
Concurrent Objects

Companion slides for
The Art of Multiprocessor Programming

by Maurice Herlihy & Nir Shavit

Art of Multiprocessor
Programming

2

Concurrent Computation

memory

object object

Art of Multiprocessor
Programming

3

Objectivism
•  What is a concurrent object?

– How do we describe one?
– How do we implement one?
– How do we tell if we’re right?

Art of Multiprocessor
Programming

4

Objectivism
•  What is a concurrent object?

– How do we describe one?

– How do we tell if we’re right?

Art of Multiprocessor
Programming

5

FIFO Queue: Enqueue Method

q.enq()

Art of Multiprocessor
Programming

6

FIFO Queue: Dequeue Method

q.deq()/

Art of Multiprocessor
Programming

7

 A Lock-Based Queue

class LockBasedQueue<T> {
 int head, tail;
 T[] items;
 Lock lock;
 public LockBasedQueue(int capacity) {
 head = 0; tail = 0;
 lock = new ReentrantLock();
 items = (T[]) new Object[capacity];
}

Art of Multiprocessor
Programming

8

 A Lock-Based Queue

class LockBasedQueue<T> {
 int head, tail;
 T[] items;
 Lock lock;
 public LockBasedQueue(int capacity) {
 head = 0; tail = 0;
 lock = new ReentrantLock();
 items = (T[]) new Object[capacity];
}

0 1

capacity-1
2

head tail

y z

Queue fields
protected by single
shared lock

Art of Multiprocessor
Programming

9

 A Lock-Based Queue

class LockBasedQueue<T> {
 int head, tail;
 T[] items;
 Lock lock;
 public LockBasedQueue(int capacity) {
 head = 0; tail = 0;
 lock = new ReentrantLock();
 items = (T[]) new Object[capacity];
}

0 1

capacity-1
2

head tail

y z

Initially head = tail

Art of Multiprocessor
Programming

10

Implementation: Deq
public T deq() throws EmptyException {
 lock.lock();
 try {
 if (tail == head)
 throw new EmptyException();
 T x = items[head % items.length];
 head++;
 return x;
 } finally {
 lock.unlock();
 }
}

0 1

capacity-1
2

head tail

y z

Art of Multiprocessor
Programming

11

Implementation: Deq
public T deq() throws EmptyException {
 lock.lock();
 try {
 if (tail == head)
 throw new EmptyException();
 T x = items[head % items.length];
 head++;
 return x;
 } finally {
 lock.unlock();
 }
}

Method calls
mutually exclusive

0 1

capacity-1
2

head tail

y z

Art of Multiprocessor
Programming

12

Implementation: Deq
public T deq() throws EmptyException {
 lock.lock();
 try {
 if (tail == head)
 throw new EmptyException();
 T x = items[head % items.length];
 head++;
 return x;
 } finally {
 lock.unlock();
 }
}

If queue empty
throw exception

0 1

capacity-1
2

head tail

y z

Art of Multiprocessor
Programming

13

Implementation: Deq
public T deq() throws EmptyException {
 lock.lock();
 try {
 if (tail == head)
 throw new EmptyException();
 T x = items[head % items.length];
 head++;
 return x;
 } finally {
 lock.unlock();
 }
}

Queue not empty:
remove item and update

head

0 1

capacity-1
2

head tail

y z

Art of Multiprocessor
Programming

14

Implementation: Deq
public T deq() throws EmptyException {
 lock.lock();
 try {
 if (tail == head)
 throw new EmptyException();
 T x = items[head % items.length];
 head++;
 return x;
 } finally {
 lock.unlock();
 }
}

Return result

0 1

capacity-1
2

head tail

y z

Art of Multiprocessor
Programming

15

Implementation: Deq
public T deq() throws EmptyException {
 lock.lock();
 try {
 if (tail == head)
 throw new EmptyException();
 T x = items[head % items.length];
 head++;
 return x;
 } finally {
 lock.unlock();
 }
}

Release lock no
matter what!

0 1

capacity-1
2

head tail

y z

Art of Multiprocessor
Programming

16

Implementation: Deq
public T deq() throws EmptyException {
 lock.lock();
 try {
 if (tail == head)
 throw new EmptyException();
 T x = items[head % items.length];
 head++;
 return x;
 } finally {
 lock.unlock();
 }
}

Art of Multiprocessor
Programming

17

Now consider the following
implementation

•  The same thing without mutual exclusion
•  For simplicity, only two threads

– One thread enq only
–  The other deq only

Art of Multiprocessor
Programming

18

Wait-free 2-Thread Queue
public class WaitFreeQueue {

 int head = 0, tail = 0;
 items = (T[]) new Object[capacity];

 public void enq(Item x) {
 while (tail-head == capacity); // busy-wait
 items[tail % capacity] = x; tail++;
 }
 public Item deq() {
 while (tail == head); // busy-wait
 Item item = items[head % capacity]; head++;
 return item;
}}

Art of Multiprocessor
Programming

19

Wait-free 2-Thread Queue
public class LockFreeQueue {

 int head = 0, tail = 0;
 items = (T[]) new Object[capacity];

 public void enq(Item x) {
 while (tail-head == capacity); // busy-wait
 items[tail % capacity] = x; tail++;
 }
 public Item deq() {
 while (tail == head); // busy-wait
 Item item = items[head % capacity]; head++;
 return item;
}}

0 1

capacity-1
2

head tail

y z

Art of Multiprocessor
Programming

20

Lock-free 2-Thread Queue
public class LockFreeQueue {

 int head = 0, tail = 0;
 items = (T[])new Object[capacity];

 public void enq(Item x) {
 while (tail-head == capacity); // busy-wait
 items[tail % capacity] = x; tail++;
 }
 public Item deq() {
 while (tail == head); // busy-wait
 Item item = items[head % capacity]; head+
+;
 return item;
}}

0 1

capacity-1
2

head tail

y z

Queue is updated without a lock!

Art of Multiprocessor
Programming

21

Defining concurrent queue
implementations

•  Need a way to specify a concurrent
queue object

•  Need a way to prove that an algorithm
implements the object’s
specification

•  Lets talk about object specifications
…

Correctness and Progress
•  In a concurrent setting, we need to

specify both the safety and the liveness
properties of an object

•  Need a way to define
–  when an implementation is correct
–  the conditions under which it guarantees

progress

Art of Multiprocessor
Programming

22

Lets begin with correctness

Art of Multiprocessor
Programming

23

Sequential Objects
•  Each object has a state

–  Usually given by a set of fields
– Queue example: sequence of items

•  Each object has a set of methods
– Only way to manipulate state
– Queue example: enq and deq methods

Art of Multiprocessor
Programming

24

Sequential Specifications
•  If (precondition)

–  the object is in such-and-such a state
–  before you call the method,

•  Then (postcondition)
–  the method will return a particular value
–  or throw a particular exception.

•  and (postcondition, con’t)
–  the object will be in some other state
–  when the method returns,

Art of Multiprocessor
Programming

25

Pre and PostConditions for
Dequeue

•  Precondition:
– Queue is non-empty

•  Postcondition:
–  Returns first item in queue

•  Postcondition:
–  Removes first item in queue

Art of Multiprocessor
Programming

26

Pre and PostConditions for
Dequeue

•  Precondition:
– Queue is empty

•  Postcondition:
–  Throws Empty exception

•  Postcondition:
– Queue state unchanged

Art of Multiprocessor
Programming

27

Why Sequential Specifications
Totally Rock

•  Interactions among methods captured by
side-effects on object state
–  State meaningful between method calls

•  Documentation size linear in number of
methods
–  Each method described in isolation

•  Can add new methods
–  Without changing descriptions of old methods

Art of Multiprocessor
Programming

28

What About Concurrent
Specifications ?

•  Methods?
•  Documentation?
•  Adding new methods?

Art of Multiprocessor
Programming

29

Methods Take Time

time time

Art of Multiprocessor
Programming

30

Methods Take Time

time

invocation
12:00

q.enq
(...)

time

Art of Multiprocessor
Programming

31

Methods Take Time

time

Method call

invocation
12:00

q.enq
(...)

time

Art of Multiprocessor
Programming

32

Methods Take Time

time

Method call

invocation
12:00

q.enq
(...)

time

Art of Multiprocessor
Programming

33

Methods Take Time

time

Method call

invocation
12:00

q.enq
(...)

time

void

response
12:01

Art of Multiprocessor
Programming

34

Sequential vs Concurrent
•  Sequential

– Methods take time? Who knew?
•  Concurrent

– Method call is not an event
– Method call is an interval.

Art of Multiprocessor
Programming

35

time

Concurrent Methods Take
Overlapping Time

time

Art of Multiprocessor
Programming

36

time

Concurrent Methods Take
Overlapping Time

time

Method call

Art of Multiprocessor
Programming

37

time

Concurrent Methods Take
Overlapping Time

time

Method call

Method call

Art of Multiprocessor
Programming

38

time

Concurrent Methods Take
Overlapping Time

time

Method call Method call

Method call

Art of Multiprocessor
Programming

39

Sequential vs Concurrent
•  Sequential:

– Object needs meaningful state only
between method calls

•  Concurrent
–  Because method calls overlap, object might
never be between method calls

Art of Multiprocessor
Programming

40

Sequential vs Concurrent
•  Sequential:

–  Each method described in isolation
•  Concurrent

– Must characterize all possible interactions
with concurrent calls
• What if two enqs overlap?
•  Two deqs? enq and deq? …

Art of Multiprocessor
Programming

41

Sequential vs Concurrent
•  Sequential:

–  Can add new methods without affecting
older methods

•  Concurrent:
–  Everything can potentially interact with

everything else

Art of Multiprocessor
Programming

42

Sequential vs Concurrent
•  Sequential:

–  Can add new methods without affecting
older methods

•  Concurrent:
–  Everything can potentially interact with

everything else

Art of Multiprocessor
Programming

43

The Big Question

•  What does it mean for a concurrent
object to be correct?
– What is a concurrent FIFO queue?
–  FIFO means strict temporal order
–  Concurrent means ambiguous temporal

order

Art of Multiprocessor
Programming

44

Intuitively…
public T deq() throws EmptyException {
 lock.lock();
 try {
 if (tail == head)
 throw new EmptyException();
 T x = items[head % items.length];
 head++;
 return x;
 } finally {
 lock.unlock();
 }
}

Art of Multiprocessor
Programming

45

Intuitively…
public T deq() throws EmptyException {
 lock.lock();
 try {
 if (tail == head)
 throw new EmptyException();
 T x = items[head % items.length];
 head++;
 return x;
 } finally {
 lock.unlock();
 }
}

All modifications
of queue are done
mutually exclusive

Art of Multiprocessor
Programming

46

time

Intuitively

q.deq

q.enq

 enq deq

 lock() unlock()

lock() unlock()
Behavior is
“Sequential”

enq

deq

Lets capture the idea of describing
the concurrent via the sequential

Art of Multiprocessor
Programming

47

Linearizability
•  Each method should
– “take effect”
–  Instantaneously
–  Between invocation and response events

•  Object is correct if this “sequential”
behavior is correct

•  Ordering must be maintained between
request and responses (addendum)

•  Any such concurrent object is
–  Linearizable™

Art of Multiprocessor
Programming

48

Is it really about the object?
•  Each method should
– “take effect”
–  Instantaneously
–  Between invocation and response events

•  Sounds like a property of an
execution…

•  A linearizable object: one all of whose
possible executions are linearizable

Art of Multiprocessor
Programming

49

Example

time time

(6)

Art of Multiprocessor
Programming

50

Example

time

q.enq(x)

time

(6)

Art of Multiprocessor
Programming

51

Example

time

q.enq(x)

q.enq(y)

time

(6)

Art of Multiprocessor
Programming

52

Example

time

q.enq(x)

q.enq(y) q.deq(x)

time

(6)

Art of Multiprocessor
Programming

53

Example

time

q.enq(x)

q.enq(y) q.deq(x)

q.deq(y)

time

(6)

Art of Multiprocessor
Programming

54

Example

time

q.enq(x)

q.enq(y) q.deq(x)

q.deq(y) q.enq(x)

q.enq(y) q.deq(x)

q.deq(y)

time

(6)

Art of Multiprocessor
Programming

55

Example

time

q.enq(x)

q.enq(y) q.deq(x)

q.deq(y) q.enq(x)

q.enq(y) q.deq(x)

q.deq(y)

time

(6)

Art of Multiprocessor
Programming

56

Example

time

(5)

Art of Multiprocessor
Programming

57

Example

time

q.enq(x)

(5)

Art of Multiprocessor
Programming

58

Example

time

q.enq(x) q.deq(y)

(5)

Art of Multiprocessor
Programming

59

Example

time

q.enq(x)

q.enq(y)

q.deq(y)

(5)

Art of Multiprocessor
Programming

60

Example

time

q.enq(x)

q.enq(y)

q.deq(y) q.enq(x)

q.enq(y)

(5)

Art of Multiprocessor
Programming

61

Example

time

q.enq(x)

q.enq(y)

q.deq(y) q.enq(x)

q.enq(y)

(5)

Art of Multiprocessor
Programming

62

Example

time time

(4)

Art of Multiprocessor
Programming

63

Example

time

q.enq(x)

time

(4)

Art of Multiprocessor
Programming

64

Example

time

q.enq(x)

q.deq(x)

time

(4)

Art of Multiprocessor
Programming

65

Example

time

q.enq(x)

q.deq(x)

q.enq(x)

q.deq(x)

time

(4)

Art of Multiprocessor
Programming

66

Example

time

q.enq(x)

q.deq(x)

q.enq(x)

q.deq(x)

time

(4)

Art of Multiprocessor
Programming

67

Example

time

q.enq(x)

time

(8)

Art of Multiprocessor
Programming

68

Example

time

q.enq(x)

q.enq(y)

time

(8)

Art of Multiprocessor
Programming

69

Example

time

q.enq(x)

q.enq(y)

q.deq(y)

time

(8)

Art of Multiprocessor
Programming

70

Example

time

q.enq(x)

q.enq(y)

q.deq(y)

q.deq(x)

time

(8)

Art of Multiprocessor
Programming

71

q.enq(x)

q.enq(y)

q.deq(y)

q.deq(x)

Example

time

Art of Multiprocessor
Programming

72

Read/Write Register Example

time

read(1) write(0)

write(1)

write(2)

time

read(0)

(4)

Art of Multiprocessor
Programming

73

Read/Write Register Example

time

read(1) write(0)

write(1)

write(2)

time

read(0)

write(1) already
happened

(4)

Art of Multiprocessor
Programming

74

Read/Write Register Example

time

read(1) write(0)

write(1)

write(2)

time

read(0) write(1)
write(1) already

happened
(4)

Art of Multiprocessor
Programming

75

Read/Write Register Example

time

read(1) write(0)

write(1)

write(2)

time

read(0) write(1)
write(1) already

happened
(4)

Art of Multiprocessor
Programming

76

Read/Write Register Example

time

read(1) write(0)

write(1)

write(2)

time

read(1)

write(1) already
happened

(4)

Art of Multiprocessor
Programming

77

Read/Write Register Example

time

read(1) write(0)

write(1)

write(2)

time

read(1) write(1)

write(2)

(4)

write(1) already
happened

Art of Multiprocessor
Programming

78

Read/Write Register Example

time

read(1) write(0)

write(1)

write(2)

time

read(1) write(1)

write(2)

(4)

write(1) already
happened

Art of Multiprocessor
Programming

79

Read/Write Register Example

time

write(0)

write(1)

write(2)

time

read(1)

(4)

Art of Multiprocessor
Programming

80

Read/Write Register Example

time

write(0)

write(1)

write(2)

time

read(1) write(1)

write(2)

(4)

Art of Multiprocessor
Programming

81

Read/Write Register Example

time

write(0)

write(1)

write(2)

time

read(1) write(1)

write(2)

(4)

Art of Multiprocessor
Programming

82

Read/Write Register Example

time

read(1) write(0)

write(1)

write(2)

time

read(1)

(2)

Art of Multiprocessor
Programming

83

Read/Write Register Example

time

read(1) write(0)

write(1)

write(2)

time

read(1) write(1)

(2)

Art of Multiprocessor
Programming

84

Read/Write Register Example

time

read(1) write(0)

write(1)

write(2)

time

read(1) write(1)

write(2)

(2)

Art of Multiprocessor
Programming

85

Read/Write Register Example

time

read(1) write(0)

write(1)

write(2)

time

read(2) write(1)

write(2)

(2)

Art of Multiprocessor
Programming

86

Talking About Executions
•  Why?

–  Can’t we specify the linearization point of
each operation without describing an
execution?

•  Not Always
–  In some cases, linearization point depends

on the execution

Art of Multiprocessor
Programming

87

Formal Model of Executions
•  Define precisely what we mean

–  Ambiguity is bad when intuition is weak
•  Allow reasoning

Art of Multiprocessor
Programming

88

Split Method Calls into Two
Events

•  Invocation
– method name & args
– q.enq(x)

•  Response
–  result or exception
– q.enq(x) returns void
– q.deq() returns x
– q.deq() throws empty

Art of Multiprocessor
Programming

89

Invocation Notation

A q.enq(x)

(4)

Art of Multiprocessor
Programming

90

Invocation Notation

A q.enq(x)

thread

(4)

Art of Multiprocessor
Programming

91

Invocation Notation

A q.enq(x)

thread method

(4)

Art of Multiprocessor
Programming

92

Invocation Notation

A q.enq(x)

thread

object
(4)

method

Art of Multiprocessor
Programming

93

Invocation Notation

A q.enq(x)

thread

object

method

arguments
(4)

Art of Multiprocessor
Programming

94

Response Notation

A q: void

(2)

Art of Multiprocessor
Programming

95

Response Notation

A q: void

thread

(2)

Art of Multiprocessor
Programming

96

Response Notation

A q: void

thread result

(2)

Art of Multiprocessor
Programming

97

Response Notation

A q: void

thread

object

result

(2)

Art of Multiprocessor
Programming

98

Response Notation

A q: void

thread

object

result

(2)

Art of Multiprocessor
Programming

99

Response Notation

A q: empty()

thread

object
(2)

exception

Art of Multiprocessor
Programming

100

History - Describing an Execution

A q.enq(3)
A q:void
A q.enq(5)
B p.enq(4)
B p:void
B q.deq()
B q:3

Sequence of
invocations and

responses

H =

Art of Multiprocessor
Programming

101

Definition
•  Invocation & response match if

A q.enq(3)

A q:void

Thread
names agree

Object names
agree

Method call

(1)

Art of Multiprocessor
Programming

102

Object Projections

A q.enq(3)
A q:void
B p.enq(4)
B p:void
B q.deq()
B q:3

H =

Art of Multiprocessor
Programming

103

Object Projections

A q.enq(3)
A q:void
B p.enq(4)
B p:void
B q.deq()
B q:3

H|q =

Art of Multiprocessor
Programming

104

Thread Projections

A q.enq(3)
A q:void
B p.enq(4)
B p:void
B q.deq()
B q:3

H =

Art of Multiprocessor
Programming

105

Thread Projections

A q.enq(3)
A q:void
B p.enq(4)
B p:void
B q.deq()
B q:3

H|B =

Art of Multiprocessor
Programming

106

Complete Subhistory

A q.enq(3)
A q:void
A q.enq(5)
B p.enq(4)
B p:void
B q.deq()
B q:3

An invocation is
pending if it has no
matching respnse

H =

Art of Multiprocessor
Programming

107

Complete Subhistory

A q.enq(3)
A q:void
A q.enq(5)
B p.enq(4)
B p:void
B q.deq()
B q:3

May or may not
have taken effect

H =

Art of Multiprocessor
Programming

108

Complete Subhistory

A q.enq(3)
A q:void
A q.enq(5)
B p.enq(4)
B p:void
B q.deq()
B q:3

discard pending
invocations

H =

Art of Multiprocessor
Programming

109

Complete Subhistory

A q.enq(3)
A q:void

B p.enq(4)
B p:void
B q.deq()
B q:3

Complete(H) =

Art of Multiprocessor
Programming

110

Sequential Histories

A q.enq(3)
A q:void
B p.enq(4)
B p:void
B q.deq()
B q:3
A q:enq(5)

(4)

Art of Multiprocessor
Programming

111

Sequential Histories

A q.enq(3)
A q:void
B p.enq(4)
B p:void
B q.deq()
B q:3
A q:enq(5)

match

(4)

Art of Multiprocessor
Programming

112

Sequential Histories

A q.enq(3)
A q:void
B p.enq(4)
B p:void
B q.deq()
B q:3
A q:enq(5)

match

match

(4)

Art of Multiprocessor
Programming

113

Sequential Histories

A q.enq(3)
A q:void
B p.enq(4)
B p:void
B q.deq()
B q:3
A q:enq(5)

match

match

match

(4)

Art of Multiprocessor
Programming

114

Sequential Histories

A q.enq(3)
A q:void
B p.enq(4)
B p:void
B q.deq()
B q:3
A q:enq(5)

match

match

match

Final pending
invocation OK

(4)

Art of Multiprocessor
Programming

115

Sequential Histories

A q.enq(3)
A q:void
B p.enq(4)
B p:void
B q.deq()
B q:3
A q:enq(5)

match

match

match

Final pending
invocation OK

(4)

Art of Multiprocessor
Programming

116

Well-Formed Histories

H=

A q.enq(3)
B p.enq(4)
B p:void
B q.deq()
A q:void
B q:3

Art of Multiprocessor
Programming

117

Well-Formed Histories

H=

A q.enq(3)
B p.enq(4)
B p:void
B q.deq()
A q:void
B q:3

H|B=
B p.enq(4)
B p:void
B q.deq()
B q:3

Per-thread
projections sequential

Art of Multiprocessor
Programming

118

Well-Formed Histories

H=

A q.enq(3)
B p.enq(4)
B p:void
B q.deq()
A q:void
B q:3

H|B=
B p.enq(4)
B p:void
B q.deq()
B q:3

A q.enq(3)
A q:void

H|A=

Per-thread
projections sequential

Art of Multiprocessor
Programming

119

Equivalent Histories

H=

A q.enq(3)
B p.enq(4)
B p:void
B q.deq()
A q:void
B q:3

Threads see the same
thing in both

A q.enq(3)
A q:void
B p.enq(4)
B p:void
B q.deq()
B q:3

G=

H|A = G|A
H|B = G|B

Art of Multiprocessor
Programming

120

Sequential Specifications
•  A sequential specification is some way

of telling whether a
–  Single-thread, single-object history
–  Is legal

•  For example:
–  Pre and post-conditions
–  But plenty of other techniques exist …

Art of Multiprocessor
Programming

121

Legal Histories
•  A sequential (multi-object) history H is

legal if
–  For every object x
– H|x is in the sequential spec for x

Art of Multiprocessor
Programming

122

Precedence

A q.enq(3)
B p.enq(4)
B p.void
A q:void
B q.deq()
B q:3

A method call precedes
another if response

event precedes
invocation event

Method call Method call

(1)

Art of Multiprocessor
Programming

123

Non-Precedence

A q.enq(3)
B p.enq(4)
B p.void
B q.deq()
A q:void
B q:3

Some method calls
overlap one another

Method call

Method call

(1)

Art of Multiprocessor
Programming

124

Notation
•  Given

– History H
– method executions m0 and m1 in H 	

•  We say m0 H m1, if	

– m0 precedes m1

•  Relation m0 H m1 is a
–  Partial order
–  Total order if H is sequential	

m0 m1

Art of Multiprocessor
Programming

125

Linearizability
•  History H is linearizable if it can be

extended to G by
–  Appending zero or more responses to

pending invocations
–  Discarding other pending invocations

•  So that G is equivalent to
–  Legal sequential history S
–  where G ⊂ S

Art of Multiprocessor
Programming

126

What is G ⊂ S

time

a

b

time

(8)

S

c G

G = {ac,bc}

S = {ab,ac,bc}

Art of Multiprocessor
Programming

127

Remarks
•  Some pending invocations

–  Took effect, so keep them
–  Discard the rest

•  Condition G ⊂ S
– Means that S respects “real-time order”

of G

Art of Multiprocessor
Programming

128

A q.enq(3)
B q.enq(4)
B q:void
B q.deq()
B q:4
B q:enq(6)

Example

time

B.q.enq(4)

A. q.enq(3)

B.q.deq(4) B. q.enq(6)

Art of Multiprocessor
Programming

129

Example

Complete this
pending

invocation

time

B.q.enq(4) B.q.deq(3) B. q.enq(6)

A q.enq(3)
B q.enq(4)
B q:void
B q.deq()
B q:4
B q:enq(6)

A. q.enq(3)

Art of Multiprocessor
Programming

130

Example

Complete this
pending

invocation

time

B.q.enq(4) B.q.deq(4) B. q.enq(6)

B.q.enq(3)

A q.enq(3)
B q.enq(4)
B q:void
B q.deq()
B q:4
B q:enq(6)
A q:void

Art of Multiprocessor
Programming

131

Example

time

B.q.enq(4) B.q.deq(4) B. q.enq(6)

B.q.enq(3)

A q.enq(3)
B q.enq(4)
B q:void
B q.deq()
B q:4
B q:enq(6)
A q:void

discard this one

Art of Multiprocessor
Programming

132

Example

time

B.q.enq(4) B.q.deq(4)

B.q.enq(3)

A q.enq(3)
B q.enq(4)
B q:void
B q.deq()
B q:4

A q:void

discard this one

Art of Multiprocessor
Programming

133

A q.enq(3)
B q.enq(4)
B q:void
B q.deq()
B q:4
A q:void

Example

time

B.q.enq(4) B.q.deq(4)

B.q.enq(3)

Art of Multiprocessor
Programming

134

A q.enq(3)
B q.enq(4)
B q:void
B q.deq()
B q:4
A q:void

Example

time

B q.enq(4)
B q:void
A q.enq(3)
A q:void
B q.deq()
B q:4

B.q.enq(4) B.q.deq(4)

B.q.enq(3)

Art of Multiprocessor
Programming

135

B.q.enq(4) B.q.deq(4)

B.q.enq(3)

A q.enq(3)
B q.enq(4)
B q:void
B q.deq()
B q:4
A q:void

Example

time

B q.enq(4)
B q:void
A q.enq(3)
A q:void
B q.deq()
B q:4

Equivalent sequential history

Art of Multiprocessor
Programming

136

Concurrency
•  How much concurrency does

linearizability allow?
•  When must a method invocation block?

Art of Multiprocessor
Programming

137

Concurrency
•  Focus on total methods

–  Defined in every state
•  Example:

– deq() that throws Empty exception
–  Versus deq() that waits …

•  Why?
– Otherwise, blocking unrelated to

synchronization

Art of Multiprocessor
Programming

138

Concurrency
•  Question: When does linearizability

require a method invocation to block?
•  Answer: never.
•  Linearizability is non-blocking

Art of Multiprocessor
Programming

139

Non-Blocking Theorem

If method invocation
A q.inv(…)

is pending in history H, then there
exists a response
A q:res(…)

such that
H + A q:res(…)

is linearizable

Art of Multiprocessor
Programming

140

Proof
•  Pick linearization S of H
•  If S already contains

–  Invocation A q.inv(…) and response,
–  Then we are done.

•  Otherwise, pick a response such that
–  S + A q.inv(…) + A q:res(…)

–  Possible because object is total.

Art of Multiprocessor
Programming

141

Composability Theorem
•  History H is linearizable if and only if

–  For every object x
– H|x is linearizable

Art of Multiprocessor
Programming

142

Why Does Composability Matter?

•  Modularity
•  Can prove linearizability of objects in

isolation
•  Can compose independently-implemented

objects

Art of Multiprocessor
Programming

143

Reasoning About
Lineraizability: Locking

public T deq() throws EmptyException {
 lock.lock();
 try {
 if (tail == head)
 throw new EmptyException();
 T x = items[head % items.length];
 head++;
 return x;
 } finally {
 lock.unlock();
 }
}

0 1

capacity-1
2

head tail

y z

Art of Multiprocessor
Programming

144

Reasoning About
Lineraizability: Locking

public T deq() throws EmptyException {
 lock.lock();
 try {
 if (tail == head)
 throw new EmptyException();
 T x = items[head % items.length];
 head++;
 return x;
 } finally {
 lock.unlock();
 }
}

Linearization points
are when locks are

released

Art of Multiprocessor
Programming

145

More Reasoning: Lock-free
public class LockFreeQueue {

 int head = 0, tail = 0;
 items = (T[]) new Object[capacity];

 public void enq(Item x) {
 while (tail-head == capacity); // busy-wait
 items[tail % capacity] = x; tail++;
 }
 public Item deq() {
 while (tail == head); // busy-wait
 Item item = items[head % capacity]; head++;
 return item;
}}

0 1

capacity-1
2

head tail

y z

Art of Multiprocessor
Programming

146

public class LockFreeQueue {

 int head = 0, tail = 0;
 items = (T[]) new Object[capacity];

 public void enq(Item x) {
 while (tail-head == capacity); // busy-wait
 items[tail % capacity] = x; tail++;
 }
 public Item deq() {
 while (tail == head); // busy-wait
 Item item = items[head % capacity]; head++;
 return item;
}}

Linearization order is
order head and tail

fields modified

More Reasoning

Art of Multiprocessor
Programming

147

Strategy
•  Identify one atomic step where method
“happens”
–  Critical section
– Machine instruction

•  Doesn’t always work
– Might need to define several different

steps for a given method

Art of Multiprocessor
Programming

148

Linearizability: Summary
•  Powerful specification tool for shared

objects
•  Allows us to capture the notion of

objects being “atomic”
•  There is a lot of ongoing research in

verification community to build tools
that can verify/debug concurrent
implementations wrt linearizability

Art of Multiprocessor
Programming

149

Alternative: Sequential
Consistency

•  History H is Sequentially Consistent
if it can be extended to G by
–  Appending zero or more responses to

pending invocations
–  Discarding other pending invocations

•  So that G is equivalent to a
–  Legal sequential history S
–  Where G ⊂ S

 Differs from
 linearizability

Art of Multiprocessor
Programming

150

Alternative: Sequential
Consistency

•  No need to preserve real-time order
–  Cannot re-order operations done by the

same thread
–  Can re-order non-overlapping operations

done by different threads
•  Often used to describe

multiprocessor memory architectures

Art of Multiprocessor
Programming

151

Example

time

(5)

Art of Multiprocessor
Programming

152

Example

time

q.enq(x)

(5)

Art of Multiprocessor
Programming

153

Example

time

q.enq(x) q.deq(y)

(5)

Art of Multiprocessor
Programming

154

Example

time

q.enq(x)

q.enq(y)

q.deq(y)

(5)

Art of Multiprocessor
Programming

155

Example

time

q.enq(x)

q.enq(y)

q.deq(y) q.enq(x)

q.enq(y)

(5)

Art of Multiprocessor
Programming

156

Example

time

q.enq(x)

q.enq(y)

q.deq(y) q.enq(x)

q.enq(y)

(5)

Art of Multiprocessor
Programming

157

Example

time

q.enq(x)

q.enq(y)

q.deq(y) q.enq(x)

q.enq(y)

(5)

Art of Multiprocessor
Programming

158

Theorem

Sequential Consistency is not a
local property

(and thus we lose composability…)

Art of Multiprocessor
Programming

159

FIFO Queue Example

time

p.enq(x) p.deq(y) q.enq(x)

time

Art of Multiprocessor
Programming

160

FIFO Queue Example

time

p.enq(x) p.deq(y) q.enq(x)

q.enq(y) q.deq(x) p.enq(y)

time

Art of Multiprocessor
Programming

161

FIFO Queue Example

time

p.enq(x) p.deq(y) q.enq(x)

q.enq(y) q.deq(x) p.enq(y)

History H

time

Art of Multiprocessor
Programming

162

H|p Sequentially Consistent

time

p.enq(x) p.deq(y)

p.enq(y)

q.enq(x)

q.enq(y) q.deq(x)

time

Art of Multiprocessor
Programming

163

H|q Sequentially Consistent

time

p.enq(x) p.deq(y) q.enq(x)

q.enq(y) q.deq(x) p.enq(y)

time

Art of Multiprocessor
Programming

164

Ordering imposed by p

time

p.enq(x) p.deq(y) q.enq(x)

q.enq(y) q.deq(x) p.enq(y)

time

Art of Multiprocessor
Programming

165

Ordering imposed by q

time

p.enq(x) p.deq(y) q.enq(x)

q.enq(y) q.deq(x) p.enq(y)

time

Art of Multiprocessor
Programming

166

p.enq(x)

Ordering imposed by both

time

q.enq(x)

q.enq(y) q.deq(x)

time

p.deq(y)

p.enq(y)

Art of Multiprocessor
Programming

167

p.enq(x)

Combining orders

time

q.enq(x)

q.enq(y) q.deq(x)

time

p.deq(y)

p.enq(y)

Art of Multiprocessor
Programming

168

Fact
•  Most hardware architectures don’t

support sequential consistency
•  Because they think it’s too strong
•  Here’s another story …

Art of Multiprocessor
Programming

169

The Flag Example

time

x.write(1) y.read(0)

y.write(1) x.read(0)

time

Art of Multiprocessor
Programming

170

The Flag Example

time

x.write(1) y.read(0)

y.write(1) x.read(0)

•  Each thread’s view is sequentially
consistent
–  It went first

Art of Multiprocessor
Programming

171

The Flag Example

time

x.write(1) y.read(0)

y.write(1) x.read(0)

•  Entire history isn’t sequentially
consistent
–  Can’t both go first

Art of Multiprocessor
Programming

172

The Flag Example

time

x.write(1) y.read(0)

y.write(1) x.read(0)

•  Is this behavior really so wrong?
– We can argue either way …

Art of Multiprocessor
Programming

173

Opinion1: It’s Wrong
•  This pattern

– Write mine, read yours
•  Heart of mutual exclusion

•  Peterson
•  Bakery, etc.

•  It’s non-negotiable!

Art of Multiprocessor
Programming

174

Opinion2: But It Should be
Allowed …

•  Many hardware architects think that
sequential consistency is too strong

•  Too expensive to implement in modern
hardware

•  OK if flag principle
–  violated by default
– Honored by explicit request

Art of Multiprocessor
Programming

175

Memory Hierarchy

•  On modern multiprocessors, processors
do not read and write directly to
memory.

•  Memory accesses are very slow
compared to processor speeds,

•  Instead, each processor reads and
writes directly to a cache

Art of Multiprocessor
Programming

176

Memory Operations

•  To read a memory location,
–  load data into cache.

•  To write a memory location
–  update cached copy,
–  Lazily write cached data back to memory

Art of Multiprocessor
Programming

177

While Writing to Memory

•  A processor can execute hundreds, or
even thousands of instructions

•  Why delay on every memory write?
•  Instead, write back in parallel with rest

of the program.

Art of Multiprocessor
Programming

178

Bottomline..
•  Flag violation history is actually OK

–  processors delay writing to memory
–  Until after reads have been issued.

•  Otherwise unacceptable delay between
read and write instructions.

•  Who knew you wanted to synchronize?

Art of Multiprocessor
Programming

179

Who knew you wanted to
synchronize?

•  Writing to memory = mailing a letter
•  Vast majority of reads & writes

– Not for synchronization
– No need to idle waiting for post office

•  If you want to synchronize
–  Announce it explicitly
–  Pay for it only when you need it

Art of Multiprocessor
Programming

180

Explicit Synchronization
•  Memory barrier instruction

–  Flush unwritten caches
–  Bring caches up to date

•  Compilers often do this for you
–  Entering and leaving critical sections

•  Expensive

Art of Multiprocessor
Programming

181

Volatile
•  In Java, can ask compiler to keep a

variable up-to-date with volatile
keyword

•  Also inhibits reordering, removing from
loops, & other “optimizations”

Art of Multiprocessor
Programming

182

Real-World Hardware Memory

•  Weaker than sequential consistency
•  Examples: TSO, RMO, Intel x86…
•  But you can get sequential consistency

at a price
•  OK for expert, tricky stuff

–  assembly language, device drivers, etc.
•  Linearizability more appropriate for

high-level software

Art of Multiprocessor
Programming

183

Critical Sections
•  Easy way to implement linearizability

–  Take sequential object
– Make each method a critical section

•  Problems
–  Blocking
– No concurrency

Art of Multiprocessor
Programming

184

Linearizability
•  Linearizability

– Operation takes effect instantaneously
between invocation and response

–  Uses sequential specification, locality
implies composablity

–  Good for high level objects

Art of Multiprocessor
Programming

185

Correctness: Linearizability
•  Sequential Consistency

– Not composable
– Harder to work with
–  Good way to think about hardware models

•  We will use linearizability as in the
remainder of this course unless stated
otherwise

Progress
•  We saw an implementation whose

methods were lock-based (deadlock-
free)

•  We saw an implementation whose
methods did not use locks (lock-free)

•  How do they relate?

Art of Multiprocessor
Programming

186

Maximal vs. Minimal
•  Minimal progress: in some suffix of H,

some pending active invocation has a
matching response (some method call
eventually completes).

Art of Multiprocessor
Programming

187

Maximal vs. Minimal
•  Minimal progress: in some suffix of H,

some pending active invocation has a
matching response (some method call
eventually completes).

Art of Multiprocessor
Programming

188

Maximal vs. Minimal
•  Minimal progress: in some suffix of H,

some pending active invocation has a
matching response (some method call
eventually completes).

•  Maximal progress: in every suffix of H,
every pending active invocation has a
matching response (every method call
always completes).

Art of Multiprocessor
Programming

189

Maximal vs. Minimal
•  Minimal progress: in some suffix of H,

some pending active invocation has a
matching response (some method call
eventually completes).

•  Maximal progress: in every suffix of H,
every pending active invocation has a
matching response (every method call
always completes).

Art of Multiprocessor
Programming

190

Progress Conditions
•  Deadlock-free: some thread trying to acquire

the lock eventually succeeds.
•  Starvation-free: every thread trying to

acquire the lock eventually succeeds.
•  Lock-free: some thread calling a method

eventually returns.
•  Wait-free: every thread calling a method

eventually returns.

Art of Multiprocessor
Programming

191

Progress Conditions

Art of Multiprocessor
Programming

192

Wait-free

Lock-free

Starvation-free

Deadlock-free

Everyone
 makes
progress

Non-Blocking Blocking

Someone
 makes
progress

Art of Multiprocessor
Programming

193

Summary
•  We will look at linearizable blocking and

non-blocking implementations of
objects.

