Distributed Transactions

CMPT 431

A Distributed Transaction

e A transaction is distributed across n processes.

e Each process can decide to commit or abort the transaction

e A transaction must commit on all sites or abort on all sites

Application Program /
Coordinating Server

Participating Site

Participating Site

Example

Transfer money from bank A to bank B.
Debit at A, credit at B, tell client "ok".
We want both to do it, or both not to do it.
We never want only one to act.
We'd rather have nothing happen

A Naive Approach

Client, Bank A, Bank B, transaction coordinator TC

Client sends transaction request to TC
TC tells A and B to perform debit and credit

A and B report “ok” to TC
TC responds “ok” to the client

How Can This Fail?

There's not enough money in A's bank account
B's bank account no longer exists

The network link to B is broken

A or B has crashed

TC crashes between sending the messages

What Do We Want to Happen?

e |f Acommits, B does not abort
e |f A aborts, B does not commit
e A and B eventually decide one way or the other

Properties of Atomic Commitment

Property 1: All participants that decide reach the same
decision

Property 2: If any participant decides commit, then all
participants must have voted YES

Property 3: If all participants vote YES and no failures
occur, then all participants decide commit

Property 4: Each participant decides at most once (a
decision is irreversible)

A Distributed Transaction

Coordinator executes:
send [T_START: transaction, Dc, participants] to all participan?
Dc is compute delay — time required to finish transaction

All participants (including the coordinator) execute:

v
e

upon (receipt of T_START: transaction, Dc, participants

Cknow = local clodk
Perform operations requested by transaction

\\V 2 dlilU d0DIE LU dKE UPUdLE) C dl|C C

vote = YES

2lso vote = I ,

atomic_commitment(transaction, participants)

Components of Atomic Commitment

e Normal execution
— The steps executed while no failures occur

e Termination protocol
— When a site fails, the correct sites should still be able to decide on the
outcome of pending transactions.
— They run a termination protocol to decide on all pending transactions.

e Recovery
— When a site fails and then restarts it has to perform recovery for all
transactions that it has not yet committed
— Single site recovery: safe to abort all transactions that were active at the
time of the failure
— Distributed system: might have to ask around; maybe an active transaction
was committed in the rest of the system, so you have to commit it as well

Two-Phase Commit Protocol (2PC)

e An atomic commitment protocol
— Phase 1: Decide commit or abort
— Phase 2: Get the final decision from the coordinator, and execute
the final decision

e We will study the protocol in a synchronous system
— Assume a message arrives within interval 6
— Assume we can compute Dc — local time required to complete the
transaction
— Assume we can compute Db — additional delay associated with
broadcast

10

Two-Phase Commit Protocol (I)

Executed by coordinator

procedure atomic commitment(transaction, participants)
send [VOTE REQUEST] to all participa&ts

set-timeout-to local_clock + zlﬁ

wait-for (receipt of [vote: vote] messages from all participants)

: if (all votes are YES) then l
¢ broadcast (commit, pbarticipants)
else broadcast (abort, particiﬂ>ants)

on-timeout
broadcast (abort, partitipants)

11

Two-Phase Commit Protocol (I1)

Executed by all participants (including the coordinator)

set-timeout-to Cknow + Da + 6

/ wait-for (receipt of [VOTE_REQUEST] from coordindtor)
send [vote: vote] to coqrdinator
if (vote 3 NO) then

j decide abort

else
set-timeout-to Ckno}v +Dc+ 26 +Db
wait-for (delivery of d}ecision message)
if(decision Inessage is abort) then
ecide abort
else decide commit Options:
OR-tiMmeout 1.Wait forever
K [What should we do?] 2.Run a termination

on-timeout protocol
decide abort

12

The Need for Termination Protocol

If a participant
— Voted YES
— Sent its decision to coordinator, but....
— Received no final decision from coordinator

A termination protocol must be run
— Participants cannot simply decide to abort
— If they already said they would commit, they cannot change their minds
— The coordinator might have sent “commit” decisions to some
participants and then crashed
— Since those participants might have committed, no other participant can

decide “abort”

A termination protocol will try to contact other participants to find out
what they decided, and try to reach a decision

13

Termination Protocol
(for B if it voted “YES”)

B sends "status" request message to A
— Asks if A knows whether transaction should commit

If B doesn't hear reply from A
— No decision, wait for coordinator

If A received "commit" or "abort" from coordinator
— B decides the same way
— Can't disagree with the coordinator...

If A hasn't voted yes/no yet
— Band A both abort
— Coordinator can't have decided "commit", so it will eventually hear from A
orB

14

Termination Protocol (cont.)

If A voted "no”
— B and A both abort
— Coordinator can't have decided "commit"

If A voted "yes"
— No decision possible!
— Coordinator might have decided "commit". Or coordinator might have
timed out and aborted. A and B must wait for the coordinator

Does this protocol guarantee correctness?

Does it guarantee termination?
— No, A and B will block in case where decision is impossible

15

Blocking vs. Non-Blocking Atomic
Commitment

e Blocking Atomic Commitment: correct participants may be
prevented from terminating the transaction due to failures

of other part of the system

e Non-Blocking Atomic Commitment: transactions terminate
consistently at all participating sites even in the presence
of failures

16

Blocking Nature of Two-Phase Commit

e Scenario that leads to blocking in the termination protocol:

The coordinator crashes during the broadcast of a decision
Several participants received the decision from coordinator,
applied it, and then crashed

All other (not crashed) participants voted “YES”, so they cannot
abort

Correct participants cannot decide until faulty participants
recover

17

Atomic Commitment Problem

Can we say that a two-phase commit will EVENTUALLY terminate in an
asynchronous system?

No. Termination protocol may block

But it is still used in asynchronous systems under certain assumptions
but with no guarantees about termination:

— Communication is reliable

— Processes can crash

— Processes eventually recover from failure

— Processes can log their state in stable storage

— Stable storage survives crashes and is accessible upon restart

18

2PC in Asynchronous Systems

2PC can be implemented in an asynchronous system with
reliable communication channels

This means that a message eventually gets delivered...
But we cannot set bounds on delivery time
So the process might have to wait forever...

Therefore, you cannot have non-blocking atomic commitment
in an asynchronous system

What if a participant whose message is waited on has crashed?

The expectation is that the participant will properly recover and
continue the protocol

So now let’s look at distributed recovery

19

Distributed Recovery

Remember single-site recovery:

transaction log records are kept on stable storage

upon reboot the system “undoes” updates from active or
uncommitted transactions

“replays” updates from committed transactions

In a distributed system we cannot be sure whether a
transaction that was active at the time of crash is:

Still active
Has committed
Has aborted

Maybe it has executed more updates while the recovering site was
crashing and rebooting

20

Crash Before Local Decision

Suppose a site crashes during the execution of transaction,
before it reaches local decision (YES or NO)

The transaction could have completed at other sites
What are the options?

Option 1: The crashed site restores its state with help of
other participants (restore the updates made while it was
crashing and recovering)

Option 2: The crashed site realizes that it crashed (by
keeping the crash count), and sets local decision to NO

21

Crash After Local Decision

e Actions performed by recovering site:

— For each transaction that was active before the crash, try to decide
unilaterally based on log records (if the coordinator message had
been received, decide based on that message)

— If no coordinator message was received: ask others what they have
decided

e Actions performed by other participants

— Send the decision
— Ora “don’t know” message

22

Logging for Distributed Recovery

e Coordinator: forces “commit” decision to log before
informing any participants
— Like redo rule for single-site logging

e Participant: forces its vote (YES or NO) to disk before
sending the vote to coordinator —

— This way it knows that it must reach decision in agreement
with others

e Participant: forces final decision (received from

coordinator) to the log, then responds to the coordinator
— Once the coordinator receives responses from all
participants, it can remove its own decision log record

23

Distributed Concurrency Control

e Multiple servers execute transactions, they share data
distributed across sites
e Alock on data may be requested by many different servers

e Distributed concurrency control methods:

— Centralized two-phase locking (C-2PL)
— Distributed two-phase locking (D-2PL)
— Optimistic concurrency control

24

Distributed Concurrency Control: Notation

e S1,S2,...-servers performing a distributed transaction

e T —atransaction
o O, —an operation that’s part of T,

e 0;(X)—an operation requiring a lock on X

e SCH - global lock scheduler
e TM1, TM2, ... - transaction managers — one for each server

25

Centralized 2PL

Let S1 be the server to which transaction T, was submitted

Let S2 be the server maintaining data X
For each operation O, (X), TM1 first requests the corresponding lock
from SCH (the central 2PL scheduler)

Once the lock is granted, the operation is forwarded to the server S2
maintaining X.

26

S1 TM1 SCH
_Read(x)
—|—Request Jock
—>
Grant lock
—
Read(x)
>
Operation executed
4
commit —Release Jocks
g

Centralized 2PL

S2

27

Distributed 2PL

e Each server has its own local 2PL scheduler SCH
e Let S1 be the server to which transaction T, was submitted:
— For each operation O, (X), TM1 forwards the operation to the TM2

of server S2 maintaining X
— The remote site first acquires a lock on X and then submits the

execution of the operation.

28

Distributed 2PL

S1 T™M1 TM2 SCH 52
of S2
—Read(x)
— Read(x)
— | Requ
est lock _Submit oq)
Operation executed
P—
—
commit _ Release [ocks

—p

29

Optimistic Concurrency Control

e Locking is conservative
— Locking overhead even if no conflicts
— Deadlock detection/resolution (especially problematic in
distributed environment)
— Lock manager can fail independently

e Optimistic concurrency control
— Perform operation first
— Check for conflicts only later (e.g., at commit time)

30

Optimistic Concurrency Control

Working Phase:
— If first operation on X, then load last committed version from DB and cache
— Otherwise read/write cached version
— Keep WriteSet containing objects written
— Keep ReadSet containing objects read

Validation Phase
— Check whether transaction conflicts with other transactions

Update Phase
— Upon successful validation, cached version of updated objects are written back to
DB (= changes are made public)

Validation can be eager or lazy
— Eager: check for conflicts as objects are accessed
— Lazy: check for conflicts at commit time

31

Distributed Deadlock Resolution

Similar remedies as for single-site deadlock resolution:
— Prevention (lock ordering)
— Avoidance (abort transaction that waits for too long)
— Detection (maintain a wait-for graph, abort transactions involved in

a cycle)

Deadlock avoidance and detection require keeping
dependency graphs, or wait-for-graphs (WFGs)

WEGs are more difficult to construct in a distributed
system (takes more time, must use vector clocks or
distributed snapshots)

Deadlock managers can fail independently

32

Summary

e Atomic commitment
— Two-phase commit

— Non-blocking implementation possible in a synchronous system with
reliable communication channel

— Possible in an asynchronous system, but not guaranteed to
terminate (blocking)
e Distributed recovery

— Keep state on stable storage
— When reboot, ask around to recover the most current state

e Distributed concurrency control
— Centralized lock manager
— Distributed lock manager
— Optimistic concurrency control

33

