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Objectivism

* What is a concurrent object?
- How do we describe one?

- How do we implement one?

- How do we tell if we’ re right?
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FIFO Queue: Enqueue Method
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FIFO Queue: Dequeue Method
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A Lock-Based Queue

class LockBasedQueue<T> {

int head, tail;

T[] 1tems;

Lock lock;

public LockBasedQueue(int capacity) {
head = 0; tail = 0;
lock = new ReentrantLock();
items = (T[]) new Object[capacity];

Art of Multiprocessor
Programming



A Lock-Based Queue

head tail
int head, tail; @
T[] 1tems;
Lock lock;
Queue fields
protected by single
shared lock
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A Lock-Based Queue

head tail

N

capacity-1

(public LockBasedQueue(int capacity) {
head = 0; tail = 0;

lock = new ReentrantLock();

. 1tems = (T[]) new Object[capacity]; ,

Initially head = tail
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Implementation: Deq

head tail

public T deq() throws EmptyExcegtioo s

lock.lock(); 2
try { @
if (tail == head)

throw new EmptyException();

T X = 1tems[head % items.length];
head++;

return Xx;
} finally {
lock.unlock();
}
}
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Implementation: Deq

[1ock.1ock O ;

head

capac tyl

0

1
2

Method calls
mutually exclusive

Art of Multiprocessor
Programming

tail

11



Implementation: Deq

heag tail
N 1 g

capacity-1

[if (tail == head)
throw new EmptyException();

If queue empty
throw exception
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Implementation: Deq

head tail
1

capacity- 1

0

[T‘x = jtems[head % items.length];

head++;

Queue not empty:
remove item and update
head
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Implementation: Deq

[ return x;\
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Return result
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Implementation: Deq

heaf:l tail
N 1 g

capacity-1

2

Release lock no

finally { s = |
['Iock.un'lock() ;r matter what!
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Implementation: Deq

public T deq() throws EmptyException {
lock. lock();

try {
if (tail == head)
throw new EmptyException();

T X = 1tems[head % items.length];
head++;

return Xx;
} finally {
lock.unlock();
}
}

Programming



Now consider the following
implementation

* The same thing without mutual exclusion

* For simplicity, only two threads
- One thread enq only
- The other deq only
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Wait-free 2-Thread Queue

public class waitFreeQueue {

int head = 0, tail = 0;
items = (T[]) new Object[capacity];

public void enq(Item x) {
while (tail-head == capacity); // busy-wait
items[tail % capacity] = x; tail++;
}
public Item deq() {
while (tail == head); // busy-wait
Item item = items[head % capacity]; head++;
return item;

3}
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Wait-free 2-Thread Queue

head

capac
int head = 0, tail = 0;
items = (T[]) new Object[capacity]
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Lock-free 2-Thread Queue

head

N

capacitys;

tail
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Defining concurrent queue
implementations

* Need a way to specify a concurrent
queue object

* Need a way to prove that an algorithm
implements the object’s
specification

+ Lets talk about object specifications

Art of Multiprocessor 21
Programming



Correctness and Progress

* In a concurrent setting, we need to
specify both the safety and the liveness
properties of an object

* Need a way to define

- when an implementation is correct

- the conditions under which it guarantees
progress

Lets begin with correctness
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Sequential Objects

* Each object has a state

- Usually given by a set of fields

- Queue example: sequence of items

* Each object has a set of methods

- Only way to manipulate state
- Queue example: enq and deq methods
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Sequential Specifications

» If (precondition)

- the object is in such-and-such a state

- before you call the method,

» Then (postcondition)

- the method will return a particular value
- or throw a particular exception.

» and (postcondition, con’ 1)

- the object will be in some other state

- when the method returns,
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Pre and PostConditions for
Dequeue

* Precondition:

- Queue is non-empty

* Postcondition:

- Returns first item in queue

* Postcondition:
- Removes first item in queue

Art of Multiprocessor
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Pre and PostConditions for
Dequeue

* Precondition:

- Queue is empty

» Postcondition:

- Throws Empty exception

* Postcondition:
- Queue state unchanged
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Why Sequential Specifications
Totally Rock

* Interactions among methods captured by
side-effects on object state

- State meaningful between method calls

- Documentation size linear in number of

methods
- Each method described in isolation

- Can add new methods

- Without changing descriptions of old methods
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What About Concurrent
Specifications ?

* Methods?
» Documentation?
» Adding hew methods?
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Methods Take Time
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Methods Take Time
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Methods Take Time

[mvoca’rlon
12:00
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Method call
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Methods Take Time
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Methods Take Time

[mvoca’rlon response ]
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Sequential vs Concurrent

+ Sequential
- Methods take time? Who knew?

- Concurrent

- Method call is not an event
- Method call is an interval.
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Concurrent Methods Take
Overlapping Time
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Concurrent Methods Take
Overlapping Time
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Concurrent Methods Take
Overlapping Time
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Concurrent Methods Take
Overlapping Time

lo|e]o)]

Z v

Method call Method call
27 KA

Method call
<

time

Art of Multiprocessor 38
Programming



Sequential vs Concurrent

+ Sequential:
- Object needs meaningful state only
between method calls

- Concurrent

- Because method calls overlap, object might
never be between method calls
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Sequential vs Concurrent

+ Sequential:
- Each method described in isolation

- Concurrent

- Must characterize all possible interactions
with concurrent calls
* What if two engs overlap?
- Two deqs? enqg and deq? ...
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Sequential vs Concurrent

+ Sequential:
- Can add new methods without affecting
older methods

- Concurrent:

- Everything can potentially interact with
everything else
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Sequential vs Concurrent

+ Sequential:
- Can add new methods without affecting
older methods

- Concurrent:

- Everything can potentially ith
everything else
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The Big Question

- What does it mean for a concurrent
object to be correct?

- What is a concurrent FIFO queue?
- FIFO means strict temporal order

- Concurrent means ambiguous temporal
order
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Intuitively...

public T deq() throws EmptyException {
lock. lock();

try {
if (tail == head)
throw new EmptyException();

T X = 1tems[head % items.length];
head++;

return Xx;
} finally {
lock.unlock();
}
}

Art of Multiprocessor
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Intuitively...

throws EmptyException {

ry
1if (tai head)

throw NeX EmptyException();

T X = 1temsNIad % items.length];
head++; \
return X;
}[ﬁ-naJJ-)u{—? All modifications
y Tock.unlockQ) ; of queue are done

} mutually exclusive
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™. 2 l
Lets capture the idea of describing
the concurrent via the sequential

lock¢y 9-deq nTock ()
i g.enq E de%

lock ) Eenqéun'lockf() g ]
| ; ; . | Behavior is

“Sequential”
J

enq deq -
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Linearizability

» Each method should

— “take effect”

- Instantaneously

- Between invocation and response events

* Object is correct if this “sequential”
behavior is correct

* Ordering must be maintained between
request and responses (addendum)

* Any such concurrent object is
- Linearizable™
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Is it really about the object?

» Each method should

— “take effect”

- Instantaneously

- Between invocation and response events

» Sounds like a property of an
execution...

* A linearizable object: one all of whose
possible executions are linearizable

Art of Multiprocessor 48
Programming



(6)

Example
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Example
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Example
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Example
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q.enq(y)

Example
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Example
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Example
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Example
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lo|e]o)]

4T )

(4) Art of Multiprocessor 64
Programming




Example
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Example

N2

lo|e]o)]

<)

(s
T

(8) Art of Multiprocessor 70
Programming




Art of Multiprocessor 71
Programming



Read/Write Register Example
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Read/Write Register Example

write(1l) already
happened

(4) Art of Multiprocessor 73
Programming



Read/Write Register Example

A

write(1l) already
happened
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Read/Write Register Example

: P/
read(0)
write(1l) already :
happened
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Read/Write Register Example

write(1l) already
happened
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Read/Write Register Example

O E

wr'l're(l) already
happened

&)
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Read/Write Register Example

I . read(1)
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Read/Write Register Example

&
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Read/Write Register Example

@
e
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Read/Write Register Example
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Read/Write Register Example

=) &)
—_—
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Read/Write Register Example




Read/Write Register Example




Read/Write Register Example
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Talking About Executions

+ Why?
- Can’ T we specify the linearization point of

each operation without describing an
execution?

* Not Always

- In some cases, linearization point depends
on the execution
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Formal Model of Executions

+ Define precisely what we mean
- Ambiguity is bad when intuition is weak

» Allow reasoning
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Split Method Calls into Two
Events

- Invocation

- method name & args

- q.enq(x)

* Response

- result or exception

- q.enq(x) returns void
-q.deq() returns x
-q.deq() throws empty

Art of Multiprocessor
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Invocation Notation

A q.enq(x)
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Invocation Notation

E q.enq(x)

thread
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Invocation Notation

E q.@(x)

thread method
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Invocation Notation

E q.enq(x)
thread /_ method

object
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Invocation Notation

a0z
thread /_ method

object arguments
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Response Notation

A q: void
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Response Notation

E q: void

thread
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Response Notation

thread

(2)

E q: void
N\

result
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Response Notation

E : (void\
N

thread result

object
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Response Notation

AlQg: (void\
hread result
object

(2)
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Response Notation

Aq: [empty()

v

hread exception

object
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History - Describing an Execution

A g.enq(3)
‘A q:void
A d.enq(5)

\ Sequence of
invocations and
responses
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Definition

» Invocation & response match if

Thread Object names

hames agree agree

N ...
] Method call
Allgivoid

1) Art of Multiprocessor 101
Programming




Object Projections

q.enq(3)
g:void
p.enq(4)
p:void
q.deq()
q:3

|
O WwwWw W > P>
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Object Projections

Art of Multiprocessor
Programming

103



Thread Projections

q.enq(3)
g:void
p.enq(4)
p:void
q.deq()
q:3

|
O WwwWw W > P>
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Thread Projections
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Complete Subhistory

A g.enq(3)
A q:void

A q.end(5
L =

An invocation is
pending if it has no
matching respnse
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Complete Subhistory

A g.enq(3)
A q:void

A q.end(5
L =

May or may not
have taken effect
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Complete Subhistory

A g.enq(3)
A q:void

A q.end(5
L =

discard pending
invocations
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Complete Subhistory

A g.enq(3)
A g:void

Complete(H) =
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Sequential Histories

.enq(3)
:vo1id
.enq(4)
:void
.deq()
: 3
:enq(5)
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Sequential Histories

enq(3) match
:vo1id

> Www o> >
o0 o0oocolao

4)

.enq(4)
void
.deq()
: 3
:enq(5)
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Sequential Histories

enq(3) match
:vo1id

. eng (4) match
:vo1id

[:w">>‘
T O O

> W W
O 0 O

.deq()
: 3
:enq(5)
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Sequential Histories

> (oo

(A g.enq(3) match
>A g:void
B p.enq(4) match
B p:void
B q.deqO) ]7 match
g:3
g

:enq(5)
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Sequential Histories

(A q.enq(3) match

>A g:void

B p.enq(4) match

B p:void

B q.deqO) match

B g:3 Final pending
A q:enq(5) invocation OK

(4) Art of Multiprocessor
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Sequential Histories

invocation O
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Well-Formed Histories

.enq(3)
.enq(4)
:void
.deq(Q)
:void

- -

Il
o> mwwmwd>
O 0 0T TLO
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Well-Formed Histories

.Per.'-fhr'ead . B p.enq(4)
projections sequential H|B= B p:void
A q.enq(3) B g.deq()
B p.enq(4) B g:3
B p:void
H= B q.deq()
A q:void
B q:3
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Well-Formed Histories

| Per.'-’rhr'ead . B p.enq(4)
projections sequential H|B= B p:void
A q.enq(3) B g.deq()
B p.enq(4) B g:3
B p:void
H= B q.deqQ)
A q:void A (3)
B g:3 H|A= © 9-€N9

A g:void
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Equivalent Histories

~

Threads see the same HIA = G|A

thing in both HIB = G|B
A g.enq(3) A g.enq(3)
B p.enq(4) A q:void
B p:void B p.enq(4)
B q.deq() G=1g p:void
A g:void B g.deq()
B q:3 B q:3

Art of Multiprocessor 119
Programming



Sequential Specifications

+ A sequential specification is some way
of telling whether a

- Single-thread, single-object history

- Is legal

* For example:

- Pre and post-conditions

- But plenty of other techniques exist ...
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Legal Histories

* A sequential (multi-object) history H is
legal if

- For every object x

- Hlx is in the sequential spec for x
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Precedence

B p.enq(4) A method call precedes

B p.void another if response
event precedes
invocation event

s ==
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Non-Precedence

B p.enq(4)
B p.void Some method calls
overlap one another

<Ae'rhod call
123
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Notation

+ Given

- History H

- method executions myand m, in H
- We say mg = my, if

- my precedes my

* Relation mg =2, m, is m«m»
- Partial order
- Total order if H is sequential
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Linearizability

- History H is linearizable if it can be
extended to 6 by

- Appending zero or more responses to
pending invocations

- Discarding other pending invocations

* So that G is equivalent to
- Legal sequential history S
- where 2, C 2,

Art of Multiprocessor 125
Programming



What is 2, C >,

2. = {a>c,b>c}
2. = {a>b,a>c,b>c}
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Remarks

»+ Some pending invocations
- Took effect, so keep them
- Discard the rest

» Condition 2, C >,

- Means that S respects “real-time order”
of G
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Example

A g.enq(3)

< A. g.enq(3)
< B.g.enq(4 % >< Bgdeg§4i >
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Example

A Q.
: enq(i)-lNomplete this

pending
invocation

< A. g.enq(3) |1

< B.g.engﬁﬁI >< B.g.deg§3i > { B. q.enq(6) |[||]
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Example

A Q.
: enq(i)-lNomplete this

pending
invocation
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Example

A g.enq(3)

discard this one
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Example

A g.enq(3)

discard this one

T )

A g:void

T gem

B.g.enq(4 < B.g.deg(4i >
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Example

A g.enq(3)

A g:void

T gem

S o>
e

Programming




A (.
B (.
B q:
B q.deq()
B q
A (:

Programming

O 0 0 0 O O

.enq(4)
:void
.enq(3)
:void
.deq()




Example

Equivalent sequential history

A g.enq(3) \( )
A g.enq(3)

A g:void

Programming



Concurrency

* How much concurrency does
linearizability allow?

- When must a method invocation block?
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Concurrency

* Focus on total methods

- Defined in every state

+ Example:

- deq() that throws Empty exception

- Versus deq() that waits ...

* Why?

- Otherwise, blocking unrelated to
synchronization
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Concurrency

* Question: When does linearizability
require a method invocation to block?

- Answer: never.
* Linearizability is non-blocking
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Non-Blocking Theorem

If method invocation
A q.1nv(...)

is pending in history H, then there
exists a response

A g:res(...)
such that

H+ A q:res(...)
is linearizable

Art of Multiprocessor 139
Programming



Proof

- Pick linearization S of H

» If S already contains
- Invocation A ¢.1nv(...) and response,
- Then we are done.

» Otherwise, pick a response such that
-S + A q.1nv(...) + A g:res(...)
- Possible because object is total.

Art of Multiprocessor 140
Programming



Composability Theorem

» History H is linearizable if and only if
- For every object x
- H|x is linearizable
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Why Does Composability Matter?

* Modularity

» Can prove linearizability of objects in
isolation

» Can compose independently-implemented
objects
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Reasoning About
Lineraizability: ng_eg:%kin

public T deq() throws EmptyExcepiig .

lock.lock(); 2
try { @
if (tail == head)

throw new EmptyException();

T X = 1tems[head % items.length];
head++;

return Xx;
} finally {
lock.unlock();
}
}
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Reasoning About
Lineraizability: Locking

Linearization points
are when locks are
released

[1ock.unlockO;
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More Reasoning: Lock-free

public class LockFreeQueue { head tail

N 1

capacitys;

int head = 0, tail = 0;
items = (T[]) new Object[capacity]

public void enq(Item x) {
while (tail-head == capacity); // busy-wait
items[tail % capacity] = x; tail++;
}
public Item deq() {
while (tail == head); // busy-wait
Item item = items[head % capacity]; head++;
return item;

3}
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More Reasoning

d§p<§@'¢@.
| 0 vid engq(Item x) {

LR - - -
,‘,0 o™ 'e (tail-head == capaci ' si-wait

A 0(\5 cems[tail % capacity] = x{ tail++;

J

public Item deq() {
while (tail == head); // busy-wail
Item item = items[head % capacity];| head++;
return item;

b}

Art of Multiprocessor 146
Programming



Strategy

» Identify one atomic step where method
“happens”

- Critical section
- Machine instruction

* Doesn’ t always work

- Might need to define several different
steps for a given method
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Linearizability: Summary

» Powerful specification tool for shared
objects

» Allows us to capture the notion of
objects being “atomic”

* There is a lot of ongoing research in
verification community to build tools
that can verify/debug concurrent
implementations wrt linearizability
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Alternative: Sequential
Consistency

» History H is Sequentially Consistent
if it can be extended to 6 by

- Appending zero or more responses to
pending invocations

- Discarding other pending invocations

* So that G is equivalent to a Differs from
- Legal sequential history 5 linearizability

—-thl-c—)-G-e-)-S—ﬂ-/
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Alternative: Sequential
Consistency

* No need to preserve real-time order

- Cannot re-order operations done by the
same thread

- Can re-order non-overlapping operations
done by different threads

» Often used to describe
multiprocessor memory architectures
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Example
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Theorem

Sequential Consistency is hot a
local property

(and thus we lose composability...)
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FIFO Queue Example
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FIFO Queue Example
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FIFO Queue Example
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H|p Sequentially Consistent
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H|q Sequentially Consistent
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Ordering imposed by p
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Ordering imposed by g
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Ordering imposed by both
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Combining orders
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Fact

+ Most hardware architectures don’ t
support sequential consistency

» Because they think it' s too strong
* Here’ s another story ...
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The Flag Example

m y.read(0)
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The Flag Example
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4

» Each thread’ s view is sequentially
consistent

- T+ went first

Art of Multiprocessor 170
Programming




The Flag Example

&)
4

» Entire history isn’ t sequentially
consistent

- Can’ t both go first
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The Flag Example
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)

* Is this behavior really so wrong?
- We can argue either way ...
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Opinionl: It' s Wrong

+ This pattern
- Write mine, read yours
- Heart of mutual exclusion

* Peterson
- Bakery, etc.

» It' s non-negotiable!
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Opinion2: But It Should be
Allowed ...

* Many hardware architects think that
sequential consistency is too strong

» Too expensive to implement in modern
hardware

» OK if flag principle

- violated by default

- Honored by explicit request
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Memory Hierarchy

* On modern multiprocessors, processors
do not read and write directly to

memory.

* Memory accesses are very slow
compared to processor speeds,

» Instead, each processor reads and
writes directly to a cache
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Memory Operations

» To read a memory location,
- load data into cache.

* To write a memory location
- update cached copy,
- Lazily write cached data back to memory
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While Writing o Memory

» A processor can execute hundreds, or
even thousands of instructions

* Why delay on every memory write?

» Instead, write back in parallel with rest
of the program.
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Bottomline..

* Flag violation history is actually OK
- processors delay writing to memory
- Until after reads have been issued.

* Otherwise unacceptable delay between
read and write instructions.

* Who knew you wanted to synchronize?
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Who knew you wanted to
synchronize?

+ Writing to memory = mailing a letter

* Vast majority of reads & writes
- Not for synchronization
- No need to idle waiting for post office

» If you want to synchronize
- Announce it explicitly
- Pay for it only when you need it
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Explicit Synchronization

* Memory barrier instruction

- Flush unwritten caches

- Bring caches up to date

» Compilers often do this for you

- Entering and leaving critical sections

+ Expensive
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Volatile

* In Java, can ask compiler to keep a

variable up-to-date with volatile
keyword

» Also inhibits reordering, removing from
loops, & other “optimizations”
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Real-World Hardware Memory

* Weaker than sequential consistency
+ Examples: TSO, RMO, Intel x86...

» But you can get sequential consistency
at a price

» OK for expert, tricky stuff

- assembly language, device drivers, etc.

* Linearizability more appropriate for
high-level software

Art of Multiprocessor 182
Programming



Critical Sections

+ Easy way to implement linearizability
- Take sequential object
- Make each method a critical section

* Problems
- Blocking
- No concurrency
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Linearizability

* Linearizability
- Operation takes effect instantaneously
between invocation and response

- Uses sequential specification, locality
implies composablity
- Good for high level objects
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Correctness: Linearizability

» Sequential Consistency

- Not composable

- Harder to work with

- Good way to think about hardware models
* We will use /inearizability as in the

remainder of this course unless stated
otherwise
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Progress

* We saw an implementation whose
methods were lock-based (deadlock-
free)

* We saw an implementation whose
methods did not use locks (lock-free)

* How do they relate?
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Maximal vs. Minimal

» Minimal progress: in some suffix of H,
some pending active invocation has a
matching response (some method call
eventually completes ).
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Maximal vs. Minimal

* Minimal progress:
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Maximal vs. Minimal

* Minimal progress:

* Maximal progress: in evem,
every pending active invocation has a
matching response (every method call
always completes).
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Maximal vs. Minimal

* Minimal progress:

* Maximal progress:
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Progress Conditions

* Deadlock-free: some thread trying to acquire
the lock eventually succeeds.

- Starvation-free: every thread trying to
acquire the lock eventually succeeds.

* Lock-free: some thread calling a method
eventually returns.

Wait-free: every thread calling a method
eventually returns.
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Everyone
makes
progress

Someone
makes
progress

Progress Conditions

Non-Blocking Blocking
Wait-free Starvation-free
Lock-free Deadlock-free
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Summary

* We will look at /inearizable blocking and
non-blocking implementations of
objects.
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