Basics of Parallelization

» Dependence analysis

 Synchronization
— Events
— Mutual exclusion

* Parallelism patterns

Steps in the Parallelization

Decomposition into tasks

— Expose concurrency

* Assignment to processes

— Balancing load and maximizing locality
Orchestration

— Name and access data

— Communicate (exchange) data

— synchronization among processes

* Mapping

— Assignment of processes to processors

When can 2 statements execute in parallel?

S1 and S2 can execute in parallel
iff
there are no dependences between S1 and S2
— true dependences
— anti-dependences
— output dependences
Some dependences can be removed.

Types of Dependences

* True (flow) dependence - RAW
* Anti-dependence - WAR
* Qutput dependence - WAW




Loop-Carried Dependence

A loop-carried dependence is a dependence
that is present only if the statements occur
in two different instances of a loop

* Otherwise, we call it a loop-independent
dependence

 Loop-carried dependences limit loop
iteration parallelization

Synchronization

 Used to enforce dependences

» Control the ordering of events on different
processors
— Events - signal(x) and wait(x)
— Fork-Join or barrier synchronization (global)
— Mutual exclusion/critical sections

Eliminating Dependences

* Privatization or scalar expansion
* Reduction (common pattern)

Decomposition into Tasks

» Tasks may be
— ldentical computation
— Different computation
— Indeterminate size

» Tasks may be
— Independent
— Have non-trivial order




Decomposition into Tasks

Conceptualize tasks and ordering as a task dependency
DAG (for control dependency), along with a task
interaction DAG (for data dependency)

— Edges represent task serialization

— Critical path — longest weighted path through graph (lower bound

on parallel execution time)

Measures of parallel performance: speedup, efficiency
Tradeoff between

— Degree of concurrency (number of tasks that can be processed in
parallel)

— Task granularity
— Associated overheads

Mapping/Assignment to Processes

* Optimal load balance

* Minimum communication (maximum
locality)

— Map independent tasks to different processes
— Minimize interaction between processes
— Assign tasks on critical path to processes ASAP

Patterns of Parallelism

Data parallelism: all processors do the same thing on different data.
— Regular
— lrregular
Task parallelism: processors do different tasks.
— Task queue
— Pipelines
Alternative views
— Data vs. recursive decomposition (static task generation)

— Exploratory decomposition vs. speculative decomposition (dynamic task
generation)

 Exploratory - Parallel formulation may perform different amounts of work
resulting in super or sub-linear speedup

» Speculative - Schedule tasks even when they may have dependencies

Data Parallelism

 Essential idea: each processor works on a different
part of the data (usually in one or more arrays)

— work partitioned based on “owner” computes rule,
applied to either input, output, or intermediate data

* Regular or irregular data parallelism: using linear
or non-linear indexing.

» Examples: MM (regular), SOR (regular), MD
(irregular).




Matrix Multiplication

* Multiplication of two n by n matrices A and
B into a third n by n matrix C

Matrix Multiply

for(i=0; i<n; i++)
for(j=0; j<n; j++)
c[ili] = 0.0;
for(i=0; i<n; i++)
for(j=0; j<n; j++)
for( k=0; k<n; k++)
c[illi] += ali][kI*bIK]0];

Parallel Matrix Multiply

» No loop-carried dependences in i- or j-loop.

» Loop-carried dependence on k-loop.

 All i- and j-iterations can be run in parallel.

Parallel Matrix Multiply (contd.)

* If we have P processors, we can give n/P
rows or columns to each processor.

 Or, we can divide the matrix in P squares,
and give each processor one square.




SOR

SOR implements a mathematical model for
many natural phenomena, e.g., heat
dissipation in a metal sheet.

Model is a partial differential equation.
Focus is on algorithm, not on derivation.
Discretized problem as in first lecture

Relaxation Algorithm

» For some number of iterations
for each internal grid point
compute average of its four neighbors
» Termination condition:
values at grid points change very little
(we will ignore this part in our example)

Discretized Problem Statement

/* Initialization */

for(i=0; i<n+1; i++) grid[i][0] = 0.0;
for(i=0; i<n+1; i++) grid[i][n+1] = 0.0;
for(j=0; j<n+1; j++) grid[0][j] = 1.0;
for(j=0; j<n+1; j++) grid[n+1][j] = 0.0;
for(i=1; i<n; i++)

for(j=1; j<n; j++)
grid[i][j] = 0.0;

Discretized Problem Statement

for some number of timesteps/iterations {
for (i=1; i<n; i++)
for(j=1, j<n, j++)
templi][j] =0.25*
(grid[i-1][j] + grid[i+1][j]
grid[i][j-1] + grid[il[i+1] );
for(i=1; i<n; i++)

for(j=1; j<n; j++)
grid[i][j] = temp[i][i];




Parallel SOR

» No dependences between iterations of first
(i,j) loop nest.

» No dependences between iterations of
second (i,j) loop nest.

» Anti-dependence between first and second
loop nest in the same timestep.

 True dependence between second loop nest
and first loop nest of next timestep.

Parallel SOR (continued)

First (i,j) loop nest can be parallelized.
Second (i,j) loop nest can be parallelized.

We must make processors wait at the end of
each (i,j) loop nest.

Natural synchronization: fork-join.

Parallel SOR (continued)

* If we have P processors, we can give n/P
rows or columns to each processor.

 Or, we can divide the array in P squares,
and give each processor a square to
compute.

Molecular Dynamics (MD)

Simulation of a set of bodies under the
influence of physical laws.

Atoms, molecules, celestial bodies, ...
Have same basic structure.




Molecular Dynamics (Skeleton)

for some number of timesteps {
for all molecules i
for all other molecules j
force[i] += f( loc[i], loc[j] );
for all molecules i
locli] = g( loc[i], force[i] );

Molecular Dynamics (continued)

» To reduce amount of computation, account
for interaction only with nearby molecules.

Molecular Dynamics (continued)

for some number of timesteps {
for all molecules i
for all nearby molecules j
force[i] += f( loc[i], loc[j] );
for all molecules i
loc[i] = g( loc[i], force[i] );

Molecular Dynamics (continued)

for each molecule i
number of nearby molecules count[i]
array of indices of nearby molecules index[j]
(0 <=j<count[i])




Molecular Dynamics (continued)

for some number of timesteps {
for(i=0; i<num_mol; i++)
for( j=0; j<count[i]; j++)
force[i] += f(loc[i],loc[index[j1]);
for( i=0; i<num_mol; i++)
loc[i] = g( locfi], force[i] );

Molecular Dynamics (continued)

* No loop-carried dependence in first i-loop.

» Loop-carried dependence (reduction) in j-
loop.

* No loop-carried dependence in second i-
loop.

» True dependence between first and second
i-loop.

Molecular Dynamics (continued)

* First i-loop can be parallelized.

» Second i-loop can be parallelized.

» Must make processors wait between loops.
* Natural synchronization: fork-join.

Molecular Dynamics (continued)

for some number of timesteps {
for( i=0; i<num_mol; i++)
for( j=0; j<count[i]; j++)
force[i] += f(loc[i],loc[index[j]]);
for( i=0; i<num_mol; i++)
loc[i] = g( loc[i], force[i] );




Irregular vs. regular data parallel

* In SOR, all arrays are accessed through
linear expressions of the loop indices,
known at compile time [regular].

* In MD, some arrays are accessed through
non-linear expressions of the loop indices,
some known only at runtime [irregular].

Irregular vs. regular data parallel

* No real differences in terms of
parallelization (based on dependences).
« Will lead to fundamental differences in
expressions of parallelism:
— irregular difficult for parallelism based on data
distribution
— not difficult for parallelism based on iteration
distribution.

Molecular Dynamics (continued)

* Parallelization of first loop:
— has a load balancing issue
— some molecules have few/many neighbors
— more sophisticated loop partitioning necessary

Irregular vs. regular data parallel

» No real differences in terms of
parallelization (based on dependences).
» Will lead to fundamental differences in
expressions of parallelism:
— irregular difficult for parallelism based on data
distribution
— not difficult for parallelism based on iteration
distribution.




E.g. Molecular Dynamics

* Parallelization of first loop:
— has a load balancing issue
— some molecules have few/many neighbors
— more sophisticated loop partitioning necessary

Task Parallelism

 Each process performs a different task.
* Two principal flavors:

— pipelines

— task queues

* Program Examples: PIPE (pipeline), TSP
(task queue).

Pipeline

* Often occurs with image processing
applications, where a number of images
undergo a sequence of transformations.

* E.g., rendering, clipping, compression, etc.

Sequential Program

for(i=0; i<num_pic, read(in_pic[i]); i++) {
int_pic_1[i] = trans1( in_pic[i] );
int_pic_2[i] = trans2( int_pic_1[i]);
int_pic_3[i] = trans3( int_pic_2[i]);
out_pic[i] = trans4( int_pic_3[i]);

}
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Parallelizing a Pipeline

* For simplicity, assume we have 4
processors (i.e., equal to the number of
transformations).

 Furthermore, assume we have a very large
number of pictures (>> 4).

Sequential vs. Parallel Execution

 Sequential
EENEEEEE e eE.

» Parallel

] [ |
] [l |
] [
.

(Color -- picture; horizontal line -- processor).

Parallelizing a Pipeline (part 1)
Processor 1:

for((i=0; i<num_pics, read(in_pic[i]); i++) {
int_pic_1[i] = trans1( in_pic[i] );
signal(event_1_2Ji]);

}

Parallelizing a Pipeline (part 2)

Processor 2:

for( i=0; i<num_pics; i++) {
wait( event_1_2[i]);
int_pic_2[i] = trans2( int_pic_1[i] );
signal(event_2_3[i] );

}

Same for processor 3
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Parallelizing a Pipeline (part 3)
Processor 4:

for( i=0; i<num_pics; i++) {

wait( event_3_4[i]);

out_pic[i] = trans4( int_pic_3[i] );
}

Another Sequential Program

for( i=0; i<num_pic, read(in_pic); i++) {
int_pic_1 = trans1( in_pic);
int_pic_2 = trans2( int_pic_1);
int_pic_3 = trans3( int_pic_2);
out_pic = trans4( int_pic_3);

}

Can we use same parallelization?

Processor 2:

for(i=0; i<num_pics; i++) {
wait( event_1_2[i]);
int_pic_2 = trans1( int_pic_1);
signal(event_2_3[i] );

}

Same for processor 3

Can we use same parallelization?

* No, because of anti-dependence between
stages, there is no parallelism

* Another example of privatization
 Costly in terms of memory
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In-between Solution

» Use n>1 buffers between stages.
* Block when buffers are full or empty

Perfect Pipeline

 Sequential
EENEEEEE e eE.

» Parallel

] [ |
] [l |
] [
.

(Color -- picture; horizontal line -- processor).

Things are often not that perfect

* One stage takes more time than others
* Stages take a variable amount of time

* Extra buffers can provide some cushion
against variability

TSP (Traveling Salesman)

* Goal:

— given a list of cities, a matrix of distances
between them, and a starting city,

— find the shortest tour in which all cities are
visited exactly once.

» Example of an NP-hard search problem.
 Algorithm: branch-and-bound.
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Branching

* Initialization:
— go from starting city to each of remaining cities

— put resulting partial path into priority queue,
ordered by its current length.

* Further (repeatedly):
— take head element out of priority queue,
— expand by each one of remaining cities,
— put resulting partial path into priority queue.

Finding the Solution

Eventually, a complete path will be found.
Remember its length as the current shortest
path.

» Every time a complete path is found, check
if we need to update current best path.

» When priority queue becomes empty, best
path is found.

Using a Simple Bound

» Once a complete path is found, we have a
lower bound on the length of shortest path

* No use in exploring partial path that is
already longer than the current lower bound

* Better bounding methods exist ...

Sequential TSP: Data Structures

* Priority queue of partial paths.
 Current best solution and its length.
* For simplicity, we will ignore bounding.
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Sequential TSP: Code QOutline

init_qg(); init_best();
while( (p=de_queue()) '= NULL ) {
for each expansion by one city {
q = add_city(p);
if( complete(q) ) { update_best(q) };
else { en_queue(q) };

Parallel TSP: Possibilities

Have each process do one expansion

Have each process do expansion of one
partial path

Have each process do expansion of multiple
partial paths

Issue of granularity/performance, not an
issue of correctness.

Assume: process expands one partial path.

Parallel TSP: Synchronization

 True dependence between process that puts
partial path in queue and the one that takes
it out.

» Dependences arise dynamically.

 Required synchronization: need to make
process wait if g is empty.

Parallel TSP: First Cut (part 1)

process i:
while( (p=de_queue()) '= NULL ) {
for each expansion by one city {
q = add_city(p);
if complete(q) { update_best(q) };
else en_queue(q);
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Parallel TSP: First cut (part 2)

* In de_queue: wait if q is empty

* In en_queue: signal that q is no longer
empty

Parallel TSP

process i:
while( (p=de_queue()) '= NULL ) {
for each expansion by one city {
q = add_city(p);
if complete(q) { update_best(q) };
else en_queue(q);

Parallel TSP: More synchronization

* All processes operate, potentially at the
same time, on g and best.

* This must not be allowed to happen.

* Critical section: only one process can
execute in critical section at once.

Parallel TSP: Critical Sections

« All shared data must be protected by critical
section.

» Update_best must be protected by a critical
section.

* En_queue and de_queue must be protected
by the same critical section.
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Parallel TSP

process i:
while( (p=de_queue()) '=NULL ) {
for each expansion by one city {
q = add_city(p);
if complete(q) { update_best(q) };
else en_queue(q);

Termination condition

How do we know when we are done?
» All processes are waiting inside de_queue.

Count the number of waiting processes
before waiting.

If equal to total number of processes, we are
done.

Programming Models

» Explicitly concurrent languages — e.g.,
Occam, SR, Java, Ada, UPC

» Compiler-supported extensions — e.g., HPF,
Cilk

* Library packages outside the language
proper — e.g., pthreads, MPI

Programming Models

« Standard models of parallelism
— shared memory (Pthreads)
— message passing (MPI)
— data parallel (Fortran 90 and HPF)
— shared memory + data parallel (OpenMP)
— Global address space (UPC)
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Thread Creation Syntax

Properly nested (can share context)

— Co-Begin (Algol 68, Occam, SR)

— Parallel loops (HPF, Occam, Fortran90, SR)
— Launch-at-Elaboration (Ada, SR)

Fork/Join (pthreads, Ada, Modula-3, Java,
SR, Cilk)

Implicit Receipt (RPC systems, SR)

Early Reply (SR)

Loops

For — sequential

Forall — each statement executed completely
and in parallel

Dopar — each iteration executed in parallel

Dosingle — each variable assigned once,
new value always used

Programming Models

« Standard models of parallelism
— shared memory (Pthreads)
— message passing (MPI)
— data parallel (Fortran 90 and HPF)
— shared memory + data parallel (OpenMP)
— Remote procedure call
— Global address space (UPC)
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