
CMPT	431	

Distributed	Transactions

2

A	Distributed	Transaction

• A	transaction	is	distributed	across	n	processes.	
• Each	process	can	decide	to	commit	or	abort	the	transaction	
• A	transaction	must	commit	on	all	sites	or	abort	on	all	sites

Application	Program	/	 
Coordinating	Server

Participating	Site

Participating	Site

com
mit

commit

3

Example

• Transfer	money	from	bank	A	to	bank	B.		
• Debit	at	A,	credit	at	B,	tell	client	"ok".		
• We	want	both	to	do	it,	or	both	not	to	do	it.		
• We	never	want	only	one	to	act.		
• We'd	rather	have	nothing	happen	

4

A	Naïve	Approach

• Client,	Bank	A,	Bank	B,	transaction	coordinator	TC	
• Client	sends	transaction	request	to	TC	
• TC	tells	A	and	B	to	perform	debit	and	credit	
• A	and	B	report	“ok”	to	TC	
• TC	responds	“ok”	to	the	client

5

How	Can	This	Fail?

• There's	not	enough	money	in	A's	bank	account	
• B's	bank	account	no	longer	exists	
• The	network	link	to	B	is	broken		
• A	or	B	has	crashed		
• TC	crashes	between	sending	the	messages

6

What	Do	We	Want	to	Happen?

• If	A	commits,	B	does	not	abort	
• If	A	aborts,	B	does	not	commit	
• A	and	B	eventually	decide	one	way	or	the	other

7

Properties	of	Atomic	Commitment

• Property	1:	All	participants	that	decide	reach	the	same	
decision	

• Property	2:	If	any	participant	decides	commit,	then	all	
participants	must	have	voted	YES	

• Property	3:	If	all	participants	vote	YES	and	no	failures	
occur,	then	all	participants	decide	commit		

• Property	4:	Each	participant	decides	at	most	once	(a	
decision	is	irreversible)

8

A	Distributed	Transaction

#	Coordinator	executes:	
	 send	[T_START:	transaction,	Dc,	participants]	to	all	participants	
	 #	Dc	is	compute	delay	–	time	required	to	finish	transaction	
#	All	participants	(including	the	coordinator)	execute:	
	 upon	(receipt	of	T_START:	transaction,	Dc,	participants]	
	 Cknow	=	local_clock	

#	Perform	operations	requested	by	transaction	
if(willing	and	able	to	make	updates	permanent)	then		
	vote	=	YES	
else	vote	=	NO	
#Decide	commit	or	abort	for	the	transaction	
atomic_commitment(transaction,	participants)

9

Components	of	Atomic	Commitment
• Normal	execution	

– The	steps	executed	while	no	failures	occur	
• Termination	protocol	

– When	a	site	fails,	the	correct	sites	should	still	be	able	to	decide	on	the	
outcome	of	pending	transactions.	

– They	run	a	termination	protocol	to	decide	on	all	pending	transactions.	
• Recovery	

– When	a	site	fails	and	then	restarts	it	has	to	perform	recovery	for	all	
transactions	that	it	has	not	yet	committed	

– Single	site	recovery:	safe	to	abort	all	transactions	that	were	active	at	the	
time	of	the	failure	

– Distributed	system:	might	have	to	ask	around;	maybe	an	active	transaction	
was	committed	in	the	rest	of	the	system,	so	you	have	to	commit	it	as	well

10

Two-Phase	Commit	Protocol	(2PC)

• An	atomic	commitment	protocol	
– Phase	1:	Decide	commit	or	abort	
– Phase	2:	Get	the	final	decision	from	the	coordinator,	and	execute	

the	final	decision	

• We	will	study	the	protocol	in	a	synchronous	system	
– Assume	a	message	arrives	within	interval	δ	
– Assume	we	can	compute	Dc	–	local	time	required	to	complete	the	

transaction	
– Assume	we	can	compute	Db	–	additional	delay	associated	with	

broadcast

11

Two-Phase	Commit	Protocol	(I)

#	Executed	by	coordinator	
procedure	atomic_commitment(transaction,	participants)	
	 send	[VOTE_REQUEST]	to	all	participants	
	 set-timeout-to	local_clock	+	2δ	
	 wait-for	(receipt	of	[vote:	vote]	messages	from	all	participants)	
	 	 if	(all	votes	are	YES)	then	
	 	 	 broadcast	(commit,	participants)	
	 	 else	broadcast	(abort,	participants)	
	 on-timeout	
	 	 broadcast	(abort,	participants)

12

Two-Phase	Commit	Protocol	(II)
#	Executed	by	all	participants	(including	the	coordinator)	

	 set-timeout-to	Cknow	+	Dc	+	δ	
	 wait-for	(receipt	of	[VOTE_REQUEST]	from	coordinator)	
	 	 send	[vote:	vote]	to	coordinator	
	 	 if	(vote	=	NO)	then	
	 	 	 decide	abort	
	 	 else	
	 	 	 set-timeout-to	Cknow	+	Dc	+	2δ	+	Db	
	 	 	 wait-for	(delivery	of	decision	message)	
	 	 	 	 if(decision	message	is	abort)	then	
	 	 	 	 	 decide	abort	
	 	 	 	 else	decide	commit		
	 	 	 on-timeout	
	 	 	 	 What	should	we	do?	
	 on-timeout	
	 	 decide	abort

Options:	
1.Wait	forever	
2.Run	a	termination	
protocol

13

The	Need	for	Termination	Protocol
• If	a	participant	

– Voted	YES	
– Sent	its	decision	to	coordinator,	but….	
– Received	no	final	decision	from	coordinator	

• A	termination	protocol	must	be	run	
– Participants	cannot	simply	decide	to	abort	
– If	they	already	said	they	would	commit,	they	cannot	change	their	minds	
– The	coordinator	might	have	sent	“commit”	decisions	to	some	

participants	and	then	crashed	
– Since	those	participants	might	have	committed,	no	other	participant	can	

decide	“abort”	
• A	termination	protocol	will	try	to	contact	other	participants	to	find	out	

what	they	decided,	and	try	to	reach	a	decision

14

Termination	Protocol	  
(for	B	if	it	voted	“YES”)

• B	sends	"status"	request	message	to	A		
– Asks	if	A	knows	whether	transaction	should	commit		

• If	B	doesn't	hear	reply	from	A	
– No	decision,	wait	for	coordinator	

• If	A	received	"commit"	or	"abort"	from	coordinator		
– B	decides	the	same	way	
– Can't	disagree	with	the	coordinator...		

• If	A	hasn't	voted	yes/no	yet		
– B	and	A	both	abort	
– Coordinator	can't	have	decided	"commit",	so	it	will	eventually	hear	from	A	

or	B

15

Termination	Protocol	(cont.)

• If	A	voted	"no”		
– B	and	A	both	abort	
– Coordinator	can't	have	decided	"commit"	

• If	A	voted	"yes"		
– No	decision	possible!		
– Coordinator	might	have	decided	"commit".	Or	coordinator	might	have	

timed	out	and	aborted.	A	and	B	must	wait	for	the	coordinator		

• Does	this	protocol	guarantee	correctness?		
• Does	it	guarantee	termination?	

– No,	A	and	B	will	block	in	case	where	decision	is	impossible

16

Blocking	vs.	Non-Blocking	Atomic	
Commitment

• Blocking	Atomic	Commitment:	correct	participants	may	be	
prevented	from	terminating	the	transaction	due	to	failures	
of	other	part	of	the	system	

• Non-Blocking	Atomic	Commitment:	transactions	terminate	
consistently	at	all	participating	sites	even	in	the	presence	
of	failures

17

Blocking	Nature	of	Two-Phase	Commit

• Scenario	that	leads	to	blocking	in	the	termination	protocol:	
– The	coordinator	crashes	during	the	broadcast	of	a	decision	
– Several	participants	received	the	decision	from	coordinator,	

applied	it,	and	then	crashed	
– All	other	(not	crashed)	participants	voted	“YES”,	so	they	cannot	

abort	
– Correct	participants	cannot	decide	until	faulty	participants	

recover

18

Atomic	Commitment	Problem

• Can	we	say	that	a	two-phase	commit	will	EVENTUALLY	terminate	in	an	
asynchronous	system?		

• No.	Termination	protocol	may	block	
• But	it	is	still	used	in	asynchronous	systems	under	certain	assumptions	

but	with	no	guarantees	about	termination:	
– Communication	is	reliable	
– Processes	can	crash	
– Processes	eventually	recover	from	failure	
– Processes	can	log	their	state	in	stable	storage	
– Stable	storage	survives	crashes	and	is	accessible	upon	restart

19

2PC	in	Asynchronous	Systems

• 2PC	can	be	implemented	in	an	asynchronous	system	with	
reliable	communication	channels	

• This	means	that	a	message	eventually	gets	delivered…	
• But	we	cannot	set	bounds	on	delivery	time	
• So	the	process	might	have	to	wait	forever…	
• Therefore,	you	cannot	have	non-blocking	atomic	commitment	

in	an	asynchronous	system	
• What	if	a	participant	whose	message	is	waited	on	has	crashed?		
• The	expectation	is	that	the	participant	will	properly	recover	and	

continue	the	protocol	
• So	now	let’s	look	at	distributed	recovery

20

Distributed	Recovery

• Remember	single-site	recovery:		
– transaction	log	records	are	kept	on	stable	storage	
– upon	reboot	the	system	“undoes”	updates	from	active	or	

uncommitted	transactions	
– “replays”	updates	from	committed	transactions	

• In	a	distributed	system	we	cannot	be	sure	whether	a	
transaction	that	was	active	at	the	time	of	crash	is:	
– Still	active	
– Has	committed	
– Has	aborted	
– Maybe	it	has	executed	more	updates	while	the	recovering	site	was	

crashing	and	rebooting

21

Crash	Before	Local	Decision

• Suppose	a	site	crashes	during	the	execution	of	transaction,	
before	it	reaches	local	decision	(YES	or	NO)	

• The	transaction	could	have	completed	at	other	sites	
• What	are	the	options?		
• Option	1:	The	crashed	site	restores	its	state	with	help	of	

other	participants	(restore	the	updates	made	while	it	was	
crashing	and	recovering)	

• Option	2:	The	crashed	site	realizes	that	it	crashed	(by	
keeping	the	crash	count),	and	sets	local	decision	to	NO

22

Crash	After	Local	Decision

• Actions	performed	by	recovering	site:	
– For	each	transaction	that	was	active	before	the	crash,	try	to	decide	

unilaterally	based	on	log	records	(if	the	coordinator	message	had	
been	received,	decide	based	on	that	message)	

– If	no	coordinator	message	was	received:	ask	others	what	they	have	
decided	

• Actions	performed	by	other	participants	
– Send	the	decision	
– Or	a	“don’t	know”	message

23

Logging	for	Distributed	Recovery

• Coordinator:	forces	“commit”	decision	to	log	before	
informing	any	participants		
– Like	redo	rule	for	single-site	logging	

• Participant:	forces	its	vote	(YES	or	NO)	to	disk	before	
sending	the	vote	to	coordinator	–		
– This	way	it	knows	that	it	must	reach	decision	in	agreement	

with	others	
• Participant:	forces	final	decision	(received	from	

coordinator)	to	the	log,	then	responds	to	the	coordinator	
– Once	the	coordinator	receives	responses	from	all	

participants,	it	can	remove	its	own	decision	log	record

24

Distributed	Concurrency	Control

• Multiple	servers	execute	transactions,	they	share	data	
distributed	across	sites	

• A	lock	on	data	may	be	requested	by	many	different	servers	
• Distributed	concurrency	control	methods:	

– Centralized	two-phase	locking	(C-2PL)	
– Distributed	two-phase	locking	(D-2PL)	
– Optimistic	concurrency	control

25

Distributed	Concurrency	Control:	Notation

• S1,	S2,	…	-	servers	performing	a	distributed	transaction	
• Ti	–	a	transaction	

• Oij	–	an	operation	that’s	part	of	Ti		

• Oij(X)	–	an	operation	requiring	a	lock	on	X	

• SCH	-	global	lock	scheduler		
• TM1,	TM2,	…	-	transaction	managers	–	one	for	each	server

26

Centralized	2PL

• Let	S1	be	the	server	to	which	transaction	Ti	was	submitted	

• Let	S2	be	the	server	maintaining	data	X	
• For	each	operation	Oi1(X),	TM1	first	requests	the	corresponding	lock	

from	SCH	(the	central	2PL	scheduler)	
• Once	the	lock	is	granted,	the	operation	is	forwarded	to	the	server	S2	

maintaining	X.

27

Centralized	2PL

Read(x)

Release	locks

Read(x)

TM1 SCH S2

Grant	lock

Operation	executed

.	.	.commit

Request	lock

S1

28

Distributed	2PL

• Each	server	has	its	own	local	2PL	scheduler	SCH	
• Let	S1	be	the	server	to	which	transaction	Ti	was	submitted:	

– For	each	operation	Oi1(X),	TM1	forwards	the	operation	to	the	TM2	
of	server	S2	maintaining	X	

– The	remote	site	first	acquires	a	lock	on	X	and	then	submits	the	
execution	of	the	operation.	

29

Distributed	2PL

Read(X)

Release	locks

TM1 TM2 SCH	  
of	S2

Operation	execute
d

.	.	.commit

Read(X)

S1 S2

Request	lock Submit	op

30

Optimistic	Concurrency	Control

• Locking	is	conservative	
– Locking	overhead	even	if	no	conflicts	
– Deadlock	detection/resolution	(especially	problematic	in	

distributed	environment)	
– Lock	manager	can	fail	independently	

• Optimistic	concurrency	control	
– Perform	operation	first		
– Check	for	conflicts	only	later	(e.g.,	at	commit	time)

31

Optimistic	Concurrency	Control

• Working	Phase:	
– If	first	operation	on	X,	then	load	last	committed	version	from	DB	and	cache	
– Otherwise	read/write	cached	version	
– Keep	WriteSet	containing	objects	written		
– Keep	ReadSet	containing	objects	read	

• Validation	Phase	
– Check	whether	transaction	conflicts	with	other	transactions		

• Update	Phase	
– Upon	successful	validation,	cached	version	of	updated	objects	are	written	back	to	

DB	(=	changes	are	made	public)	

• Validation	can	be	eager	or	lazy	
– Eager:	check	for	conflicts	as	objects	are	accessed	
– Lazy:	check	for	conflicts	at	commit	time

32

Distributed	Deadlock	Resolution

• Similar	remedies	as	for	single-site	deadlock	resolution:	
– Prevention	(lock	ordering)	
– Avoidance	(abort	transaction	that	waits	for	too	long)	
– Detection	(maintain	a	wait-for	graph,	abort	transactions	involved	in	

a	cycle)	

• Deadlock	avoidance	and	detection	require	keeping	
dependency	graphs,	or	wait-for-graphs	(WFGs)	

• WFGs	are	more	difficult	to	construct	in	a	distributed	
system	(takes	more	time,	must	use	vector	clocks	or	
distributed	snapshots)	

• Deadlock	managers	can	fail	independently

33

Summary
• Atomic	commitment	

– Two-phase	commit	
– Non-blocking	implementation	possible	in	a	synchronous	system	with	

reliable	communication	channel	
– Possible	in	an	asynchronous	system,	but	not	guaranteed	to	

terminate	(blocking)	

• Distributed	recovery	
– Keep	state	on	stable	storage	
– When	reboot,	ask	around	to	recover	the	most	current	state	

• Distributed	concurrency	control		
– Centralized	lock	manager	
– Distributed	lock	manager	
– Optimistic	concurrency	control

