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Concurrent Computation 

memory 

object object 
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Objectivism 
•  What is a concurrent object? 

– How do we describe one? 
– How do we implement one? 
– How do we tell if we’re right? 
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FIFO Queue: Enqueue Method 

q.enq( ) 
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FIFO Queue: Dequeue Method 

q.deq()/ 
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     A Lock-Based Queue 

class LockBasedQueue<T> {   
  int head, tail;   
  T[] items;   
  Lock lock;   
  public LockBasedQueue(int capacity) {     
    head = 0; tail = 0;     
    lock = new ReentrantLock();     
    items = (T[]) new Object[capacity];   
} 
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     A Lock-Based Queue 

class LockBasedQueue<T> {   
  int head, tail;   
  T[] items;   
  Lock lock;   
  public LockBasedQueue(int capacity) {     
    head = 0; tail = 0;     
    lock = new ReentrantLock();     
    items = (T[]) new Object[capacity];   
} 
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capacity-1 
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y z 

Queue fields 
protected by single 
shared lock 
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     A Lock-Based Queue 

class LockBasedQueue<T> {   
  int head, tail;   
  T[] items;   
  Lock lock;   
  public LockBasedQueue(int capacity) {     
    head = 0; tail = 0;     
    lock = new ReentrantLock();     
    items = (T[]) new Object[capacity];   
} 

0 1 

capacity-1 
2 

head tail 

y z 

Initially head = tail 
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Implementation: Deq 
public T deq() throws EmptyException { 
  lock.lock();              
  try {       
    if (tail == head)         
       throw new EmptyException();       
    T x = items[head % items.length];       
    head++;       
    return x;     
  } finally {       
    lock.unlock();     
  }   
}  

0 1 

capacity-1 
2 

head tail 

y z 
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Implementation: Deq 
public T deq() throws EmptyException { 
  lock.lock();              
  try {       
    if (tail == head)         
       throw new EmptyException();       
    T x = items[head % items.length];       
    head++;       
    return x;     
  } finally {       
    lock.unlock();     
  }   
}  

Method calls   
mutually exclusive 
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Implementation: Deq 
public T deq() throws EmptyException { 
  lock.lock();              
  try {       
    if (tail == head)         
       throw new EmptyException();       
    T x = items[head % items.length];       
    head++;       
    return x;     
  } finally {       
    lock.unlock();     
  }   
}  

If queue empty 
throw exception 

0 1 

capacity-1 
2 

head tail 
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Implementation: Deq 
public T deq() throws EmptyException { 
  lock.lock();              
  try {       
    if (tail == head)         
       throw new EmptyException();       
    T x = items[head % items.length];       
    head++;       
    return x;     
  } finally {       
    lock.unlock();     
  }   
}  

Queue not empty: 
remove item and update  

head 
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capacity-1 
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head tail 

y z 
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Implementation: Deq 
public T deq() throws EmptyException { 
  lock.lock();              
  try {       
    if (tail == head)         
       throw new EmptyException();       
    T x = items[head % items.length];       
    head++;       
    return x;     
  } finally {       
    lock.unlock();     
  }   
}  

Return result 
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Implementation: Deq 
public T deq() throws EmptyException { 
  lock.lock();              
  try {       
    if (tail == head)         
       throw new EmptyException();       
    T x = items[head % items.length];       
    head++;       
    return x;     
  } finally {       
    lock.unlock();     
  }   
}  

Release lock no 
matter what! 

0 1 

capacity-1 
2 

head tail 

y z 
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Implementation: Deq 
public T deq() throws EmptyException { 
  lock.lock();              
  try {       
    if (tail == head)         
       throw new EmptyException();       
    T x = items[head % items.length];       
    head++;       
    return x;     
  } finally {       
    lock.unlock();     
  }   
}  
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Now consider the following 
implementation 

•  The same thing without mutual exclusion 
•  For simplicity, only two threads  

– One thread enq only 
–  The other deq only 
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Wait-free 2-Thread Queue 
public class WaitFreeQueue { 
 
  int head = 0, tail = 0;  
  items = (T[]) new Object[capacity];     
 
  public void enq(Item x) { 
    while (tail-head == capacity); // busy-wait 
    items[tail % capacity] = x; tail++; 
  } 
  public Item deq() { 
     while (tail == head);     // busy-wait 
     Item item = items[head % capacity]; head++; 
     return item; 
}} 
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Wait-free 2-Thread Queue 
public class LockFreeQueue { 
 
  int head = 0, tail = 0;  
  items = (T[]) new Object[capacity];     
 
  public void enq(Item x) { 
    while (tail-head == capacity); // busy-wait 
    items[tail % capacity] = x; tail++; 
  } 
  public Item deq() { 
     while (tail == head);     // busy-wait 
     Item item = items[head % capacity]; head++; 
     return item; 
}} 
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y z 



Art of Multiprocessor 
Programming 

20 

Lock-free 2-Thread Queue 
public class LockFreeQueue { 
 
  int head = 0, tail = 0;  
  items = (T[])new Object[capacity];     
 
  public void enq(Item x) { 
    while (tail-head == capacity); // busy-wait 
    items[tail % capacity] = x; tail++; 
  } 
  public Item deq() { 
     while (tail == head);     // busy-wait 
     Item item = items[head % capacity]; head+
+; 
     return item; 
}} 

0 1 

capacity-1 
2 

head tail 

y z 

Queue is updated without a lock! 
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Defining concurrent queue  
implementations 

•  Need a way to specify a concurrent 
queue object 

•  Need a way to prove that an algorithm 
implements  the object’s 
specification 

•  Lets talk about object specifications 
… 



Correctness and Progress 
•  In a concurrent setting, we need to 

specify both the safety and the liveness 
properties of an object 

•  Need a way to define  
–  when an implementation is correct 
–  the conditions under which it guarantees 

progress 
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Lets begin with correctness 
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Sequential Objects 
•  Each object has a state 

–  Usually given by a set of fields 
– Queue example: sequence of items 

•  Each object has a set of methods 
– Only way to manipulate state 
– Queue example: enq and deq methods 
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Sequential Specifications 
•  If (precondition)  

–  the object is in such-and-such a state 
–  before you call the method, 

•  Then (postcondition) 
–  the method will return a particular value 
–  or throw a particular exception. 

•  and (postcondition, con’t) 
–  the object will be in some other state 
–  when the method returns,  
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Pre and PostConditions for 
Dequeue 

•  Precondition: 
– Queue is non-empty 

•  Postcondition: 
–  Returns first item in queue 

•  Postcondition: 
–  Removes first item in queue 
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Pre and PostConditions for 
Dequeue 

•  Precondition: 
– Queue is empty 

•  Postcondition: 
–  Throws Empty exception 

•  Postcondition: 
– Queue state unchanged 



Art of Multiprocessor 
Programming 

27 

Why Sequential Specifications 
Totally Rock 

•  Interactions among methods captured by 
side-effects on object state 
–  State meaningful between method calls 

•  Documentation size linear in number of 
methods 
–  Each method described in isolation 

•  Can add new methods 
–  Without changing descriptions of old methods 
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What About Concurrent 
Specifications ? 

•  Methods?  
•  Documentation? 
•  Adding new methods?  
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Methods Take Time 

time time 
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Methods Take Time 

time 

invocation 
12:00 

q.enq
(...) 

time 
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Methods Take Time 

time 

Method call 

invocation 
12:00 

q.enq
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time 
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Methods Take Time 

time 

Method call 

invocation 
12:00 

q.enq
(...) 

time 

void 

response 
12:01 
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Sequential vs Concurrent 
•  Sequential 

– Methods take time? Who knew? 
•  Concurrent 

– Method call is not an event 
– Method call is an interval. 
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time 

Concurrent Methods Take 
Overlapping Time 

time 
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time 

Concurrent Methods Take 
Overlapping Time 

time 

Method call 
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time 

Concurrent Methods Take 
Overlapping Time 

time 
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Method call 
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time 

Concurrent Methods Take 
Overlapping Time 

time 

Method call Method call 

Method call 
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Sequential vs Concurrent 
•  Sequential: 

– Object needs meaningful state only 
between method calls 

•  Concurrent 
–  Because method calls overlap, object might 
never be between method calls 
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Sequential vs Concurrent 
•  Sequential: 

–  Each method described in isolation 
•  Concurrent 

– Must characterize all possible interactions 
with concurrent calls  
• What if two enqs overlap? 
•  Two deqs? enq and deq? … 
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Sequential vs Concurrent 
•  Sequential: 

–  Can add new methods without affecting 
older methods 

•  Concurrent: 
–  Everything can potentially interact with 

everything else 
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Sequential vs Concurrent 
•  Sequential: 

–  Can add new methods without affecting 
older methods 

•  Concurrent: 
–  Everything can potentially interact with 

everything else 
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The Big Question 

•  What does it mean for a concurrent 
object to be correct? 
– What is a concurrent FIFO queue? 
–  FIFO means strict temporal order 
–  Concurrent means ambiguous temporal 

order 
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Intuitively… 
public T deq() throws EmptyException { 
  lock.lock();              
  try {       
    if (tail == head)         
       throw new EmptyException();       
    T x = items[head % items.length];       
    head++;       
    return x;     
  } finally {       
    lock.unlock();     
  }   
}  
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Intuitively… 
public T deq() throws EmptyException { 
  lock.lock();              
  try {       
    if (tail == head)         
       throw new EmptyException();       
    T x = items[head % items.length];       
    head++;       
    return x;     
  } finally {       
    lock.unlock();     
  }   
}  

All modifications  
of queue are done  
mutually exclusive 
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time 

Intuitively 

q.deq 

q.enq 

 enq  deq 

   lock() unlock() 

lock() unlock() 
Behavior is 
“Sequential” 

enq 

deq 

Lets capture the idea of describing  
the concurrent via the sequential  
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Linearizability 
•  Each method should 
– “take effect” 
–  Instantaneously 
–  Between invocation and response events 

•  Object is correct if this “sequential” 
behavior is correct 

•  Ordering must be maintained between 
request and responses (addendum) 

•  Any such concurrent object is 
–  Linearizable™ 
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Is it really about the object? 
•  Each method should 
– “take effect” 
–  Instantaneously 
–  Between invocation and response events 

•  Sounds like a property of an 
execution… 

•  A linearizable object: one all of whose 
possible executions are linearizable 
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Example 

time time 

(6) 
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Example 

time 

q.enq(x) 

time 

(6) 
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Example 

time 

q.enq(x) 

q.enq(y) 

time 

(6) 



Art of Multiprocessor 
Programming 

52 

Example 

time 
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time 

(6) 



Art of Multiprocessor 
Programming 

53 

Example 
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Example 

time 
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Example 

time 
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Example 

time 

(5) 
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Example 
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Example 
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Example 
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Example 
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Example 

time time 

(4) 
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Example 
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Example 

time 
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q.deq(x) 
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time 
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Example 

time 

q.enq(x) 

time 

(8) 
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Example 

time 

q.enq(x) 

q.enq(y) 

time 

(8) 
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Example 

time 

q.enq(x) 

q.enq(y) 

q.deq(y) 

time 

(8) 
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Example 

time 

q.enq(x) 

q.enq(y) 

q.deq(y) 

q.deq(x) 

time 

(8) 
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q.enq(x) 

q.enq(y) 

q.deq(y) 

q.deq(x) 

Example 

time 
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Read/Write Register Example 

time 

read(1) write(0) 

write(1) 

write(2) 

time 

read(0) 

(4) 
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Read/Write Register Example 

time 

read(1) write(0) 

write(1) 

write(2) 

time 

read(0) 

write(1) already 
happened 

(4) 



Art of Multiprocessor 
Programming 

74 

Read/Write Register Example 

time 

read(1) write(0) 

write(1) 

write(2) 

time 

read(0) write(1) 
write(1) already 

happened 
(4) 
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Read/Write Register Example 

time 

read(1) write(0) 
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write(1) already 

happened 
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Read/Write Register Example 
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Read/Write Register Example 
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Read/Write Register Example 
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Read/Write Register Example 
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Read/Write Register Example 

time 

write(0) 

write(1) 

write(2) 

time 

read(1) write(1) 

write(2) 

(4) 



Art of Multiprocessor 
Programming 

81 

Read/Write Register Example 

time 
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Read/Write Register Example 

time 

read(1) write(0) 

write(1) 

write(2) 

time 

read(1) 

(2) 
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Read/Write Register Example 

time 

read(1) write(0) 

write(1) 

write(2) 

time 

read(1) write(1) 
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Read/Write Register Example 

time 

read(1) write(0) 

write(1) 

write(2) 

time 

read(1) write(1) 

write(2) 

(2) 
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Read/Write Register Example 

time 

read(1) write(0) 

write(1) 

write(2) 

time 

read(2) write(1) 

write(2) 

(2) 
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Talking About Executions 
•  Why? 

–  Can’t we specify the linearization point of 
each operation without describing an 
execution? 

•  Not Always 
–  In some cases, linearization point depends 

on the execution 
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Formal Model of Executions 
•  Define precisely what we mean 

–  Ambiguity is bad when intuition is weak 
•  Allow reasoning 
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Split Method Calls into Two 
Events 

•  Invocation 
– method name & args 
– q.enq(x) 

•  Response 
–  result or exception 
– q.enq(x) returns void 
– q.deq()  returns x 
– q.deq()   throws  empty 
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Invocation Notation 

A q.enq(x) 

(4) 
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Invocation Notation 

A q.enq(x) 

thread 

(4) 
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Invocation Notation 

A q.enq(x) 

thread method 

(4) 
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Invocation Notation 

A q.enq(x) 

thread 

object 
(4) 

method 
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Invocation Notation 

A q.enq(x) 

thread 

object 

method 

arguments 
(4) 
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Response Notation 

A q: void 

(2) 
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Response Notation 

A q: void 

thread 

(2) 
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Response Notation 

A q: void 

thread result 

(2) 
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Response Notation 

A q: void 

thread 

object 

result 

(2) 
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Response Notation 

A q: void 

thread 

object 

result 

(2) 
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Response Notation 

A q: empty() 

thread 

object 
(2) 

exception 
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History - Describing an Execution 

A q.enq(3) 
A q:void 
A q.enq(5) 
B p.enq(4) 
B p:void 
B q.deq() 
B q:3 

Sequence of 
invocations and 

responses 

H = 
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Definition 
•  Invocation & response match if 

A q.enq(3) 

A q:void 

Thread 
names agree 

Object names 
agree 

Method call 

(1) 



Art of Multiprocessor 
Programming 

102 

Object Projections 

A q.enq(3) 
A q:void 
B p.enq(4) 
B p:void 
B q.deq() 
B q:3 
 
 

H = 



Art of Multiprocessor 
Programming 

103 

Object Projections 

A q.enq(3) 
A q:void 
B p.enq(4) 
B p:void 
B q.deq() 
B q:3 
 
 

H|q = 
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Thread Projections 

A q.enq(3) 
A q:void 
B p.enq(4) 
B p:void 
B q.deq() 
B q:3 
 
 

H = 
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Thread Projections 

A q.enq(3) 
A q:void 
B p.enq(4) 
B p:void 
B q.deq() 
B q:3 
 
 

H|B = 
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Complete Subhistory 

A q.enq(3) 
A q:void 
A q.enq(5) 
B p.enq(4) 
B p:void 
B q.deq() 
B q:3 

An invocation is 
pending if it has no 
matching respnse 

H = 
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Complete Subhistory 

A q.enq(3) 
A q:void 
A q.enq(5) 
B p.enq(4) 
B p:void 
B q.deq() 
B q:3 

May or may not 
have taken effect 

H = 
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Complete Subhistory 

A q.enq(3) 
A q:void 
A q.enq(5) 
B p.enq(4) 
B p:void 
B q.deq() 
B q:3 

discard pending 
invocations 

H = 
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Complete Subhistory 

A q.enq(3) 
A q:void 
  
B p.enq(4) 
B p:void 
B q.deq() 
B q:3 

Complete(H) = 
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Sequential Histories 

A q.enq(3) 
A q:void 
B p.enq(4) 
B p:void 
B q.deq() 
B q:3 
A q:enq(5) 

(4) 
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Sequential Histories 

A q.enq(3) 
A q:void 
B p.enq(4) 
B p:void 
B q.deq() 
B q:3 
A q:enq(5) 

match 

(4) 
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Sequential Histories 

A q.enq(3) 
A q:void 
B p.enq(4) 
B p:void 
B q.deq() 
B q:3 
A q:enq(5) 

match 

match 

(4) 
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Sequential Histories 

A q.enq(3) 
A q:void 
B p.enq(4) 
B p:void 
B q.deq() 
B q:3 
A q:enq(5) 

match 

match 

match 

(4) 
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Sequential Histories 

A q.enq(3) 
A q:void 
B p.enq(4) 
B p:void 
B q.deq() 
B q:3 
A q:enq(5) 

match 

match 

match 

Final pending 
invocation OK 

(4) 
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Sequential Histories 

A q.enq(3) 
A q:void 
B p.enq(4) 
B p:void 
B q.deq() 
B q:3 
A q:enq(5) 

match 

match 

match 

Final pending 
invocation OK 

(4) 
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Well-Formed Histories 

H= 

A q.enq(3) 
B p.enq(4) 
B p:void 
B q.deq() 
A q:void 
B q:3 



Art of Multiprocessor 
Programming 

117 

Well-Formed Histories 

H= 

A q.enq(3) 
B p.enq(4) 
B p:void 
B q.deq() 
A q:void 
B q:3 

H|B= 
B p.enq(4) 
B p:void 
B q.deq() 
B q:3 

Per-thread 
projections sequential 
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Well-Formed Histories 

H= 

A q.enq(3) 
B p.enq(4) 
B p:void 
B q.deq() 
A q:void 
B q:3 

H|B= 
B p.enq(4) 
B p:void 
B q.deq() 
B q:3 

A q.enq(3) 
A q:void 

H|A= 

Per-thread 
projections sequential 
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Equivalent Histories 

H= 

A q.enq(3) 
B p.enq(4) 
B p:void 
B q.deq() 
A q:void 
B q:3 

Threads see the same 
thing in both 

A q.enq(3) 
A q:void 
B p.enq(4) 
B p:void 
B q.deq() 
B q:3 

G= 

H|A = G|A 
H|B = G|B 
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Sequential Specifications 
•  A sequential specification is some way 

of telling whether a 
–  Single-thread, single-object history 
–  Is legal 

•  For example: 
–  Pre and post-conditions 
–  But plenty of other techniques exist … 
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Legal Histories 
•  A sequential (multi-object) history H is 

legal if 
–  For every object x 
– H|x is in the sequential spec for x 
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Precedence 

A q.enq(3) 
B p.enq(4) 
B p.void 
A q:void 
B q.deq() 
B q:3 

A method call precedes 
another if response 

event precedes 
invocation event 

Method call Method call 

(1) 
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Non-Precedence 

A q.enq(3) 
B p.enq(4) 
B p.void 
B q.deq() 
A q:void 
B q:3 

Some method calls 
overlap one another 

Method call 

Method call 

(1) 
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Notation 
•  Given  

– History H 
– method executions m0 and m1 in H 	



•  We say m0 H m1, if	


– m0 precedes m1 

•  Relation m0 H m1 is a 
–  Partial order  
–  Total order if H is sequential	



m0 m1 
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Linearizability 
•  History H is linearizable if it can be 

extended to G by 
–  Appending zero or more responses to 

pending invocations 
–  Discarding other pending invocations 

•  So that G is equivalent to 
–  Legal sequential history S  
–  where G ⊂ S 
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What is G ⊂ S 
 

time 

a 

b 

time 

(8) 

S 

c G 

G = {ac,bc} 

S = {ab,ac,bc} 
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Remarks 
•  Some pending invocations 

–  Took effect, so keep them 
–  Discard the rest 

•  Condition G ⊂ S 
– Means that S respects “real-time order” 

of G 
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A q.enq(3) 
B q.enq(4) 
B q:void 
B q.deq() 
B q:4 
B q:enq(6) 

Example 

time 

B.q.enq(4) 

A. q.enq(3) 

B.q.deq(4) B. q.enq(6) 
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Example 

Complete this 
pending 

invocation 

time 

B.q.enq(4) B.q.deq(3) B. q.enq(6) 

A q.enq(3) 
B q.enq(4) 
B q:void 
B q.deq() 
B q:4 
B q:enq(6) 

A. q.enq(3) 
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Example 

Complete this 
pending 

invocation 

time 

B.q.enq(4) B.q.deq(4) B. q.enq(6) 

B.q.enq(3) 

A q.enq(3) 
B q.enq(4) 
B q:void 
B q.deq() 
B q:4 
B q:enq(6) 
A q:void 
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Example 

time 

B.q.enq(4) B.q.deq(4) B. q.enq(6) 

B.q.enq(3) 

A q.enq(3) 
B q.enq(4) 
B q:void 
B q.deq() 
B q:4 
B q:enq(6) 
A q:void 

discard this one 
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Example 

time 

B.q.enq(4) B.q.deq(4) 

B.q.enq(3) 

A q.enq(3) 
B q.enq(4) 
B q:void 
B q.deq() 
B q:4 
 
A q:void 

discard this one 
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A q.enq(3) 
B q.enq(4) 
B q:void 
B q.deq() 
B q:4 
A q:void 

Example 

time 

B.q.enq(4) B.q.deq(4) 

B.q.enq(3) 
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A q.enq(3) 
B q.enq(4) 
B q:void 
B q.deq() 
B q:4 
A q:void 

Example 

time 

B q.enq(4) 
B q:void 
A q.enq(3) 
A q:void 
B q.deq() 
B q:4 

B.q.enq(4) B.q.deq(4) 

B.q.enq(3) 
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B.q.enq(4) B.q.deq(4) 

B.q.enq(3) 

A q.enq(3) 
B q.enq(4) 
B q:void 
B q.deq() 
B q:4 
A q:void 

Example 

time 

B q.enq(4) 
B q:void 
A q.enq(3) 
A q:void 
B q.deq() 
B q:4 

Equivalent sequential history 
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Concurrency 
•  How much concurrency does 

linearizability allow? 
•  When must a method invocation block? 
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Concurrency 
•  Focus on total methods 

–  Defined in every state 
•  Example: 

– deq() that throws Empty exception 
–  Versus deq() that waits … 

•  Why? 
– Otherwise, blocking unrelated to 

synchronization 
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Concurrency 
•  Question: When does linearizability 

require a method invocation to block? 
•  Answer: never. 
•  Linearizability is non-blocking 
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Non-Blocking Theorem 

If method invocation 
A q.inv(…) 

is  pending in history H, then there 
exists a response 
A q:res(…) 

such that 
H + A q:res(…) 

is linearizable  
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Proof 
•  Pick linearization S of H 
•  If S already contains  

–  Invocation A q.inv(…) and response, 
–  Then we are done. 

•  Otherwise, pick a response such that 
–  S + A q.inv(…) + A q:res(…)  

–  Possible because object is total. 
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Composability Theorem 
•  History H is linearizable if and only if 

–  For every object x 
– H|x is linearizable 
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Why Does Composability Matter? 

•  Modularity  
•  Can prove linearizability of objects in 

isolation 
•  Can compose independently-implemented 

objects 
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Reasoning About  
Lineraizability: Locking  

public T deq() throws EmptyException { 
  lock.lock();              
  try {       
    if (tail == head)         
       throw new EmptyException();       
    T x = items[head % items.length];       
    head++;       
    return x;     
  } finally {       
    lock.unlock();     
  }   
}  

0 1 

capacity-1 
2 

head tail 

y z 
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Reasoning About  
Lineraizability: Locking  

public T deq() throws EmptyException { 
  lock.lock();              
  try {       
    if (tail == head)         
       throw new EmptyException();       
    T x = items[head % items.length];       
    head++;       
    return x;     
  } finally {       
    lock.unlock();     
  }   
}  

Linearization points 
are when locks are 

released  
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More Reasoning: Lock-free  
public class LockFreeQueue { 
 
  int head = 0, tail = 0;  
  items = (T[]) new Object[capacity];     
 
  public void enq(Item x) { 
    while (tail-head == capacity); // busy-wait 
    items[tail % capacity] = x; tail++; 
  } 
  public Item deq() { 
     while (tail == head);     // busy-wait 
     Item item = items[head % capacity]; head++; 
     return item; 
}} 

0 1 

capacity-1 
2 

head tail 

y z 
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public class LockFreeQueue { 
 
  int head = 0, tail = 0;  
  items = (T[]) new Object[capacity];     
 
  public void enq(Item x) { 
    while (tail-head == capacity); // busy-wait 
    items[tail % capacity] = x; tail++; 
  } 
  public Item deq() { 
     while (tail == head);     // busy-wait 
     Item item = items[head % capacity]; head++; 
     return item; 
}} 

Linearization order is 
order head and tail 

fields modified 

More Reasoning 
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Strategy 
•  Identify one atomic step where method 
“happens” 
–  Critical section 
– Machine instruction 

•  Doesn’t always work 
– Might need to define several different 

steps for a given method 
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Linearizability: Summary 
•  Powerful specification tool for shared 

objects 
•  Allows us to capture the notion of 

objects being “atomic” 
•  There is a lot of ongoing research in 

verification community to build tools 
that can verify/debug concurrent 
implementations wrt linearizability 
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Alternative: Sequential 
Consistency 

•  History H is Sequentially Consistent 
if it can be extended to G by 
–  Appending zero or more responses to 

pending invocations 
–  Discarding other pending invocations 

•  So that G is equivalent to a 
–  Legal sequential history S  
–  Where G ⊂ S 

 

  Differs from  
  linearizability 
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Alternative: Sequential 
Consistency 

•  No need to preserve real-time order 
–  Cannot re-order operations done by the 

same thread 
–  Can re-order non-overlapping operations 

done by different threads 
•  Often used to describe 

multiprocessor memory architectures 
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Example 

time 

(5) 
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Example 

time 

q.enq(x) 

(5) 
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Example 

time 

q.enq(x) q.deq(y) 

(5) 
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Example 

time 

q.enq(x) 

q.enq(y) 

q.deq(y) 

(5) 
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Example 

time 

q.enq(x) 

q.enq(y) 

q.deq(y) q.enq(x) 

q.enq(y) 

(5) 
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Example 

time 

q.enq(x) 

q.enq(y) 

q.deq(y) q.enq(x) 

q.enq(y) 

(5) 
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Example 

time 

q.enq(x) 

q.enq(y) 

q.deq(y) q.enq(x) 

q.enq(y) 

(5) 
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Theorem 

Sequential Consistency is not a 
local property 

 
(and thus we lose composability…) 
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FIFO Queue Example 

time 

p.enq(x) p.deq(y) q.enq(x) 

time 
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FIFO Queue Example 

time 

p.enq(x) p.deq(y) q.enq(x) 

q.enq(y) q.deq(x) p.enq(y) 

time 
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FIFO Queue Example 

time 

p.enq(x) p.deq(y) q.enq(x) 

q.enq(y) q.deq(x) p.enq(y) 

History H 

time 
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H|p Sequentially Consistent 

time 

p.enq(x) p.deq(y) 

p.enq(y) 

q.enq(x) 

q.enq(y) q.deq(x) 

time 
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H|q Sequentially Consistent 

time 

p.enq(x) p.deq(y) q.enq(x) 

q.enq(y) q.deq(x) p.enq(y) 

time 
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Ordering imposed by p 

time 

p.enq(x) p.deq(y) q.enq(x) 

q.enq(y) q.deq(x) p.enq(y) 

time 
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Ordering imposed by q 

time 

p.enq(x) p.deq(y) q.enq(x) 

q.enq(y) q.deq(x) p.enq(y) 

time 
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p.enq(x) 

Ordering imposed by both 

time 

q.enq(x) 

q.enq(y) q.deq(x) 

time 

p.deq(y) 

p.enq(y) 
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p.enq(x) 

Combining orders 

time 

q.enq(x) 

q.enq(y) q.deq(x) 

time 

p.deq(y) 

p.enq(y) 



Art of Multiprocessor 
Programming 

168 

Fact 
•  Most hardware architectures don’t 

support sequential consistency 
•  Because they think it’s too strong 
•  Here’s another story … 
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The Flag Example 

time 

x.write(1) y.read(0) 

y.write(1) x.read(0) 

time 



Art of Multiprocessor 
Programming 

170 

The Flag Example 

time 

x.write(1) y.read(0) 

y.write(1) x.read(0) 

•  Each thread’s view is sequentially 
consistent 
–  It went first 
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The Flag Example 

time 

x.write(1) y.read(0) 

y.write(1) x.read(0) 

•  Entire history isn’t sequentially 
consistent 
–  Can’t both go first 
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The Flag Example 

time 

x.write(1) y.read(0) 

y.write(1) x.read(0) 

•  Is this behavior really so wrong? 
– We can argue either way … 
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Opinion1: It’s Wrong 
•  This pattern 

– Write mine, read yours 
•  Heart of mutual exclusion 

•  Peterson 
•  Bakery, etc. 

•  It’s non-negotiable! 
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Opinion2: But It Should be 
Allowed … 

•  Many hardware architects think that 
sequential consistency is too strong 

•  Too expensive to implement in modern 
hardware 

•  OK if flag principle 
–  violated by default 
– Honored by explicit request 
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Memory Hierarchy 

•  On modern multiprocessors, processors 
do not read and write directly to 
memory. 

•  Memory accesses are very slow 
compared to processor speeds, 

•  Instead, each processor reads and 
writes directly to a cache 
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Memory Operations 

•  To read a memory location, 
–  load data into cache.   

•  To write a memory location 
–  update cached copy, 
–  Lazily write cached data back to memory 
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While Writing to Memory 

•  A processor can execute hundreds, or 
even thousands of instructions  

•  Why delay on every memory write? 
•  Instead, write back in parallel with rest 

of the program. 
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Bottomline.. 
•  Flag violation history is actually OK 

–  processors delay writing to memory 
–  Until after reads have been issued. 

•  Otherwise unacceptable delay between 
read and write instructions. 

•  Who knew you wanted to synchronize? 
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Who knew you wanted to 
synchronize? 

 
•  Writing to memory = mailing a letter 
•  Vast majority of reads & writes 

– Not for synchronization 
– No need to idle waiting for post office 

•  If you want to synchronize 
–  Announce it explicitly 
–  Pay for it only when you need it 
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Explicit Synchronization 
•  Memory barrier instruction 

–  Flush unwritten caches 
–  Bring caches up to date 

•  Compilers often do this for you 
–  Entering and leaving critical sections 

•  Expensive 
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Volatile 
•  In Java, can ask compiler to keep a 

variable up-to-date with volatile 
keyword 

•  Also inhibits reordering, removing from 
loops, & other “optimizations” 
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Real-World Hardware Memory 

•  Weaker than sequential consistency 
•  Examples: TSO, RMO, Intel x86… 
•  But you can get sequential consistency 

at a price 
•  OK for expert, tricky stuff 

–  assembly language, device drivers, etc. 
•  Linearizability more appropriate for 

high-level software 
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Critical Sections 
•  Easy way to implement linearizability 

–  Take sequential object 
– Make each method a critical section 

•  Problems 
–  Blocking 
– No concurrency 
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Linearizability 
•  Linearizability 

– Operation takes effect instantaneously 
between invocation and response 

–  Uses sequential specification, locality 
implies composablity 

–  Good for high level objects 
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Correctness: Linearizability 
•  Sequential Consistency 

– Not composable 
– Harder to work with 
–  Good way to think about hardware models 

•  We will use linearizability as in the 
remainder of this course unless stated 
otherwise 



Progress 
•  We saw an implementation whose 

methods were lock-based (deadlock-
free)  

•  We saw an implementation whose 
methods did not use locks (lock-free) 

•  How do they relate? 

Art of Multiprocessor 
Programming 

186 



Maximal vs. Minimal 
•  Minimal progress: in some suffix of H, 

some pending active invocation has a 
matching response (some method call 
eventually completes ). 
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Maximal vs. Minimal 
•  Minimal progress: in some suffix of H, 

some pending active invocation has a 
matching response (some method call 
eventually completes ). 
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Maximal vs. Minimal 
•  Minimal progress: in some suffix of H, 

some pending active invocation has a 
matching response (some method call 
eventually completes ). 

•  Maximal progress: in every suffix of H, 
every pending active invocation has a 
matching response (every method call 
always completes). 
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Maximal vs. Minimal 
•  Minimal progress: in some suffix of H, 

some pending active invocation has a 
matching response (some method call 
eventually completes ). 

•  Maximal progress: in every suffix of H, 
every pending active invocation has a 
matching response (every method call 
always completes). 
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Progress Conditions   
•  Deadlock-free: some thread trying to acquire 

the lock eventually succeeds. 
•  Starvation-free: every thread trying to 

acquire the lock eventually succeeds. 
•  Lock-free: some thread calling a method 

eventually returns. 
•  Wait-free: every thread calling a method 

eventually returns. 
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Progress Conditions   
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Wait-free 

Lock-free 

Starvation-free 

Deadlock-free 

Everyone 
 makes  
progress 

Non-Blocking Blocking 

Someone 
 makes  
progress 
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Summary 
•  We will look at linearizable blocking and 

non-blocking implementations of 
objects.  


