Concurrent Objects

Companion slides for
The Art of Multiprocessor Programming
by Maurice Herlihy & Nir Shavit

Concurrent Computation

Art of Multiprocessor
Programming

Objectivism

* What is a concurrent object?
- How do we describe one?

- How do we implement one?

- How do we tell if we’ re right?

Art of Multiprocessor
Programming

Objectivism

* What is a concurrent object?
- How do we describe one?

- How do we tell if we’ re right?

Art of Multiprocessor
Programming

FIFO Queue: Enqueue Method

| g.enq ©)

FIFO Queue: Dequeue Method

Lq-deq()/C?J

fonh

A Lock-Based Queue

class LockBasedQueue<T> {

int head, tail;

T[] 1tems;

Lock lock;

public LockBasedQueue(int capacity) {
head = 0; tail = 0;
lock = new ReentrantLock();
items = (T[]) new Object[capacity];

Art of Multiprocessor
Programming

A Lock-Based Queue

head tail
int head, tail; @
T[] 1tems;
Lock lock;
Queue fields
protected by single
shared lock

Art of Multiprocessor
Programming

A Lock-Based Queue

head tail

N

capacity-1

(public LockBasedQueue(int capacity) {
head = 0; tail = 0;

lock = new ReentrantLock();

. 1tems = (T[]) new Object[capacity]; ,

Initially head = tail

Art of Multiprocessor
Programming

Implementation: Deq

head tail

public T deq() throws EmptyExcegtioo s

lock.lock(); 2
try { @
if (tail == head)

throw new EmptyException();

T X = 1tems[head % items.length];
head++;

return Xx;
} finally {
lock.unlock();
}
}

Art of Multiprocessor
Programming

Implementation: Deq

[1ock.1ock O ;

head

capac tyl

0

1
2

Method calls
mutually exclusive

Art of Multiprocessor
Programming

tail

11

Implementation: Deq

heag tail
N 1 g

capacity-1

[if (tail == head)
throw new EmptyException();

If queue empty
throw exception

Art of Multiprocessor 12
Programming

Implementation: Deq

head tail
1

capacity- 1

0

[T‘x = jtems[head % items.length];

head++;

Queue not empty:
remove item and update
head

Art of Multiprocessor 13
Programming

Implementation: Deq

[return x;\

Art of Multiprocessor
Programming

capac

0

head

yl

tail

1 V'
2

Return result

14

Implementation: Deq

heaf:l tail
N 1 g

capacity-1

2

Release lock no

finally { s = |
['Iock.un'lock() ;r matter what!

Art of Multiprocessor 15
Programming

Implementation: Deq

public T deq() throws EmptyException {
lock. lock();

try {
if (tail == head)
throw new EmptyException();

T X = 1tems[head % items.length];
head++;

return Xx;
} finally {
lock.unlock();
}
}

Programming

Now consider the following
implementation

* The same thing without mutual exclusion

* For simplicity, only two threads
- One thread enq only
- The other deq only

Art of Multiprocessor 17
Programming

Wait-free 2-Thread Queue

public class waitFreeQueue {

int head = 0, tail = 0;
items = (T[]) new Object[capacity];

public void enq(Item x) {
while (tail-head == capacity); // busy-wait
items[tail % capacity] = x; tail++;
}
public Item deq() {
while (tail == head); // busy-wait
Item item = items[head % capacity]; head++;
return item;

3}

Art of Multiprocessor 18
Programming

Wait-free 2-Thread Queue

head

capac
int head = 0, tail = 0;
items = (T[]) new Object[capacity]

Art of Multiprocessor
Programming

N

ity,

tail

19

Lock-free 2-Thread Queue

head

N

capacitys;

tail

Programming

Defining concurrent queue
implementations

* Need a way to specify a concurrent
queue object

* Need a way to prove that an algorithm
implements the object’s
specification

+ Lets talk about object specifications

Art of Multiprocessor 21
Programming

Correctness and Progress

* In a concurrent setting, we need to
specify both the safety and the liveness
properties of an object

* Need a way to define

- when an implementation is correct

- the conditions under which it guarantees
progress

Lets begin with correctness

Art of Multiprocessor 22
Programming

Sequential Objects

* Each object has a state

- Usually given by a set of fields

- Queue example: sequence of items

* Each object has a set of methods

- Only way to manipulate state
- Queue example: enq and deq methods

Art of Multiprocessor 23
Programming

Sequential Specifications

» If (precondition)

- the object is in such-and-such a state

- before you call the method,

» Then (postcondition)

- the method will return a particular value
- or throw a particular exception.

» and (postcondition, con’ 1)

- the object will be in some other state

- when the method returns,

Art of Multiprocessor 24
Programming

Pre and PostConditions for
Dequeue

* Precondition:

- Queue is non-empty

* Postcondition:

- Returns first item in queue

* Postcondition:
- Removes first item in queue

Art of Multiprocessor
Programming

25

Pre and PostConditions for
Dequeue

* Precondition:

- Queue is empty

» Postcondition:

- Throws Empty exception

* Postcondition:
- Queue state unchanged

Art of Multiprocessor
Programming

26

Why Sequential Specifications
Totally Rock

* Interactions among methods captured by
side-effects on object state

- State meaningful between method calls

- Documentation size linear in number of

methods
- Each method described in isolation

- Can add new methods

- Without changing descriptions of old methods

Art of Multiprocessor 27
Programming

What About Concurrent
Specifications ?

* Methods?
» Documentation?
» Adding hew methods?

Art of Multiprocessor
Programming

28

Methods Take Time

e

29

Art of Multiprocessor
Programming

Methods Take Time

[invoca’rion
12:00
lele] |

¢ D%

4

e

30

Art of Multiprocessor
Programming

Methods Take Time

[mvoca’rlon
12:00

[o]e] |
ﬁf

Method call

Art of Multiprocessor
Programming

Methods Take Time

[invoca’rion
12:00
le|e|e]

¢ D%

Q,
Method call

Art of Multiprocessor 32
Programming

Methods Take Time

[mvoca’rlon response]
12:00 12:01

\‘MO\

f*;&»
>

“

Art of Multiprocessor
Programming

Sequential vs Concurrent

+ Sequential
- Methods take time? Who knew?

- Concurrent

- Method call is not an event
- Method call is an interval.

Art of Multiprocessor
Programming

34

Concurrent Methods Take
Overlapping Time

lo|e]o)]

-

35

Art of Multiprocessor
Programming

Concurrent Methods Take
Overlapping Time

lo|e]o)]

Method call

Art of Multiprocessor
Programming

36

Concurrent Methods Take
Overlapping Time

lo|e]o)]

Method call
7>

Art of Multiprocessor
Programming

37

Concurrent Methods Take
Overlapping Time

lo|e]o)]

Z v

Method call Method call
27 KA

Method call
<

time

Art of Multiprocessor 38
Programming

Sequential vs Concurrent

+ Sequential:
- Object needs meaningful state only
between method calls

- Concurrent

- Because method calls overlap, object might
never be between method calls

Art of Multiprocessor 39
Programming

Sequential vs Concurrent

+ Sequential:
- Each method described in isolation

- Concurrent

- Must characterize all possible interactions
with concurrent calls
* What if two engs overlap?
- Two deqs? enqg and deq? ...

Art of Multiprocessor 40
Programming

Sequential vs Concurrent

+ Sequential:
- Can add new methods without affecting
older methods

- Concurrent:

- Everything can potentially interact with
everything else

Art of Multiprocessor
Programming

41

Sequential vs Concurrent

+ Sequential:
- Can add new methods without affecting
older methods

- Concurrent:

- Everything can potentially ith
everything else

Art of Multiprocessor
Programming

42

The Big Question

- What does it mean for a concurrent
object to be correct?

- What is a concurrent FIFO queue?
- FIFO means strict temporal order

- Concurrent means ambiguous temporal
order

Art of Multiprocessor 43
Programming

Intuitively...

public T deq() throws EmptyException {
lock. lock();

try {
if (tail == head)
throw new EmptyException();

T X = 1tems[head % items.length];
head++;

return Xx;
} finally {
lock.unlock();
}
}

Art of Multiprocessor
Programming

44

Intuitively...

throws EmptyException {

ry
1if (tai head)

throw NeX EmptyException();

T X = 1temsNIad % items.length];
head++; \
return X;
}[ﬁ-naJJ-)u{—? All modifications
y Tock.unlockQ) ; of queue are done

} mutually exclusive

Art of Multiprocessor 45
Programming

™. 2 l
Lets capture the idea of describing
the concurrent via the sequential

lock¢y 9-deq nTock ()
i g.enq E de%

lock) Eenqéun'lockf() g]
| ; ; . | Behavior is

“Sequential”
J

enq deq -

Art of Multiprocessor 46
Programming

Linearizability

» Each method should

— “take effect”

- Instantaneously

- Between invocation and response events

* Object is correct if this “sequential”
behavior is correct

* Ordering must be maintained between
request and responses (addendum)

* Any such concurrent object is
- Linearizable™

Art of Multiprocessor 47
Programming

Is it really about the object?

» Each method should

— “take effect”

- Instantaneously

- Between invocation and response events

» Sounds like a property of an
execution...

* A linearizable object: one all of whose
possible executions are linearizable

Art of Multiprocessor 48
Programming

(6)

Example

lo|e]o)]

Art of Multiprocessor
Programming

49

(6)

Example

lo|e]o)]

Art of Multiprocessor
Programming

50

Example

lo|e]o)]

T

(6)

Art of Multiprocessor
Programming

51

Example

lo|e]o)]

e

(6)

Art of Multiprocessor
Programming

52

Example

lo|e]o)]

(6) Art of Multiprocessor 53
Programming

(6) Art of Multiprocessor 54
Programming

q.enq(y)

Example

lo|e]o)]

=)

e

(6)

Art of Multiprocessor
Programming

95

(5)

Example

lo|e]o)]

Art of Multiprocessor
Programming

56

(5)

Example

lo|e]o)]

Art of Multiprocessor
Programming

o7

Example

lo|e]o)]

)

e

58

(3) Art of Multiprocessor
Programming

N2

)

Example

lo|e]o)]

-

(5)

Art of Multiprocessor
Programming

59

N2

)

Example

lo|e]o)]

e

(5)

Art of Multiprocessor
Programming

60

(3) Art of Multiprocessor 61
Programming

4)

Example

lo|e]o)]

Art of Multiprocessor
Programming

62

Example

lo|e]o)]

(4) Art of Multiprocessor 63
Programming

Example

N2

lo|e]o)]

4T)

(4) Art of Multiprocessor 64
Programming

Example

lo|e]o)]

(4) Art of Multiprocessor 65
Programming

(4) Art of Multiprocessor 66
Programming

(8)

Example

lo|e]o)]

Art of Multiprocessor
Programming

67

(8)

Example

lo|e]o)]

Art of Multiprocessor
Programming

68

Example

K=

-

(8) Art of Multiprocessor 69
Programming

Example

N2

lo|e]o)]

<)

(s
T

(8) Art of Multiprocessor 70
Programming

Art of Multiprocessor 71
Programming

Read/Write Register Example

=) &y
—_—

(4) Art of Multiprocessor 72
Programming

Read/Write Register Example

write(1l) already
happened

(4) Art of Multiprocessor 73
Programming

Read/Write Register Example

A

write(1l) already
happened

(4) Art of Multiprocessor 74
Programming

Read/Write Register Example

: P/
read(0)
write(1l) already :
happened

(4) Art of Multiprocessor 75
Programming

Read/Write Register Example

write(1l) already
happened

(4) Art of Multiprocessor 76
Programming

Read/Write Register Example

O E

wr'l're(l) already
happened

&)

(4) Art of Multiprocessor 77
Programming

Read/Write Register Example

I . read(1)

(4) Art of Multiprocessor 78
Programming

write(1l) already
happened

Read/Write Register Example

&
e

(4) Art of Multiprocessor 79
Programming

Read/Write Register Example

@
e

(4) Art of Multiprocessor 80
Programming

Read/Write Register Example

(4) Art of Multiprocessor 81
Programming

Read/Write Register Example

=) &)
—_—

(2) Art of Multiprocessor 82
Programming

Read/Write Register Example

Read/Write Register Example

Read/Write Register Example

(2) Art of Multiprocessor 85
Programming

Talking About Executions

+ Why?
- Can’ T we specify the linearization point of

each operation without describing an
execution?

* Not Always

- In some cases, linearization point depends
on the execution

Art of Multiprocessor 86
Programming

Formal Model of Executions

+ Define precisely what we mean
- Ambiguity is bad when intuition is weak

» Allow reasoning

Art of Multiprocessor 87
Programming

Split Method Calls into Two
Events

- Invocation

- method name & args

- q.enq(x)

* Response

- result or exception

- q.enq(x) returns void
-q.deq() returns x
-q.deq() throws empty

Art of Multiprocessor
Programming

88

4)

Invocation Notation

A q.enq(x)

Art of Multiprocessor
Programming

89

Invocation Notation

E q.enq(x)

thread

(4) Art of Multiprocessor
Programming

90

Invocation Notation

E q.@(x)

thread method

(4) Art of Multiprocessor
Programming

91

Invocation Notation

E q.enq(x)
thread /_ method

object

(4) Art of Multiprocessor 92
Programming

Invocation Notation

a0z
thread /_ method

object arguments

(4) Art of Multiprocessor 93
Programming

(2)

Response Notation

A q: void

Art of Multiprocessor
Programming

94

Response Notation

E q: void

thread

(2) Art of Multiprocessor
Programming

95

Response Notation

thread

(2)

E q: void
N\

result

Art of Multiprocessor
Programming

96

Response Notation

E : (void\
N

thread result

object

(2) Art of Multiprocessor 97
Programming

Response Notation

AlQg: (void\
hread result
object

(2)

Art of Multiprocessor
Programming

98

Response Notation

Aq: [empty()

v

hread exception

object

(2) Art of Multiprocessor
Programming

History - Describing an Execution

A g.enq(3)
‘A q:void
A d.enq(5)

\ Sequence of
invocations and
responses

Art of Multiprocessor 100
Programming

Definition

» Invocation & response match if

Thread Object names

hames agree agree

N ...
] Method call
Allgivoid

1) Art of Multiprocessor 101
Programming

Object Projections

q.enq(3)
g:void
p.enq(4)
p:void
q.deq()
q:3

|
O WwwWw W > P>

Art of Multiprocessor 102
Programming

Object Projections

Art of Multiprocessor
Programming

103

Thread Projections

q.enq(3)
g:void
p.enq(4)
p:void
q.deq()
q:3

|
O WwwWw W > P>

Art of Multiprocessor 104
Programming

Thread Projections

Art of Multiprocessor
Programming

105

Complete Subhistory

A g.enq(3)
A q:void

A q.end(5
L =

An invocation is
pending if it has no
matching respnse

Art of Multiprocessor 106
Programming

Complete Subhistory

A g.enq(3)
A q:void

A q.end(5
L =

May or may not
have taken effect

Art of Multiprocessor 107
Programming

Complete Subhistory

A g.enq(3)
A q:void

A q.end(5
L =

discard pending
invocations

Art of Multiprocessor 108
Programming

Complete Subhistory

A g.enq(3)
A g:void

Complete(H) =

Art of Multiprocessor 109
Programming

> 0OWWwW> P>
O 00T T OO

4)

Sequential Histories

.enq(3)
:vo1id
.enq(4)
:void
.deq()
: 3
:enq(5)

Art of Multiprocessor
Programming

110

Sequential Histories

enq(3) match
:vo1id

> Www o> >
o0 o0oocolao

4)

.enq(4)
void
.deq()
: 3
:enq(5)

Art of Multiprocessor
Programming

111

Sequential Histories

enq(3) match
:vo1id

. eng (4) match
:vo1id

[:w">>‘
T O O

> W W
O 0 O

.deq()
: 3
:enq(5)

(4) Art of Multiprocessor 112
Programming

Sequential Histories

> (oo

(A g.enq(3) match
>A g:void
B p.enq(4) match
B p:void
B q.deqO)]7 match
g:3
g

:enq(5)

(4) Art of Multiprocessor 113
Programming

Sequential Histories

(A q.enq(3) match

>A g:void

B p.enq(4) match

B p:void

B q.deqO) match

B g:3 Final pending
A q:enq(5) invocation OK

(4) Art of Multiprocessor
Programming

114

Sequential Histories

invocation O

(4) Art of Multiprocessor 115
Programming

Well-Formed Histories

.enq(3)
.enq(4)
:void
.deq(Q)
:void

- -

Il
o> mwwmwd>
O 0 0T TLO

Art of Multiprocessor 116
Programming

Well-Formed Histories

.Per.'-fhr'ead . B p.enq(4)
projections sequential H|B= B p:void
A q.enq(3) B g.deq()
B p.enq(4) B g:3
B p:void
H= B q.deq()
A q:void
B q:3

Art of Multiprocessor 117
Programming

Well-Formed Histories

| Per.'-’rhr'ead . B p.enq(4)
projections sequential H|B= B p:void
A q.enq(3) B g.deq()
B p.enq(4) B g:3
B p:void
H= B q.deqQ)
A q:void A (3)
B g:3 H|A= © 9-€N9

A g:void

Art of Multiprocessor
Programming

118

Equivalent Histories

~

Threads see the same HIA = G|A

thing in both HIB = G|B
A g.enq(3) A g.enq(3)
B p.enq(4) A q:void
B p:void B p.enq(4)
B q.deq() G=1g p:void
A g:void B g.deq()
B q:3 B q:3

Art of Multiprocessor 119
Programming

Sequential Specifications

+ A sequential specification is some way
of telling whether a

- Single-thread, single-object history

- Is legal

* For example:

- Pre and post-conditions

- But plenty of other techniques exist ...

Art of Multiprocessor 120
Programming

Legal Histories

* A sequential (multi-object) history H is
legal if

- For every object x

- Hlx is in the sequential spec for x

Art of Multiprocessor 121
Programming

Precedence

B p.enq(4) A method call precedes

B p.void another if response
event precedes
invocation event

s ==

1) Art of Multiprocessor
Programming

Non-Precedence

B p.enq(4)
B p.void Some method calls
overlap one another

<Ae'rhod call
123

1) Art of Multiprocessor
Programming

Notation

+ Given

- History H

- method executions myand m, in H
- We say mg = my, if

- my precedes my

* Relation mg =2, m, is m«m»
- Partial order
- Total order if H is sequential

Art of Multiprocessor 124
Programming

Linearizability

- History H is linearizable if it can be
extended to 6 by

- Appending zero or more responses to
pending invocations

- Discarding other pending invocations

* So that G is equivalent to
- Legal sequential history S
- where 2, C 2,

Art of Multiprocessor 125
Programming

What is 2, C >,

2. = {a>c,b>c}
2. = {a>b,a>c,b>c}

(8) Art of Multiprocessor 126
Programming

Remarks

»+ Some pending invocations
- Took effect, so keep them
- Discard the rest

» Condition 2, C >,

- Means that S respects “real-time order”
of G

Art of Multiprocessor 127
Programming

Example

A g.enq(3)

< A. g.enq(3)
< B.g.enq(4 % >< Bgdeg§4i >

Art of Multiprocessor 128
Programming

B. q.enq(6) |[||]

Example

A Q.
: enq(i)-lNomplete this

pending
invocation

< A. g.enq(3) |1

< B.g.engﬁﬁI >< B.g.deg§3i > { B. q.enq(6) |[||]

Art of Multiprocessor 129
Programming

Example

A Q.
: enq(i)-lNomplete this

pending
invocation

Art of Multiprocessor 130
Programming

Example

A g.enq(3)

discard this one

Art of Multiprocessor 131
Programming

Example

A g.enq(3)

discard this one

T)

A g:void

T gem

B.g.enq(4 < B.g.deg(4i >
Art of Multiprocessor - 132

Programming

Example

A g.enq(3)

A g:void

T gem

S o>
e

Programming

A (.
B (.
B q:
B q.deq()
B q
A (:

Programming

O 0 0 0 O O

.enq(4)
:void
.enq(3)
:void
.deq()

Example

Equivalent sequential history

A g.enq(3) \()
A g.enq(3)

A g:void

Programming

Concurrency

* How much concurrency does
linearizability allow?

- When must a method invocation block?

Art of Multiprocessor 136
Programming

Concurrency

* Focus on total methods

- Defined in every state

+ Example:

- deq() that throws Empty exception

- Versus deq() that waits ...

* Why?

- Otherwise, blocking unrelated to
synchronization

Art of Multiprocessor 137
Programming

Concurrency

* Question: When does linearizability
require a method invocation to block?

- Answer: never.
* Linearizability is non-blocking

Art of Multiprocessor 138
Programming

Non-Blocking Theorem

If method invocation
A q.1nv(...)

is pending in history H, then there
exists a response

A g:res(...)
such that

H+ A q:res(...)
is linearizable

Art of Multiprocessor 139
Programming

Proof

- Pick linearization S of H

» If S already contains
- Invocation A ¢.1nv(...) and response,
- Then we are done.

» Otherwise, pick a response such that
-S + A q.1nv(...) + A g:res(...)
- Possible because object is total.

Art of Multiprocessor 140
Programming

Composability Theorem

» History H is linearizable if and only if
- For every object x
- H|x is linearizable

Art of Multiprocessor 141
Programming

Why Does Composability Matter?

* Modularity

» Can prove linearizability of objects in
isolation

» Can compose independently-implemented
objects

Art of Multiprocessor 142
Programming

Reasoning About
Lineraizability: ng_eg:%kin

public T deq() throws EmptyExcepiig .

lock.lock(); 2
try { @
if (tail == head)

throw new EmptyException();

T X = 1tems[head % items.length];
head++;

return Xx;
} finally {
lock.unlock();
}
}

Art of Multiprocessor 143
Programming

Reasoning About
Lineraizability: Locking

Linearization points
are when locks are
released

[1ock.unlockO;

Art of Multiprocessor 144
Programming

More Reasoning: Lock-free

public class LockFreeQueue { head tail

N 1

capacitys;

int head = 0, tail = 0;
items = (T[]) new Object[capacity]

public void enq(Item x) {
while (tail-head == capacity); // busy-wait
items[tail % capacity] = x; tail++;
}
public Item deq() {
while (tail == head); // busy-wait
Item item = items[head % capacity]; head++;
return item;

3}

Art of Multiprocessor 145
Programming

More Reasoning

d§p<§@'¢@.
| 0 vid engq(Item x) {

LR - - -
,‘,0 o™ 'e (tail-head == capaci ' si-wait

A 0(\5 cems[tail % capacity] = x{ tail++;

J

public Item deq() {
while (tail == head); // busy-wail
Item item = items[head % capacity];| head++;
return item;

b}

Art of Multiprocessor 146
Programming

Strategy

» Identify one atomic step where method
“happens”

- Critical section
- Machine instruction

* Doesn’ t always work

- Might need to define several different
steps for a given method

Art of Multiprocessor 147
Programming

Linearizability: Summary

» Powerful specification tool for shared
objects

» Allows us to capture the notion of
objects being “atomic”

* There is a lot of ongoing research in
verification community to build tools
that can verify/debug concurrent
implementations wrt linearizability

Art of Multiprocessor 148
Programming

Alternative: Sequential
Consistency

» History H is Sequentially Consistent
if it can be extended to 6 by

- Appending zero or more responses to
pending invocations

- Discarding other pending invocations

* So that G is equivalent to a Differs from
- Legal sequential history 5 linearizability

—-thl-c—)-G-e-)-S—ﬂ-/

Art of Multiprocessor 149
Programming

Alternative: Sequential
Consistency

* No need to preserve real-time order

- Cannot re-order operations done by the
same thread

- Can re-order non-overlapping operations
done by different threads

» Often used to describe
multiprocessor memory architectures

Art of Multiprocessor 150
Programming

Example

lo|e]o)]

(3) Art of Multiprocessor 151
Programming

Example

lo|e]o)]

(3) Art of Multiprocessor 152
Programming

Example

lo|e]o)]

)

e

(3) Art of Multiprocessor 153
Programming

Example

N2

lo|e]o)]

>
&

(3) Art of Multiprocessor 154
Programming

Example

N2

lo|e]o)]

e
&

(3) Art of Multiprocessor 155
Programming

(3) Art of Multiprocessor 156
Programming

(3) Art of Multiprocessor 157
rogr '

Theorem

Sequential Consistency is hot a
local property

(and thus we lose composability...)

Art of Multiprocessor 158
Programming

FIFO Queue Example

LYY

e

Art of Multiprocessor 159
Programming

FIFO Queue Example

A YAy

e

Art of Multiprocessor 160
Programming

FIFO Queue Example

)

p-deq(y)

\

/

\
N—"

History H

e

Art of Multiprocessor
Programming

161

H|p Sequentially Consistent

Ay Ay N

e

Art of Multiprocessor 162
Programming

H|q Sequentially Consistent

A YAy

e

Art of Multiprocessor 163
Programming

Ordering imposed by p

2552,

N

Ordering imposed by g

A TaT S

4

Ordering imposed by both

o) 60 6
\

4

e

Art of Multiprocessor 166
Programming

Combining orders

Art of Multiprocessor
Programming

Fact

+ Most hardware architectures don’ t
support sequential consistency

» Because they think it' s too strong
* Here’ s another story ...

Art of Multiprocessor 168
Programming

The Flag Example

m y.read(0)
4

e

Art of Multiprocessor 169
Programming

The Flag Example

&)
4

» Each thread’ s view is sequentially
consistent

- T+ went first

Art of Multiprocessor 170
Programming

The Flag Example

&)
4

» Entire history isn’ t sequentially
consistent

- Can’ t both go first

Art of Multiprocessor 171
Programming

The Flag Example

$m)
)

* Is this behavior really so wrong?
- We can argue either way ...

Art of Multiprocessor 172
Programming

Opinionl: It' s Wrong

+ This pattern
- Write mine, read yours
- Heart of mutual exclusion

* Peterson
- Bakery, etc.

» It' s non-negotiable!

Art of Multiprocessor 173
Programming

Opinion2: But It Should be
Allowed ...

* Many hardware architects think that
sequential consistency is too strong

» Too expensive to implement in modern
hardware

» OK if flag principle

- violated by default

- Honored by explicit request

Art of Multiprocessor 174
Programming

Memory Hierarchy

* On modern multiprocessors, processors
do not read and write directly to

memory.

* Memory accesses are very slow
compared to processor speeds,

» Instead, each processor reads and
writes directly to a cache

Art of Multiprocessor 175
Programming

Memory Operations

» To read a memory location,
- load data into cache.

* To write a memory location
- update cached copy,
- Lazily write cached data back to memory

Art of Multiprocessor 176
Programming

While Writing o Memory

» A processor can execute hundreds, or
even thousands of instructions

* Why delay on every memory write?

» Instead, write back in parallel with rest
of the program.

Art of Multiprocessor 177
Programming

Bottomline..

* Flag violation history is actually OK
- processors delay writing to memory
- Until after reads have been issued.

* Otherwise unacceptable delay between
read and write instructions.

* Who knew you wanted to synchronize?

Art of Multiprocessor 178
Programming

Who knew you wanted to
synchronize?

+ Writing to memory = mailing a letter

* Vast majority of reads & writes
- Not for synchronization
- No need to idle waiting for post office

» If you want to synchronize
- Announce it explicitly
- Pay for it only when you need it

Art of Multiprocessor 179
Programming

Explicit Synchronization

* Memory barrier instruction

- Flush unwritten caches

- Bring caches up to date

» Compilers often do this for you

- Entering and leaving critical sections

+ Expensive

Art of Multiprocessor 180
Programming

Volatile

* In Java, can ask compiler to keep a

variable up-to-date with volatile
keyword

» Also inhibits reordering, removing from
loops, & other “optimizations”

Art of Multiprocessor 181
Programming

Real-World Hardware Memory

* Weaker than sequential consistency
+ Examples: TSO, RMO, Intel x86...

» But you can get sequential consistency
at a price

» OK for expert, tricky stuff

- assembly language, device drivers, etc.

* Linearizability more appropriate for
high-level software

Art of Multiprocessor 182
Programming

Critical Sections

+ Easy way to implement linearizability
- Take sequential object
- Make each method a critical section

* Problems
- Blocking
- No concurrency

Art of Multiprocessor 183
Programming

Linearizability

* Linearizability
- Operation takes effect instantaneously
between invocation and response

- Uses sequential specification, locality
implies composablity
- Good for high level objects

Art of Multiprocessor 184
Programming

Correctness: Linearizability

» Sequential Consistency

- Not composable

- Harder to work with

- Good way to think about hardware models
* We will use /inearizability as in the

remainder of this course unless stated
otherwise

Art of Multiprocessor 185
Programming

Progress

* We saw an implementation whose
methods were lock-based (deadlock-
free)

* We saw an implementation whose
methods did not use locks (lock-free)

* How do they relate?

Art of Multiprocessor 186
Programming

Maximal vs. Minimal

» Minimal progress: in some suffix of H,
some pending active invocation has a
matching response (some method call
eventually completes).

Art of Multiprocessor 187
Programming

Maximal vs. Minimal

* Minimal progress:

Art of Multiprocessor
Programming

Maximal vs. Minimal

* Minimal progress:

* Maximal progress: in evem,
every pending active invocation has a
matching response (every method call
always completes).

Art of Multiprocessor 189
Programming

Maximal vs. Minimal

* Minimal progress:

* Maximal progress:

Art of Multiprocessor
Programming

Progress Conditions

* Deadlock-free: some thread trying to acquire
the lock eventually succeeds.

- Starvation-free: every thread trying to
acquire the lock eventually succeeds.

* Lock-free: some thread calling a method
eventually returns.

Wait-free: every thread calling a method
eventually returns.

Art of Multiprocessor 191
Programming

Everyone
makes
progress

Someone
makes
progress

Progress Conditions

Non-Blocking Blocking
Wait-free Starvation-free
Lock-free Deadlock-free

Art of Multiprocessor

Programming

192

Summary

* We will look at /inearizable blocking and
non-blocking implementations of
objects.

Art of Multiprocessor 193
Programming

