
14	

Safety	
 and	
 liveness	
 for	
 critical	
 sections	

! At most k threads are concurrently in the critical section
  A. Safety
  B. Liveness
  C. Both

! A thread that wants to enter the critical section will eventually

succeed
  A. Safety
  B. Liveness
  C. Both

! Bounded waiting: If a thread i is in entry section, then there is a
bound on the number of times that other threads are allowed to
enter the critical section (only 1 thread is alowed in at a time)
before thread i’s request is granted.
  A. Safety B. Liveness C. Both

15	

Thread Synchronization:
Too Much Milk

16	

Implementing	
 Critical	
 Sections	
 in	
 Software	
 Hard	

! The following example will demonstrate the difficulty
of providing mutual exclusion with memory reads and
writes
 Hardware support is needed

! The code must work all of the time
 Most concurrency bugs generate correct results for some

interleavings

! Designing mutual exclusion in software shows you
how to think about concurrent updates
 Always look for what you are checking and what you are

updating
 A meddlesome thread can execute between the check and

the update, the dreaded race condition

17	

Thread Coordination

Jack
! Look in the fridge; out of

milk
! Go to store
! Buy milk
! Arrive home; put milk away

Jill

! Look in fridge; out of milk
! Go to store
! Buy milk
! Arrive home; put milk away
! Oh, no!

Too much milk!

Fridge and milk are shared data structures

18	

Formalizing	
 “Too	
 Much	
 Milk”	

! Shared variables
  “Look in the fridge for milk” – check a variable
  “Put milk away” – update a variable

! Safety property
  At most one person buys milk

! Liveness
  Someone buys milk when needed

! How can we solve this problem?

19	

How	
 to	
 think	
 about	
 synchronization	
 code	

! Every thread has the same pattern
  Entry section: code to attempt entry to critical section
  Critical section: code that requires isolation (e.g., with mutual

exclusion)
  Exit section: cleanup code after execution of critical region
  Non-critical section: everything else

! There can be multiple critical regions in a program
  Only critical regions that access the same resource (e.g., data

structure) need to synchronize with each other

while(1) {
 Entry section
 Critical section
 Exit section
 Non-critical section
}

20	

The	
 correctness	
 conditions	

! Safety
  Only one thread in the critical region

! Liveness
  Some thread that enters the entry section eventually enters the

critical region
  Even if some thread takes forever in non-critical region

! Bounded waiting
  A thread that enters the entry section enters the critical section

within some bounded number of operations.
! Failure atomicity

  It is OK for a thread to die in the critical region
  Many techniques do not provide failure atomicity

while(1) {
 Entry section
 Critical section
 Exit section
 Non-critical section
}

21	

Too	
 Much	
 Milk:	
 Solution	
 #0	

! Is this solution
  1. Correct
  2. Not safe
  3. Not live
  4. No bounded wait
  5. Not safe and not live

! It works sometime and doesn’t some other times

while(1) {
 if (noMilk) { // check milk (Entry section)
 if (noNote) { // check if roommate is getting milk
 leave Note; //Critical section
 buy milk;
 remove Note; // Exit section
 }
 // Non-critical region
}

What if we switch the
order of checks?

22	

Too	
 Much	
 Milk:	
 Solution	
 #1	

while(1) {
 while(turn ≠ Jack) ; //spin
 while (Milk) ; //spin
 buy milk; // Critical section
 turn := Jill // Exit section
 // Non-critical section
}

while(1) {
 while(turn ≠ Jill) ; //spin
 while (Milk) ; //spin
 buy milk;
 turn := Jack
 // Non-critical section
}

! Is this solution
  1. Correct
  2. Not safe
  3. Not live
  4. No bounded wait
  5. Not safe and not live

! At least it is safe

turn := Jill // Initialization

23	

Solution	
 #2	
 (a.k.a.	
 Peterson’s	
 algorithm):	
 	

combine	
 ideas	
 of	
 0	
 and	
 1	

Variables:
  ini: thread Ti is executing , or attempting to execute, in CS
  turn: id of thread allowed to enter CS if multiple want to

Claim: We can achieve mutual exclusion if the following invariant holds
before entering the critical section:

{(¬inj ∨ (inj ∧ turn = i)) ∧ ini}
 CS
 ………

 ini = false

((¬in0 ∨ (in0 ∧ turn = 1)) ∧ in1) ∧
((¬in1 ∨ (in1 ∧ turn = 0)) ∧ in0)

 ⇒	

((turn = 0) ∧ (turn = 1)) = false	

24	

Peterson’s Algorithm

Safe, live, and bounded waiting
 But, only 2 participants

Jack
while (1) {

 in0:= true;
 turn := Jack;
 while (turn == Jack

 && in1) ;//wait
 Critical section
 in0 := false;
 Non-critical section

}

Jill
while (1) {

 in1:= true;
 turn := Jill;
 while (turn == Jill

 && in0);//wait
 Critical section
 in1 := false;
 Non-critical section

}

in0 = in1 = false;

25	

Too	
 Much	
 Milk:	
 Lessons	

! Peterson’s works, but it is really unsatisfactory
  Limited to two threads
 Solution is complicated; proving correctness is tricky even

for the simple example
 While thread is waiting, it is consuming CPU time

! How can we do better?
 Use hardware to make synchronization faster
 Define higher-level programming abstractions to simplify

concurrent programming

26	

Towards	
 a	
 solution	

The problem boils down to establishing the following right after
entryi

(¬inj ∨ (inj ∧ turn = i)) ∧ ini = (¬inj ∨ turn = i) ∧ ini

How can we do that?

entryi = ini := true;
 while (inj ∧turn ≠ i);

27	

We hit a snag

Thread T0
while (!terminate) {

 in0:= true
 {in0}
 while (in1 ∧turn ≠ 0);
 {in0 ∧ (¬ in1 ∨ turn = 0)}
 CS0
 ………

}

Thread T1
while (!terminate) {

 in1:= true
 {in1}
 while (in0 ∧turn ≠ 1);

 {in1 ∧ (¬ in0 ∨ turn = 1)}
 CS1
 ………

}

The assignment to in0
invalidates the invariant!

28	

What can we do?

Thread T0
while (!terminate) {

 in0:= true;
 turn := 1;
 {in0}
 while (in1 ∧turn ≠ 0);
 {in0 ∧ (¬ in1 ∨ turn = 0 ∨ at(α1))}
 CS0
 in0 := false;
 NCS0

}

Thread T1
while (!terminate) {

 in1:= true;
 turn := 0;
 {in1}
 while (in0 ∧turn ≠ 1);

 {in1 ∧ (¬ in0 ∨ turn = 1 ∨ at(α0))}
 CS1
 in1 := false;
 NCS1

}

Add assignment to turn to establish the second disjunct

α0 α1

29	

Safe?

Thread T0
while (!terminate) {

 in0:= true;
 turn := 1;
 {in0}
 while (in1 ∧turn ≠ 0);

 {in0 ∧ (¬ in1 ∨ turn = 0 ∨ at(α1))}
 CS0
 in0 := false;
 NCS0

}

Thread T1
while (!terminate) {

 in1:= true;
 turn := 0;
 {in1}
 while (in0 ∧turn ≠ 1);

 {in1 ∧ (¬ in0 ∨ turn = 1 ∨ at(α0))}
 CS1
 in1 := false;
 NCS1

}

α0 α1

If both in CS, then

in0 ∧ (¬in1 ∨ at(α1) ∨ turn = 0) ∧ in1 ∧ (¬in0 ∨ at(α0) ∨ turn = 1) ∧
∧ ¬ at(α0) ∧ ¬ at(α1) = (turn = 0) ∧ (turn = 1) = false

30	

Live?

Thread T0
while (!terminate) {

 {S1: ¬in0 ∧ (turn = 1 ∨ turn = 0)}
 in0:= true;
 {S2: in0 ∧ (turn = 1 ∨ turn = 0)}
 turn := 1;
 {S2}
 while (in1 ∧turn ≠ 0);
 {S3: in0 ∧ (¬ in1 ∨ at(α1) ∨ turn = 0)}
 CS0
 {S3}
 in0 := false;
 {S1}
 NCS0

}

Thread T1
while (!terminate) {

 {R1: ¬in0 ∧ (turn = 1 ∨ turn = 0)}
 in1:= true;
 {R2: in0 ∧ (turn = 1 ∨ turn = 0)}
 turn := 0;
 {R2}
 while (in0 ∧turn ≠ 1);
 {R3: in1 ∧ (¬ in0 ∨ at(α0) ∨ turn = 1)}
 CS1
 {R3}
 in1 := false;
 {R1}
 NCS1

}

α0 α1

Non-blocking: T0 before NCS0, T1 stuck at while loop
S1 ∧ R2 ∧ in0 ∧ (turn = 0) = ¬in0 ∧ in1 ∧ in0 ∧ (turn = 0) = false
Deadlock-free: T1 and T0 at while, before entering the critical section
S2 ∧ R2 ∧ (in0 ∧ (turn = 0)) ∧ (in1 ∧ (turn = 1)) ⇒ (turn = 0) ∧ (turn = 1) = false

31	

Bounded waiting?

Yup!

Thread T0
while (!terminate) {

 in0:= true;
 turn := 1;
 while (in1 ∧turn ≠ 0);
 CS0
 in0 := false;
 NCS0

}

Thread T1
while (!terminate) {

 in1:= true;
 turn := 0;
 while (in0 ∧turn ≠ 1);
 CS0
 in1 := false;
 NCS0

}

32	

Mutual Exclusion:
Primitives and

Implementation Considerations

