
1

Network and Distributed
File Systems

With content from
Distributed Communication Systems

Christophe Bisciglia, Aaron Kimball, & Sierra Michels-­‐‑Sle>vet

2

From Local to Network File System

So far, we have assumed that files are stored on local disk …

How can we generalize the design to access files stored on a
remote server?

Need to invoke file creation and management methods on the
remote server

Basic mechanisms:
 Message passing primitives
 Remote Procedure Calls (RPC)

3

A network file system is likely to be better than a local
file system in what respects?
 A. Read/write performance
 B. Availability
 C. Fault tolerance
 D. Ease of management

4

Communication and synchronization based on...
 Shared memory

 Assume processes/threads can
read & write a set of shared
memory locations

 Inter-process communication is
implicit, synchronization is explicit

Process Coordination
Two fundamental approaches

thread thread

Execution Stack

Program Code

Data

Execution Stack

receive(message)

process process

send(message)

Message passing
Inter-process communication is
explicit, synchronization is implicit

5

Process Coordination
Shared Memory v. Message Passing

Shared memory
 Efficient, familiar
 Difficult to provide across

machine boundaries.

 send(int id, String message);

receive(int id, String message);

Canonical syntax:

process foo
begin
 :
 x := 1
 :
end foo

process bar
begin
 :
 while(x==0) ;
 :
end bar

global int x = 0;

Message passing
Extensible to communication in distributed systems

6

Message Passing
Naming communicants

How do processes refer to each other?
 Does a sender explicitly name a receiver?

Can a receiver receive from
a group? (a reduction operation)

“Mailbox”S

R1

R2

Rm

... “Port” R

S1

S2

Sn

...

S R

Can a message be sent to a group?

7

Web requests conform to what model?

1. Many-to-one
2. One-to-one
3. One-to-many

8

Message Passing Issues
Synchronization semantics

When does a send/receive operation terminate?

OS KernelSender Receiver

OS KernelSender Receiver

Partially blocking/non-blocking:
send()/receive() with timeout

Non-blocking:
Send operation “immediately” returns
Receive operation returns if no message is
available

Blocking:
Sender waits until its message is received
Receiver waits if no message is available

9

Semantics of Message Passing
send(receiver, message)

Send message to receiver
Wait until message is
accepted.

Broadcast message to all
receivers. Wait until
message is accepted by all

Send message to receiver

Broadcast message to all
receivers

Blocking Non-blocking

Explicit
(single)

Implicit
(group)

Synchronization

N
am

in
g

10

Semantics of Message Passing
receive(sender, message)

Wait for a message from
sender

Wait for a message from any
sender

If there is a message from
sender then receive it, else
continue

If there is a message from
any sender then receive it,
else continue

Blocking Non-blocking

Explicit
(single)

Implicit
(group)

Synchronization

N
am

in
g

11

Which do you think would be easier to
program?

A. A message passing program that blocks.
B. A message passing program that does

not block.

12

RPC is not message passing

Regular client-server protocols involve sending data
back and forth according to shared state

Client: Server:

HTTP/1.0 index.html GET

 200 OK

 Length: 2400

 (file data)

HTTP/1.0 hello.gif GET

 200 OK

 Length: 81494

 …

13

Remote Procedure Call

RPC servers will call arbitrary functions in dll, exe, with
arguments passed over the network, and return values
back over network

Client: Server:

foo.dll,bar(4, 10, “hello”)

 “returned_string”

foo.dll,baz(42)

 err: no such function

…

14

RPC: Message Passing Evolves

Remote procedure calls
abstract out the send/
await-reply paradigm into a
“procedure call”

Remote procedure calls
can be made to look like
“local” procedure calls by
using a stub that hides the
details of remote
communication

OS
Kernel

“Client” “Server”

Stub

File
ServerApplication

Stub

15

Remote Procedure Call

process P1
begin
 :
 call Function(args)
 :
end P1

procedure realFunction(args)
begin
 :
 :
 return(results)
end realFunction

Client ServerNetwork

procedure Function(args)
begin
 <marshall parameters>
 send(FunctionServer,params)
 receive(FunctionServer,results)
 <unpack results>
 return(results)
end Function

process FunctionServer
begin
 loop
 sender := select()
 receive(sender,params)
 <unpack parameters>
 call realFunction(args)
 <marshall results>
 send(sender,results)
 end loop
end FunctionServer

16

RPC (Cont’d.)

Similarities between procedure call and RPC
 Parameters ↔ request message
 Result ↔ reply message
 Name of procedure ↔ passed in request message
 Return address ↔ mailbox of the client

Implementation issues:
 Stub generation

 Can be automated
 Requires the signature of the procedure

 How does a client locate a server? … Binding
 Static – fixed at compile-time
 Dynamic – determined at run-time with the help of a name service

 Why run-time binding?
 Automatic fail-over

17

Problems with RPC

Failure handling
 A program may hang because of

 Failure of a remote machine; or
 Failure of the server application on the remote machine

 An inherent problem with distributed systems, not just RPC
 Lamport: “A distributed system is one where you can’t do work

because some machine that you have never heard of has
crashed”

Performance
 Cost of procedure call << same machine RPC << network

RPC

18

Java RMI (remote method invocation) is an example of an RPC
system.

A. Yes
B. No

A. Programmer convenience
B. Improve performance
C. Simplify implementation
D. Simplify API

Why use RPC?

19

Network and Distributed File Systems

Provide transparent access to files stored on remote
disks

Issues:
 Naming: How do we locate a file?
 Performance: How well does a distributed file system

perform as compared to a local file system?
 Failure handling: How do applications deal with remote

server failures?
 Consistency: How do we allow multiple remote clients to

access the same files?

20

Naming Issues

Two Approaches To File Naming
 Explicit naming: <file server: file name >

 E.g., windows file shares
 //arrvindh-laptop/Users/arrvindh/Desktop

 Implicit naming
 Location transparency: file name does not include name of the

server where the file is stored

Server must be identified.
Most common solution (e.g., NFS)
 Static, location-transparent mapping
 Example: NFS Mount protocol

 Mount/attach remote directories as local directories
 Maintain a mount table with directory  server mapping, e.g.,

mount zathras:/vol/vol0/users/arrvindh /home/arrvindh

21

Performance Issues: Simple Case

Simple case: straightforward use of RPC
 Use RPC to forward every file system request (e.g., open,

seek, read, write, close, etc.) to the remote server
 Remote server executes each operation as a local request
 Remote server responds back with the result

Advantage:
 Server provides a consistent view of the file system to

distributed clients. What does consistent mean?

Disadvantage:
 Poor performance

Solution: Caching

22

Why does turning every file system operation into an
RPC to a server perform poorly?

1. Disk latency is larger than network latency
2. Network latency is larger than disk latency
3. No server-side cache
4. No client-side cache

23

Sun’s Network File System (NFS)

Cache data blocks, file headers, etc. both at client and server
 Generally, caches are maintained in memory; client-side disk can

also be used for caching
 Cache update policy: write-back or write-through

Advantage:
 Read, Write, Stat etc. can be performed locally

 Reduce network load and
 Improve client performance

Problem: How to deal with failures and cache consistency?
 What if server crashes? Can client wait for the server to come back

up and continue as before?
 Data in server memory can be lost
 Client state maintained at the server is lost (e.g., seek + read)
 Messages may be retried

 What if clients crash?
 Loose modified data in client cache

24

NFS Protocol: Statelessness

Stateful vs. stateless server architectures

NFS uses a stateless protocol
 Server maintains no state about clients or open files (except as

hints to improve performance)
 Each file request must provide complete information

 Example: ReadAt(inode, position) rather than Read(inode)
 When server crashes and restarts, it processes requests as if

nothing has happened !

Idempotent operations
 All requests can be repeated without any adverse effects

Result:
 Server failures are (almost) transparent to clients
 When server fails, clients hang until the server recovers or crash

after a timeout

25

NFS Protocol: Consistency

What if multiple clients share the same file?
 Easy if both are reading files …
 But what if one or more clients start modifying files?

Client-initiated weak consistency protocol
 Clients poll the server periodically to check if the file has changed
 When a file changes at a client, server is notified

 Generally, using a delayed write-back policy
 Clients on detecting a new version of file at the server obtain a new

version

Consistency semantics determined by the cache update policy
and the file-status polling frequency

Other possibility: server-initiated consistency protocol

26

NFS: Summary

Key features:
 Location-transparent naming
 Client-side and server-side caching for performance
 Stateless, client-driven architecture
 Weak consistency semantics

Advantages:
 Simple
 Highly portable

Disadvantages:
 Inconsistency problems

27

Andrew File System (AFS): A Case Study

Originally developed at CMU  later adapted to DFS by IBM

Key features:
 Callbacks: server maintains a list of who has which files
 Write-through on file close

 On receiving a new copy, server notifies all clients with a file copy
 Consistency semantics:

 Updates are visible only on file close
 Caching:

 Use local disk of clients as caches
 Can store larger amount in cache  smaller server load

 Handling server failures:
 Loose all callback state  need a recovery protocol to rebuild state

Pros and cons:
 Use of local disk as a cache reduces server load
 Callbacks  server is not involved in read-only files at all
 Central server is still the bottleneck (for writes, failures, …)

