the pollution by designing simple “pattern
recalculation” messages to recalculate the sharing pattern.
These messages are multicast to possible sharers off the
critical path, at eviction time.

In our first set of experiments, we estimate the accuracy
of sharing patterns maintained in SPATL. In a directory-based
coherence protocol, coherence operations refer to the sharer
information to forward coherence messages and the accuracy
of tracking sharers has an impact on overall network utiliza-
tion and hence energy spent in communication. For cases
in which the sharing pattern is represented inaccurately, we

evaluate the average number of extra false sharers experienced
on each directory probe.

Our baseline shown in Figure 9a evaluates the Tagless
directory approach with different hash functions and buckets.
64 buckets and 2 hash functions appears to be the optimal
design with negligible false positives. Figure 9b shows the
SPATL approach. As we can see the SPATL-noupdate (naively
combining TAGLESS with a Pattern table) introduces many
false positives. Once we introduce the optimization to recal-
culate the sharing pattern on evictions, we reduce the false
positives and are able to approach Tagless’ level of accuracy.
In applications including MP3D, FFT, and Water, the SPATL
design does not add any inaccuracy on top of the Tagless
design. This is due to the over provisioning of entries in the
pattern table, which needs to support other applications as
well. In the baseline SPATL-noupdate design, Apache, Barnes,
Bodytrack and SPECjbb experience the lowest accuracy with
the relatively large number of sharing patterns that merge in
complex ways to introduce many false sharers.

There are two possible scenarios where the directory needs
to be referenced. A cache miss in the L1 to look up the
directory to decide which cache could possibly provide the
data. If SPATL were integrated with an inclusive shared L2
cache then we can decide to source data for all misses
from the L2, except in the case when one of the caches
holds a modified copy. If SPATL was integrated with a non-
inclusive shared cache then cache misses need to possibly
source the data from one of the L1s and need the directory for
determining the possible sharers. Write misses (get exclusive
access and update messages) probe the directory for sharer
information to forward invalidations.

Figure 10 demonstrates an interesting trend that the av-
erage false positive sharers is much smaller for invalidation
probes. Most of the SPATL false sharers are introduced as
a result of probes on read misses. If SPATL were integrated
with a non-inclusive cache it would need to satisfy both read
misses and forwarded invalidations; we would need 1024
entries in the pattern table. If SPATL were integrated with
an inclusive shared L2 cache, we can eliminate all the false
positives due to the cache misses and reduce the pattern table
size by 4×.

C. Interconnect Traffic

In this section, we study the interconnect traffic for applica-
tions in SPATL and show that the SPATL directory introduces
minimal increase in on-chip traffic.

SPATL increases traffic compared to fully accurate direc-
tory in two ways. The false positives per reference gener-
ates additional messages, which are on the critical path of
invalidations and lookups. In addition, “pattern recalculation”
(presented in Section III-F) at evictions also multicast mes-
sages to sharers. Figure 11 plots the increase in traffic due
to the false positives and the recalculation. In applications
with few sharing patterns, both the traffic caused by false
positives and recalculations are minimal. This is the case
for Blackscholes, Canneal, and all the scientific benchmarks
except Barnes. The additional traffic is less than 2%. Due
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TABLE I: Target System parameters
Cores: 16-way, 3.0 GHz, In order

L1D/I : each 64KB, 2way, 64byte block
Shared Tiled L2 Cache

16 banks, 4MB/Tile, 16way, 14 cycles
Interconnect: 4x4 mesh

128bit wide 2cycle links
Main Memory : 500 cycles

TABLE II: Application Characteristics

Benchmark Setup # of Network
sharing patterns Utilization

Apache 80000 requests fastforward, 2000 warmup, and 3000 for data
collection

1657 11.6%

JBB2005 350K Tx fastforward, 3000 warmup, and 3000 for data collec-
tion

1054 8.5%

Barnes 8K particles; run-to-completion 707 3.3%
Cholesky lshp.0; run-to-completion 364 2.6%
FFT 64K points; run-to-completion 104 3.7%
LU 512x512 matrix,16x16 block; run-to-completion 249 1.9%
MP3D 40K molecules; 15 parallel steps; warmup 3 steps 181 6.1%
Ocean 258x258 ocean 208 5.7%
Radix 550K 20-bit integers, radix 1024 169 5.0%
Water 512 molecules; run-to-completion 75 2.7%
Migratory 512 exclusive access cache lines 63 0.6%
ProdCon 2K shared cache lines and 8K private cache lines 82 1.5%
Blackscholes 4096 options 450 3.5%
Bodytrack 4 cams, 100 particles, 5 layers, 1 frame 2087 2.2%
Canneal 100K elements, 10K swaps per step, 32 steps 313 4.3%
X264 640 x 360 pixels, 8 frames 590 2.2%
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Fig. 9: (a) Average number of false positives per reference with Tagless approach. (b) Average number of false positives per
reference with SPATL approach.
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Fig. 10: False sharers on coherence write
invalidations.

to recalculation, multicast only happens when there is a hint
of pollution (i.e., pattern table indicates that more than one
sharing pattern has been ORed at the entry). Therefore both
types of traffic is minimal. In applications with many sharing

patterns (i.e., Apache, JBB, Bodytrack), traffic overhead due
to false positives is limited to 5%. On the other hand, traffic
due to multicast is increased by up to 15%. This traffic is
off the critical directory lookup path, so its impact on the
performance could be minimal compared to the traffic due to
false positives. Note that our overall network utilization for
most applications is moderate, which allows the network to
support the increase in traffic.

The key to reducing this traffic is the frequency of the
pattern recalculation. Recalculating on every eviction might
be unnecessary because multiple hashing functions could filter
out some of the false positives, meaning the recalculation
traffic is unnecessary in such cases. Recalculating lazily and
infrequently on the other hand leads to a heavily polluted pat-
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Fig. 11: Extra interconnect traffic. The four columns from left to right indicate traffic using the
Every, Random, Count, and Sharer policies.

tern table, and introduces further conflicts. We explore three
simple techniques to reduce the recalculation traffic here.
Random chooses to send the recalculation message every
third eviction. Count will only send the recalculation message
if the entries pointing to the pattern reach a certain threshold
(48 in the experiment). Sharer will send the message when
the pattern indicates more than 4 sharers. Figure 11 evaluates
the effects of the three methods on both traffic caused by
recalculation and false positives. In general, less frequent
recalculation leads to more false positives, therefore causes
slight increase in traffic due to false positives. The simple
random method is very effective, reducing the recalculation
traffic to less than 7% for all the applications, while adding
less than 1% traffic from false positives. Count method does
not perform better than random because the number of entries
pointing to a pattern does not translate to the frequency with
which the pattern is referenced. The sharer method has the
highest accuracy. However, the traffic reduction is limited.

D. Area, Energy, Delay

This section reports the area, energy, and access time of
the SPATL directory. CACTI 6.0 [14] is used to estimate
the delay and energy for a 32nm process technology. The
estimated numbers at 16 cores are shown in Table III. The
additional cost of accessing the small pattern directory table
adds little to the access time and energy. The accessing can be
finished within two CPU cycles, and both the accessing time
and power consumption is significantly better than alternative
directory designs including a FULL directory cache and the
shadow tags directory.

The last column in Table III shows the relative area of
the SPATL directory. The area for SPATL includes both the
buckets of pointers and the pattern table. On top of the
Tagless directory, SPATL further compresses the directory by
25% to 42% at 16 cores. This translates to 28% to 37% of
the area of a FULL directory cache. The leakage power is
proportional to the size of the memory structures. We estimate
a 74% reduction in leakage power for SPATL with 512 entries
compared to a FULL directory cache.

E. Scalability

The performance of the SPATL directory directly depends
on the number of sharing patterns present in the cache. This

TABLE III: CACTI estimates for various directory settings. (The
access time and read energy for SPATL include access of the pointer in
SPACE buckets and the pattern table entry.)

Configuration Access Read Storage Relative
Time(ns) Energy(fJ) to Tagless

FULL dir cache 0.55 16812 2.03×
Shadow tags 0.92 67548 1.53×
Tagless-lookup 0.27 4104 1×
SPATL-512 0.40 4299 0.58×
SPATL-1024 0.41 4394 0.66×
SPATL-2048 0.43 4486 0.75×

is mainly influenced by the application’s characteristics, the
parallelization strategy, and programming patterns. However,
in most architectures the cache block size and cache size
have a key influence on the sharing patterns observed since
they affect properties like false sharing and working set
size in the cache. Figure 12 shows the influence on false
positives by varying the L1 cache parameters. As the size of
the L1 caches increase, the average false positives increases
with more sharing patterns. However, the increase is minor
after the size of the working set is reached. The influence
of larger cache lines is mixed, because false sharing could
lead to either increasing or decreasing sharing patterns. The
false positive increases when line size increases from 32B
to 64B, then decreases when line size further increases to
128B. Characterizing the influence of false sharing on sharing
patterns is beyond the scope of this work.
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Fig. 12: Average false positives under varying L1 cache
settings. The group on the left keeps the cache line size
constant (64B) and varies the number of sets. The group on
the right keeps the number of sets constant and varies the
cache line size.

To study the scalability of the SPATL directory, we simu-
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late three multicore systems (8-core CMP, 16-core CMP, and
32-core CMP). For each system, we experimented with three
SPATL directory setups by varying the size of the pattern
table. Figure 13 shows that SPATL with a limited number
of pattern entries consistently performs similar to FULL.
The network traffic is within 5% of FULL for SPATL-128
using 8 cores, SPATL-1024 using 16 cores, and SPATL-4096
using 32 cores. Interestingly, to achieve an effective directory,
SPATL appears to need a pointer size of K ∗ logP (K = 2.4
in our experiments). On top of the tag compression by
TAGLESS, the directory of size M ∗P is further compressed
to M ∗K ∗ logP.

Figure 14 projects the size of the directory to systems up to
512 cores. Compared to the tagless directory, SPATL further
compresses the directory by 34% at 16 cores, and by 78%
at 64 cores. We also show the size of the ideal directory for
8, 16, and 32 cores. The ideal directory is a directory cache
that magically holds only the tags present in the L1 caches. It
represents the minimum space for an accurate directory cache.
The size varies across applications and in execution, and we
show the captured maximum size.SPATL has less overheads
compared to the ideal directory cache.

Accelerator-based Manycore Architectures. An impor-
tant design decision in SPATL is the size of the pattern table
(fixed at design-time), which determines how many unique
sharing patterns can be simultaneously supported. In our
experience, we observed large variations between the different
workload suites and in some cases outliers even within a
workload suite (e.g., Barnes in SPLASH2). In our current set
of experiments, we assume general-purpose multicores that
can target any of these workloads. Hence, the pattern table
is sized to support commercial applications like Apache and
SpecJBB, which have myriad read-sharing patterns. Unfor-
tunately, this severely over-provisions the pattern table for
workloads such as SPLASH2. We now consider accelerator-
like manycore architectures which target only data parallel
algorithms like SPLASH2. We found that a 32 entry pattern
table is sufficient for many SPLASH2 applications (other
than Barnes) to perform optimally at 16 cores. Assuming
linear growth in patterns with increase in cores (a reasonable
assumption for data parallel workloads), we only require a
2048 entry pattern table for 1024 cores. We believe providing
a cache coherence directory for a hypothetical 1024-core
accelerator (64KB L1 per core) would only require '0.6MB,
less than 1% of the total L1 capacity.

VI. RELATED WORK

This section discusses different directory designs for CMP.
Shadow tags duplicate all the tags present in the private cache
and construct the sharing vector by looking up the tags when
accessed. The design is simple in concept and works well in
current multicores including SUN’s Niagara2 [17]. The bigger
challenge is that it requires an energy-intensive associative
search to construct the sharing pattern. We have shown that
using the techniques described in this paper we can improve
space consumption by a factor of 3× at 64 cores without the
need for associative lookup.
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Fig. 13: Interconnect traffic for SPATL normalized to a full
map in-cache directory. The stacked bars show the extra
traffic caused by false positives and extra traffic caused
by pattern recalculation. X axis represents three multicore
systems (8-core, 16-core, and 32-core). We experiment with
three different SPATL pattern table sizes (2nd X axis: # of
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Tagless directory [19] uses bloom filters to map the tags
in each cache set. The bloom filters concisely summarize the
tags for each set in every core and completely eliminates
the associative search on lookups. Overall, it reduces storage
compared to shadow tags by a factor of the number of ways in
the L1 cache. The benefits of the bloom filters are limited for
multicores with a large number of cores since the per-bucket
sharing vector becomes a significant area overhead.

Directory cache [1], [15] limits the size of the directory by
restricting the number of blocks that the directory holds the
sharing information for. With this limitation, if one block is
not present in the directory cache, either all the shared copies
have to be invalidated, or the cache block must be defaulted
to shared by all the processors. Cuckoo directory [7] uses an
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improved hashing algorithm to eliminate associativity-related
tag evictions in the directory cache. Other proposals try to
combine a small directory cache with a larger in-memory
directory [10], [15]. Such designs essentially emulate a big
directory cache, but they require complex protocol extensions
that touch off-chip metadata, and some directory accesses will
suffer long latencies.

Full map directory [5] is a simple solution for CMPs with
an inclusive shared last-level cache. The bit vector indicating
the sharers is associated with the cache line at the shared
cache. Full map directory imposes significant storage penalty
because the shared cache is usually much larger (24MB on
the latest Itanium [9]) and includes lines that are not cached
at lower levels. SPACE [20] sought to optimize full map by
making the observation that many entries in the shared cache
store redundant patterns. It decouples the sharing pattern from
the directory entries, and only represent patterns present in the
application. Each cache block in the inclusive cache includes
a pointer to the pattern table. Unfortunately, even uncached
blocks include the pointer and this leads to significant space
overhead compared shadow tag-based approaches.

Coarse vectors [8], [16], sharer pointers [2], [11], and
segmented vectors [6] all try to compress the sharing vector
using more compact encodings. Based on the encoding type,
these compressed directories can represent only a limited
number of sharing patterns, and introduce imprecision (hard-
coded at design time) or extra latency for other patterns.

Overall, SPATL is agnostic to the type of shared cache
(inclusive or exclusive), affords significant compression over
the previously known best approach, Tagless, and loses pre-
cision more gracefully based on an application’s coherence
requirements.

VII. CONCLUSIONS

We presented SPATL, a coherence directory that requires
minimal storage (83KB at 16 cores) and can scale at least
up to 512 cores (3MB storage required). SPATL achieves this
by combining two complementary techniques that compress
both the tags and the sharing patterns in the directory. SPATL
adopts Tagless directory’s approach [19] of compressing the
tags using bloom filters to summarize the information in each
set. SPATL further compresses the sharer bit vectors in the
bloom filters based on the observation that due to the regular
nature of programs, many cache blocks exhibit the same
sharing pattern, i.e., there are only a few sharing patterns and
they are replicated in many bloom filters. SPATL maintains a
separate table to hold only the unique patterns that appear in
the application. Multiple bloom filters with the same pattern
point to a common entry. SPATL provides significant benefit
over the Tagless’s tag compression and achieves 34% savings
in storage at 16 cores, and 78% at 64 cores. SPATL’s storage
overhead is the minimum amongst all previous coherence
directory proposals and scales better than even an idealized
directory cache from 16—512 cores. Finally, the directory
storage can be tuned based on the sharing patterns in the
application. Many parallel workloads in SPLASH2 have few
sharing patterns and we find that for a 1024-core (64KB

L1) accelerator architecture that targets only these workloads,
SPATL would need only 600KB of space (less than 1% of total
aggregate L1 space).
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