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Basics of Parallelization

• Dependence analysis
• Synchronization

– Events
– Mutual exclusion

• Parallelism patterns

Steps in the Parallelization

• Decomposition into tasks
– Expose concurrency

• Assignment to processes
– Balancing load and maximizing locality

• Orchestration 
– Name and access data
– Communicate (exchange) data
– synchronization among processes

• Mapping
– Assignment of processes to processors

When can 2 statements execute in parallel?

S1 and S2 can execute in parallel
iff

there are no dependences between S1 and S2
– true dependences
– anti-dependences
– output dependences

Some dependences can be removed.

Types of Dependences

• True (flow) dependence – RAW
• Anti-dependence – WAR
• Output dependence – WAW
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Loop-Carried Dependence

• A loop-carried dependence is a dependence 
that is present only if the statements occur 
in two different instances of a loop

• Otherwise, we call it a loop-independent 
dependence

• Loop-carried dependences limit loop 
iteration parallelization

Synchronization

• Used to enforce dependences
• Control the ordering of events on different 

processors
– Events – signal(x) and wait(x)
– Fork-Join or barrier synchronization (global)
– Mutual exclusion/critical sections

Eliminating Dependences

• Privatization or scalar expansion
• Reduction (common pattern)

Decomposition into Tasks

• Tasks may be 
– Identical computation
– Different computation
– Indeterminate size

• Tasks may be
– Independent
– Have non-trivial order
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Decomposition into Tasks
• Conceptualize tasks and ordering as a task dependency 

DAG (for control dependency), along with a task 
interaction DAG (for data dependency)
– Edges represent task serialization
– Critical path – longest weighted path through graph (lower bound 

on parallel execution time)
• Measures of parallel performance: speedup, efficiency
• Tradeoff between

– Degree of concurrency (number of tasks that can be processed in 
parallel)

– Task granularity
– Associated overheads

Mapping/Assignment to Processes

• Optimal load balance
• Minimum communication (maximum 

locality)

– Map independent tasks to different processes
– Minimize interaction between processes
– Assign tasks on critical path to processes ASAP

Patterns of Parallelism
• Data parallelism: all processors do the same thing on different data.

– Regular 
– Irregular

• Task parallelism: processors do different tasks.
– Task queue
– Pipelines

• Alternative views
– Data vs. recursive decomposition (static task generation)
– Exploratory decomposition vs. speculative decomposition (dynamic task 

generation)
• Exploratory - Parallel formulation may perform different amounts of work 

resulting in super or sub-linear speedup
• Speculative - Schedule tasks even when they may have dependencies

Data Parallelism

• Essential idea: each processor works on a different 
part of the data (usually in one or more arrays)
– work partitioned based on “owner” computes rule, 

applied to either input, output, or intermediate data

• Regular or irregular data parallelism: using linear 
or non-linear indexing.

• Examples: MM (regular), SOR (regular), MD 
(irregular).
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Matrix Multiplication

• Multiplication of two n by n matrices A and 
B into a third n by n matrix C

Matrix Multiply

for( i=0; i<n; i++ )
for( j=0; j<n; j++ )

c[i][j] = 0.0;
for( i=0; i<n; i++ )

for( j=0; j<n; j++ )
for( k=0; k<n; k++ )

c[i][j] += a[i][k]*b[k][j];

Parallel Matrix Multiply

• No loop-carried dependences in i- or j-loop.
• Loop-carried dependence on k-loop.
• All i- and j-iterations can be run in parallel.

Parallel Matrix Multiply (contd.)

• If we have P processors, we can give n/P 
rows or columns to each processor.

• Or, we can divide the matrix in P squares, 
and give each processor one square.
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SOR

• SOR implements a mathematical model for 
many natural phenomena, e.g., heat 
dissipation in a metal sheet.

• Model is a partial differential equation.
• Focus is on algorithm, not on derivation.
• Discretized problem as in first lecture

Relaxation Algorithm

• For some number of iterations
for each internal grid point

compute average of its four neighbors
• Termination condition:

values at grid points change very little
(we will ignore this part in our example)

Discretized Problem Statement

/* Initialization */
for( i=0; i<n+1; i++ ) grid[i][0] = 0.0;
for( i=0; i<n+1; i++ ) grid[i][n+1] = 0.0;
for( j=0; j<n+1; j++ ) grid[0][j] = 1.0;
for( j=0; j<n+1; j++ ) grid[n+1][j] = 0.0;

for( i=1; i<n; i++ )
for( j=1; j<n; j++ )

grid[i][j] = 0.0;

Discretized Problem Statement

for some number of timesteps/iterations {
for (i=1; i<n; i++ )

for( j=1, j<n, j++ )
temp[i][j] = 0.25 *

( grid[i-1][j] + grid[i+1][j]
grid[i][j-1] + grid[i][j+1] );

for( i=1; i<n; i++ )
for( j=1; j<n; j++ )

grid[i][j] = temp[i][j];
}
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Parallel SOR

• No dependences between iterations of first 
(i,j) loop nest.

• No dependences between iterations of 
second (i,j) loop nest.

• Anti-dependence between first and second 
loop nest in the same timestep.

• True dependence between second loop nest 
and first loop nest of next timestep.

Parallel SOR (continued)

• First (i,j) loop nest can be parallelized.
• Second (i,j) loop nest can be parallelized.
• We must make processors wait at the end of 

each (i,j) loop nest.
• Natural synchronization: fork-join.

Parallel SOR (continued)

• If we have P processors, we can give n/P 
rows or columns to each processor.

• Or, we can divide the array in P squares, 
and give each processor a square to 
compute.

Molecular Dynamics (MD)

• Simulation of a set of bodies under the 
influence of physical laws.

• Atoms, molecules, celestial bodies, ...
• Have same basic structure.
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Molecular Dynamics (Skeleton) 

for some number of timesteps {
for all molecules i

for all other molecules j
force[i] += f( loc[i], loc[j] );

for all molecules i
loc[i] = g( loc[i], force[i] );

}

Molecular Dynamics (continued)

• To reduce amount of computation, account 
for interaction only with nearby molecules.

Molecular Dynamics (continued) 

for some number of timesteps {
for all molecules i

for all nearby molecules j
force[i] += f( loc[i], loc[j] );

for all molecules i
loc[i] = g( loc[i], force[i] );

}

Molecular Dynamics (continued)

for each molecule i
number of nearby molecules count[i]
array of indices of nearby molecules index[j]
( 0 <= j < count[i])
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Molecular Dynamics (continued) 

for some number of timesteps {
for( i=0; i<num_mol; i++ )

for( j=0; j<count[i]; j++ )
force[i] += f(loc[i],loc[index[j]]);

for( i=0; i<num_mol; i++ )
loc[i] = g( loc[i], force[i] );

}

Molecular Dynamics (continued)

• No loop-carried dependence in first i-loop.
• Loop-carried dependence (reduction) in j-

loop.
• No loop-carried dependence in second i-

loop.
• True dependence between first and second 

i-loop.

Molecular Dynamics (continued)

• First i-loop can be parallelized.
• Second i-loop can be parallelized.
• Must make processors wait between loops.
• Natural synchronization: fork-join.

Molecular Dynamics (continued) 

for some number of timesteps {
for( i=0; i<num_mol; i++ )

for( j=0; j<count[i]; j++ )
force[i] += f(loc[i],loc[index[j]]);

for( i=0; i<num_mol; i++ )
loc[i] = g( loc[i], force[i] );

}
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Irregular vs. regular data parallel

• In SOR, all arrays are accessed through 
linear expressions of the loop indices, 
known at compile time [regular].

• In MD, some arrays are accessed through 
non-linear expressions of the loop indices, 
some known only at runtime [irregular].

Irregular vs. regular data parallel

• No real differences in terms of 
parallelization (based on dependences).

• Will lead to fundamental differences in 
expressions of parallelism:
– irregular difficult for parallelism based on data 

distribution
– not difficult for parallelism based on iteration 

distribution.

Molecular Dynamics (continued)

• Parallelization of first loop:
– has a load balancing issue
– some molecules have few/many neighbors
– more sophisticated loop partitioning necessary

Irregular vs. regular data parallel

• No real differences in terms of 
parallelization (based on dependences).

• Will lead to fundamental differences in 
expressions of parallelism:
– irregular difficult for parallelism based on data 

distribution
– not difficult for parallelism based on iteration 

distribution.
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E.g. Molecular Dynamics

• Parallelization of first loop:
– has a load balancing issue
– some molecules have few/many neighbors
– more sophisticated loop partitioning necessary

Task Parallelism

• Each process performs a different task.
• Two principal flavors:

– pipelines
– task queues

• Program Examples: PIPE (pipeline), TSP 
(task queue).

Pipeline

• Often occurs with image processing 
applications, where a number of images 
undergo a sequence of transformations.

• E.g., rendering, clipping, compression, etc.

Sequential Program

for( i=0; i<num_pic, read(in_pic[i]); i++ ) {
int_pic_1[i] = trans1( in_pic[i] );
int_pic_2[i] = trans2( int_pic_1[i]);
int_pic_3[i] = trans3( int_pic_2[i]);
out_pic[i] = trans4( int_pic_3[i]);

}
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Parallelizing a Pipeline

• For simplicity, assume we have 4 
processors (i.e., equal to the number of 
transformations).

• Furthermore, assume we have a very large 
number of pictures (>> 4).

Sequential vs. Parallel Execution

• Sequential

• Parallel

(Color -- picture; horizontal line -- processor).

Parallelizing a Pipeline (part 1)

Processor 1:

for( i=0; i<num_pics, read(in_pic[i]); i++ ) {
int_pic_1[i] = trans1( in_pic[i] );
signal(event_1_2[i]);

} 

Parallelizing a Pipeline (part 2)

Processor 2:

for( i=0; i<num_pics; i++ ) {
wait( event_1_2[i] );
int_pic_2[i] = trans2( int_pic_1[i] );
signal(event_2_3[i] );

} 

Same for processor 3
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Parallelizing a Pipeline (part 3)

Processor 4:

for( i=0; i<num_pics; i++ ) {
wait( event_3_4[i] );
out_pic[i] = trans4( int_pic_3[i] );

} 

Another Sequential Program

for( i=0; i<num_pic, read(in_pic); i++ ) {
int_pic_1 = trans1( in_pic );
int_pic_2 = trans2( int_pic_1);
int_pic_3 = trans3( int_pic_2);
out_pic = trans4( int_pic_3);

}

Can we use same parallelization?

Processor 2:

for( i=0; i<num_pics; i++ ) {
wait( event_1_2[i] );
int_pic_2 = trans1( int_pic_1 );
signal(event_2_3[i] );

} 

Same for processor 3

Can we use same parallelization?

• No, because of anti-dependence between 
stages, there is no parallelism

• Another example of privatization
• Costly in terms of memory
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In-between Solution

• Use n>1 buffers between stages.
• Block when buffers are full or empty

Perfect Pipeline

• Sequential

• Parallel

(Color -- picture; horizontal line -- processor).

Things are often not that perfect

• One stage takes more time than others
• Stages take a variable amount of time
• Extra buffers can provide some cushion 

against variability

TSP (Traveling Salesman)

• Goal:
– given a list of cities, a matrix of distances 

between them, and a starting city,
– find the shortest tour in which all cities are 

visited exactly once.
• Example of an NP-hard search problem.
• Algorithm: branch-and-bound.
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Branching

• Initialization: 
– go from starting city to each of remaining cities
– put resulting partial path into priority queue, 

ordered by its current length.
• Further (repeatedly):

– take head element out of priority queue,
– expand by each one of remaining cities,
– put resulting partial path into priority queue.

Finding the Solution

• Eventually, a complete path will be found.
• Remember its length as the current shortest 

path.
• Every time a complete path is found, check 

if we need to update current best path.
• When priority queue becomes empty, best 

path is found.

Using a Simple Bound

• Once a complete path is found, we have a 
lower bound on the length of shortest path

• No use in exploring partial path that is 
already longer than the current lower bound

• Better bounding methods exist …

Sequential TSP: Data Structures

• Priority queue of partial paths.
• Current best solution and its length.
• For simplicity, we will ignore bounding.
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Sequential TSP: Code Outline

init_q(); init_best();
while( (p=de_queue()) != NULL ) {

for each expansion by one city {
q = add_city(p);
if( complete(q) ) { update_best(q) };
else { en_queue(q) };

}
}

Parallel TSP: Possibilities

• Have each process do one expansion
• Have each process do expansion of one 

partial path
• Have each process do expansion of multiple 

partial paths
• Issue of granularity/performance, not an 

issue of correctness.
• Assume: process expands one partial path.

Parallel TSP: Synchronization

• True dependence between process that puts 
partial path in queue and the one that takes 
it out.

• Dependences arise dynamically.
• Required synchronization: need to make 

process wait if q is empty.

Parallel TSP: First Cut (part 1)

process i:
while( (p=de_queue()) != NULL ) {

for each expansion by one city {
q = add_city(p);
if complete(q) { update_best(q) };
else en_queue(q);

}
}
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Parallel TSP: First cut (part 2)

• In de_queue: wait if q is empty
• In en_queue: signal that q is no longer 

empty

Parallel TSP

process i:
while( (p=de_queue()) != NULL ) {

for each expansion by one city {
q = add_city(p);
if complete(q) { update_best(q) };
else en_queue(q);

}
}

Parallel TSP: More synchronization

• All processes operate, potentially at the 
same time, on q and best.

• This must not be allowed to happen.
• Critical section: only one process can 

execute in critical section at once.

Parallel TSP: Critical Sections

• All shared data must be protected by critical 
section.

• Update_best must be protected by a critical 
section.

• En_queue and de_queue must be protected 
by the same critical section.



17

Parallel TSP

process i:
while( (p=de_queue()) != NULL ) {

for each expansion by one city {
q = add_city(p);
if complete(q) { update_best(q) };
else en_queue(q);

}
}

Termination condition

• How do we know when we are done?
• All processes are waiting inside de_queue.
• Count the number of waiting processes 

before waiting.
• If equal to total number of processes, we are 

done.

Programming Models

• Explicitly concurrent languages – e.g., 
Occam, SR, Java, Ada, UPC

• Compiler-supported extensions – e.g., HPF, 
Cilk

• Library packages outside the language 
proper – e.g., pthreads, MPI

Programming Models

• Standard models of parallelism
– shared memory (Pthreads)
– message passing (MPI)
– data parallel (Fortran 90 and HPF)
– shared memory + data parallel (OpenMP)
– Global address space (UPC)
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Thread Creation Syntax

• Properly nested (can share context) 
– Co-Begin (Algol 68, Occam, SR)
– Parallel loops (HPF, Occam, Fortran90, SR)
– Launch-at-Elaboration (Ada, SR)

• Fork/Join (pthreads, Ada, Modula-3, Java, 
SR, Cilk)

• Implicit Receipt (RPC systems, SR)
• Early Reply (SR)

Loops

• For – sequential
• Forall – each statement executed completely 

and in parallel
• Dopar – each iteration executed in parallel
• Dosingle – each variable assigned once, 

new value always used

Programming Models

• Standard models of parallelism
– shared memory (Pthreads)
– message passing (MPI)
– data parallel (Fortran 90 and HPF)
– shared memory + data parallel (OpenMP)
– Remote procedure call
– Global address space (UPC)


