
1

CMPT 300
Introduction to Operating Systems

File systems

2

Outline
 Files
 Directories
 File system implementation

File System

 Physical reality
 Physical sector is

unit of storage
 Block oriented
 No protection

among users of the
system

 Data might be
corrupted if machine
crashes

 File system model
 File is a unit of storage
 File is a sequence of

bytes
 Users protected from

each other
 Robust to machine

failures

4

What is a ‘file’?
 A file is

 an abstraction to describe stored information.
 A logical unit of information created by a process.

 A file has (from users point of view)
 A name (usually conveys meaning about the contents

of the file)
 May have an extension to denote the type of contents or

associated application (that created or uses the file).
 Stored information
 A size
 Information on ownership

5

File systems
 Files should be

 Persistent
 Exists regardless of if processes are using it

 Shareable between processes
 Have a consistent and clearly defined

structure (how they are stored)
 This is important to the OS that manages the files

File naming
 Naming rules are dependent on the OS.
 Naming rules specify

 Characters legal within the name
 Maximum / minimum number of characters
 Whether name is case sensitive
 Structure of name (are there extensions, etc.)
 Are file names fixed length or variable length
 …

6

Some typical file name
extensions

7

File Structure
 An unstructured sequence of bytes

 Most widely used, e.g., UNIX and Windows
 User programs impose meaning of files

 A sequence of fixed-length records
 Records have internal structure
 Read/write in records
 Not used in any current general-purpose system

 A tree of records
 Search records by keys
 Used on some large mainframe computers

8

Examples of File Structures

Byte sequence

Name: Jack
SIN
Address
Account #
Name: Carole
SIN
Address
Account #
Name: Nicola
SIN
Address
Account #
Name: Andrew
SIN
Address
Account #

Record sequence

Tree

Ant Fox Pig

Cat Cow Dog Goat Lion Owl

Hen Ibis Lamb

1 byte 1 record

9

File types
 Regular files – store userʼs information

 ASCII files (text file): lines of text
 Can be displayed and printed as is.
 E.g., source code file (*.cpp, *.h)

 Binary files: binary streams
 Internal structure know to programs
 e.g., Object file, executable code (*.o, *.exe).

 Directories – maintained by system
 Maintaining the structure of the file system

 UNIX special files: modeling I/O devices
 Character special files: serial I/O devices
 Block special files: disks/block devices

10

File Access
 Sequential access

 Read all the bytes in order from the beginning
 Rewind if read again

 Random access files
 Read the bytes/records by specifying positions
 Applications: database, etc.
 All the files are random access nowadays

 How to specify the starting point for reading
 Use seek operation to set the current position

 Roll forward/backward for n bytes
11

File
Attributes

Attribute Meaning

Protection Who can access the file and in what way

Password Password needed to access the file

Creator ID of the person who created the file

Owner Current owner

Read-only flag Read/write or read only

Hidden flag Normal file or the file does not display in listings

System flag Normal file or system file

Archive flag The file has been backed up or not

Random access flag Sequential access only or random access

ASCII/binary flag ASCII file or binary file

Temporary flag Normal file or file will be deleted on process exit

Lock flags Unlocked or locked

Record length Number of bytes in a record

Key position Offset of the key within each record

Key length Number of bytes in the key field

Creation time Data and time the file was created

Time of last access Date and time the file was last accessed

Time of last change Date and time the file was last changed

Current size Number of bytes in the file

Maximum size Number of bytes the file may grow to

File protection and
access

Flags control/enable
some specific
property

Used in file with
records having a key

Time stamps

Size

13

Operations on files
The most common system calls relating to files:

• Append
• Seek
• Get Attributes
• Set Attributes
• Rename

• Create
• Delete
• Open
• Close
• Read
• Write

Directory
 A collection of files and/or other directories
 Also called “folder” on Windows machines.

14

Organization: Single-level / Two-level

 Single-level: one directory for all the files
 Not good for huge amount of files
 Not good for multi-user system

 Two-level: userdirectory
 A large number of files from one user,

inconvenient

root

User A:
File mymails

User B:
File mymails

root

User A User B

File mymails File mymails

15

Hierarchical Directory
Systems
 A general hierarchy: a tree of directories

root

directory

file

directory directory

directory directory

directory

file file

file

file

file

file

User directory

16

A UNIX directory tree.

17

Directory Structure
 Not really a hierarchy!

 Many systems allow directory structure to be organized as
an acyclic graph or even a (potentially) cyclic graph

 Hard Links: different names for the same file
 Multiple directory entries point at the same file
 ʻlnʼ command in UNIX

 Soft (symbolic) Links: “shortcut” pointers to other files
 Implemented by storing the logical name of actual file
 ʻln –sʼ command in UNIX

 Name Resolution: The process of converting a logical
name into a physical resource (like a file)
 Traverse succession of directories until reach target file

18

Path Names
 Mechanism to locate files
 Absolute path name

 Path starting from the root directory
 E.g., /usr/fran/mailbox. ʻ/ʼ is path separator (ʻ\” on

Windows)
 Relative path name

 Relative to the current working directory
 E.g., if working directory is /usr/fran, then /usr/fran/mailbox =

mailbox
 Each process has its own working directory
 Current directory “.” and parent directory “..”

 E.g., ../cindy/mailbox, ./mailbox

19

Directory Operations (UNIX)
 Create: a directory is created

 Empty except ʻ.ʼ and “..” entries
 Delete, rename a directory

 Link (hard link)
 Allow a file to appear in more than one directory
 One copy of a file, multiple directory entries

 Unlink
 A directory entry is removed
 Link count == 0

 Yes: remove the file (free the i-node and data blocks)
 No: keep the file

20

21

File Management System
 System software to provide I/O services to users

 Meet needs of user, access and organize files and
directories, providing standardized interface
 Each user can create, modify, delete their own files and

directories and have controlled access to files of other users
 Each user may control access by others to their files
 Each user should be able to organize their files for efficient

use, and refer to them by symbolic names
 Verify validity of files, minimize lost/damaged data
 Optimize throughput and system usage for I/O to files
 Provide support for a variety of devices

File System Components
 Disk management

 Arrange collection of disk blocks
into files

 Naming
 To locate file data, user provides to

file system file name, not track or
sector number

 Access Security
 Keep information secure, donʼt leak,

donʼt allow someone else to modify
file

 Reliability/durability
 When system crashes, may lose

data in main memory (volatile), but
want files to be durable

User

File
Naming

File
Access

Disk
Management

Disk
driver

23

File Descriptor

File descriptor (fd)
 The user process side

 Before reading or writing a file, user process has to call open
(filename, mode): mode is either r, rw, w, …
 open(…) checks if access is valid (Unix has fopen(…))

 fd=open(…) returns a unique integer called the file descriptor
 User process needs to use fd for all future operations on that file

read(fd, buff) or write(fd, buff)
 When user process done with that file, it calls close(fd)

 The file system side
 File system maintains an internal data structure for each open

file, i.e., for each valid file descriptor. Created on open(…),
deleted on close(…).

 Open file table : system-wide list of file descriptors in use

Reading A Block

PCB

Open
file

table

Metadata

read(fd, userBuf, size)

Logical → physical

read(device, phyBlock, size)

Get physical block to sysBuf
copy to userBuf

Disk device driver

Buffer
cache

PCB: Process Control Block

25

File System Layout
 Disk is divided up into several partitions

 Each partition has one file system
 MBR – master boot record

 Boot the computer & contain the partition table
 Partition table

 Starting & ending addresses of each partition
 One partition is marked as active

 Within each partition
 Boot block – first block, a program loads the OS
 Superblock – key parameters about the file sys.

MBR Partition 1 Partition 2 Partition 3 Partition 4

Boot block Super block Free space mgmt I-nodes Root dir Files and directories

26

Implementing Files
 Key issue: how to keep track of which disk

sectors go with which file?
 E.g., block size= 512B, file size=2014B, so

where are these 2014/514=4 blocks on disk?
 Many methods

 Contiguous allocation
 Linked list allocation
 I-nodes
 Each one has its own pros and cons 26

File systems Implementation
Challenges

 Files grow and shrink in pieces
 Little a priori knowledge of this dynamism
 Several orders of magnitude in file sizes –

smallest files are 0B large, largest are a few
GBʼs-TeraBytesʼs (thatʼs 1024 GBʼs)

 Need to overcome/hide/mask disk
performance behavior

 Desire for efficiency
 Coping with failure (of devices, or by users)

Contiguous Allocation

28

Figure 4-10. (a) Contiguous allocation of disk space for 7 files.
(b) The state of the disk after files D and F have been removed.

29

Internal vs. External
Fragmentation

 Internal fragmentation: space wasted at the end of each
block

 External fragmentation: Free blocks are scattered
throughout the disk, instead of forming a few large contiguous
sets of free blocks

File 2

File 1

File 3

Block 1 Block 3Block 2 Block 4 Block 6Block 5

30

Enlarging a File
 What happens if file2 in Block3 grows by two blocks?
 Cannot allocate next contiguous block (block 4) because it is

already in use
 To assure the file is contiguous

 Find a large enough series of empty blocks to hold the extended file
 Copy existing portion to this series of block, then append the new

blocks (copy block 3 to block 1, then append new blocks, block 3 is
now available)

File 2
File 1
File 3

Block
7

Block
3

Block
8

Block
4

Block
6

Block
5

Block
9

Block
10

Block
1

Block
2

Block
0

31

Contiguous Allocation Pros
and Cons
 Pros

 Simple to implement
 Each file has two numbers, starting address & length

 Read performance is excellent
 Cons

 Expensive to grow a file if relocation is necessary
 Deletion of files may cause external fragmentation

Linked-List Allocation
 File A uses

disk blocks 4,
7, 2, 10, and
12, in that
order

 File B uses
disk blocks 6,
3, 11, and 14,
in that order.

32

Figure 4-11. Storing a file as a linked list of disk blocks.

33

File Allocation Methods
Linked allocation

Pluses
 Easy to create, grow & shrink files
 No external fragmentation

 Minuses
 Impossible to do true

random access
 Reliability

 Break one link in the chain
and...

 Files stored as a linked list of blocks
 File header contains a pointer to the first and last file

blocks

I

34

Linked List Allocation Pros
and Cons
 Pros

 No space is lost due to disk fragmentation (except for
internal fragmentation in the last block)
 Makes expansion/contraction of file simple

 File is still referenced by a single pointer to its first block
 Sequential access of file is efficient

 Just follow the pointers!

 Cons:
 Random access of file not efficient

 Must chase pointers from the first block
 The pointer takes up a few bytes, so data blocks no longer

2N long
 Less efficient for many programs that expect 2N block sizes

35

File Allocation Methods
Linked allocation – File Allocation Table (FAT) (Win9x, OS2)

Maintain linked list in a separate table
 A table entry for each block on disk
 Each table entry in a file has a pointer to the next entry in that

file (with a special “eof” marker)
 A “0” in the table entry free block

Comparison with linked allocation
 If FAT is cached better sequential and random access

performance
 How much memory is needed to cache entire FAT?

 400GB disk, 4KB/block 100M entries in FAT 400MB
 Solution approaches

 Allocate larger clusters of storage space
 Allocate different parts of the file near each other better locality

for FAT

File Allocation Table (FAT)

36

 Same example as
before:

 File A uses disk blocks
4, 7, 2, 10, and 12, in
that order

 File B uses disk
blocks 6, 3, 11, and
14, in that order.

 Used by MS/DOS and
early Windows

FAT Pros and Cons
 Pros:

 No pointers in data blocks data blocks are 2N
long

 Random access is easy, since pointer-chasing is
done on the table, no need to access disk blocks

 Cons:
 Entire table must be kept in memory; can get

large
 With a 200-GB disk and a 1-KB block size, the table

needs 200 million entries. Each entry has to be a
minimum of 3 bytes. Thus the table will take up 600
MB of main memory

37

38

Vista reading the master file table
MFT contains a record for each file, inlines small files

39

File Allocation Methods
Direct allocation

File header points to each data block

 Pluses
 Easy to create, grow &

shrink files
 Little fragmentation
 Supports direct access

 Minuses
 Inode is big or variable size
 How to handle large files?

I

40

File Allocation Methods
Indexed allocation

Create a non-data block for each file called the index block
 A list of pointers to file blocks

File header contains the index block

 Pluses
 Easy to create, grow &

shrink files
 Little fragmentation
 Supports direct access

 Minuses
 Overhead of storing index

when files are small
 How to handle large files?

IBI

41

Linked index blocks (IB+IB+…)

Multilevel index blocks (IB*IB*…)

Indexed Allocation
Handling large files

IB IBI IB

IB IBI IBIB

42

Why bother with index blocks?
 A. Allows greater file size.
 B. Faster to create files.
 C. Simpler to grow files.
 D. Simpler to prepend and append to files.
 E. Scott Summers is the X-men’s Cyclops

I-nodes
 I-node (index-

node) lists disk
addresses of
the fileʼs blocks

 Used in UNIX

43

44

Multi-level Indirection in Unix

File header contains 13 pointers
 10 pointes to data blocks; 11th pointer indirect block; 12th pointer

 doubly-indirect block; and 13th pointer triply-indirect block

Implications
 Upper limit on file size (~2 TB)
 Blocks are allocated dynamically (allocate indirect blocks only for

large files)

Features
 Pros

 Simple
 Files can easily expand
 Small files are cheap

 Cons
 Large files require a lot of seek to access indirect blocks

45

Indexed Allocation in UNIX
Multilevel, indirection, index blocks

2nd Level
Indirection

Block

n
Data

Blocks

n3

Data
Blocks

3rd Level
Indirection

Block

IB

IB IB

1st Level
Indirection

Block

IB

IB

IB

IB

IB

IB

IB

IB

n2

Data
BlocksIB

Inode

10 Data Blocks

I-nodes Pros and Cons
 Pros:

 Small size: an i-node need only be in memory when the
corresponding file is open, hence total size of i-nodes is
proportional to max number of files that are open
simultaneously
 In contrast, FAT table size is proportional to total number of

disk blocks
 Cons:

 Each i-node has a fixed number of disk addresses; a
file may grow beyond the limit
 Solution: reserve the last disk address for the address of a

block containing additional disk block addresses (indirect
blocks)

46

47

How big is an inode?
 A. 1 byte
 B. 16 bytes
 C. 128 bytes
 D. 1 KB
 E. 16 KB

Implementing Directories
 Directory system: map the ASCII file name onto

the info needed to locate the data
 Directory entry

 Where are the attributes stored?
 In the directory entry (MS-DOS/Windows)
 In the i-nodes (UNIX)

Games Attributes

Mail Attributes
News Attributes
Work Attributes
DOS/Windows

Games

Mail
News
Work

File attributes

Address of disk block 0

Address of disk block 1

…

i-node

UNIX
48

Locate A File: /usr/ast/
mbox

1 .
1 ..

4 bin

7 dev

14 lib

9 etc

6 usr

8 tmp

Attr.

132
…..

6 .
1 ..

19 dick

30 erik

51 jim

26 ast

45 bal

Attr.

406
…..

26 .
6 ..

64 grants

92 books

60 mbox

81 simix

17 src

root
I-node 6 is
for /usr

Block 132
is /usr dir.

I-node 26 is
for /usr/ast

Block 406 is /
usr/ast dir.

Looking up usr
yields i-node 6

/usr is in
block 132

/usr/ast is i-node 26

/usr/ast is in
block 406

/usr/ast/mbox is i-node
60

49

 Sequence of disk accesses to resolve “/usr/ast/mbox”?
 Read in inode for root (fixed position on disk)
 Read in first data bock for root; search for “usr” to get address of its

inode.
 Table of file name/index pairs. Search linearly – ok since directories

typically very small
 Read in inode for “usr” to get addresses of its data blocks
 Read in first data block for “usr”; search for “ast” to get address of

its inode.
 Read in inode for “ast” to get addresses of its data blocks
 Read in first data block for “ast”; search for “mbox” to get address of

its inode.
 Read in inode for “mbox” to get addresses of its data blocks

 Current working directory: Per-address-space pointer to a
directory (inode) used for resolving file names
 Allows user to specify relative filename instead of absolute path (if

CWD=““/usr/ast/”, then can resolve “mbox” without absolute path.)
50

Virtual File System

 An additional layer of software to hide differences among
different file systems and present a uniform interface (e.g.,
POSIX) to the user

51

52

Approaches: Summary
 Contiguous storage:

 Excellent access time (sequential and random)
 Poor space usage with external fragmentation
 Simple management, no need for data structures to relate non contiguous blocks
 VERY difficult and inefficient to extend existing files !!!!

 FAT
 Good sequential access (2 dereferences per block)
 Good random access (order N)
 Good space usage with some internal fragmentation
 One pointer per block must be stored in memory and on disk, size increases as

size of disk increases
 Not efficiently scalable to large disks

 I-nodes
 Good sequential access (2-4 dereferences per block)
 Better random access (order logN)
 Good space usage with some internal fragmentation
 One pointer and one I-node per file on disk
 One pointer and one I-node per OPEN file in memory

53

Choosing a block size
 Large block size means

 Large amount of internal fragmentation, decreased
disk space utilization (less of the disk actually being
used)

 Wasted space!
 Small block size means

 Most files occupy multiple blocks, thus need multiple
seeks and rotational delays to access

 Reduced performance!

54

Free list
 Need to keep track of which blocks are free.
 Two common approaches

 Linked list of disk blocks holding addresses of free
blocks

 Bitmap, 1 bit for each block, 0 if not allocated, 1 if
allocated.

 The list or bitmap is kept on the disk (not in
memory) to prevent data loss upon system crash

Free list management: linked
list

 Addresses of free
blocks are kept in a
list of disk blocks

 Suppose each disk
block address is
32-bits (4 Bytes),
then each 1KB-disk
block holds 255
addresses for free
blocks (plus one
address for the
next block)

55

Figure 4-22. (a) Storing the free list on a linked list

Free list management: bitmap
 A disk with n blocks requires a

bitmap with n bits.
 Each bit in the bitmap refers to

a block
 1 indicates free blocks
 0 indicates allocated blocks

 1-bit per block, on contrast to
32-bits per block for the linked
list

56

57

Free list management: bitmap
cont’
 How much space is required?

 One bit for each block on the disk
 Disk size in bytes / (8 * block size in bytes)

 Dividing by 8 is for converting from # bits to # bytes
 Example for an 8GB disk with 2KB blocks
 8*230/(8*2*210)=0.5*220=0.5 MB (250 disk blocks)

 Less space
 But more time searching

 Used by MacOS, NTFS(Windows)
 Q: When will linked-list scheme require less space

than bitmap scheme?
 A: When the disk is nearly full (with few free blocks)

File System Caching
 Key Idea: Exploit locality by caching data in memory

 Name translations: Mapping from paths→inodes
 Disk blocks: Mapping from block address→disk content#

 Buffer Cache: Memory used to cache kernel resources,
including disk blocks and name translations
 Can contain “dirty” blocks (blocks yet on disk)
 Example, ʻUse Onceʼ:

 File system can discard blocks as soon as they are used

58

 Replacement policy? LRU
 Can afford overhead of timestamps for each disk block
 Advantages:

 Works very well for name translation
 Works well in general as long as memory is big enough to

accommodate a hostʼs working set of files.
 Disadvantages:

 Fails when some application scans through file system, thereby
flushing the cache with data used only once

 Example: find . –exec grep foo{}

 Other Replacement Policies?
 Some systems allow applications to request other policies

59

File System Caching (con’t)
 Cache Size: How much memory should the OS allocate to

the buffer cache vs virtual memory?
 Too much memory to the file system cache ⇒ wonʼt be able to

run many applications at once
 Too little memory to file system cache ⇒ many applications may

run slowly (disk caching not effective)
 Solution: adjust boundary dynamically so that the disk access

rates for paging and file access are balanced

60

 Read Ahead Prefetching: fetch sequential blocks early
 Key Idea: exploit fact that most common file access is

sequential by prefetching subsequent disk blocks ahead of
current read request (if they are not already in memory)

 Elevator algorithm can efficiently interleave groups of
prefetches from concurrent applications

 How much to prefetch?
 Too many imposes delays on requests by other applications
 Too few causes many seeks (and rotational delays) among

concurrent file requests

61

File System Caching (con’t)
 Delayed Writes: Writes to files not immediately

sent out to disk (similar to write-back cache)
 Instead, write() copies data from user space

buffer to kernel buffer (in cache)
 Enabled by presence of buffer cache: can leave written

file blocks in cache for a while
 If some other application tries to read data before written

to disk, file system will read from cache
 Worse yet, what if system crashes before a directory file

has been written out? (lose pointer to inode!)

62

 Flushed to disk periodically (e.g. in UNIX, every
30 sec)

 Advantages:
 Disk scheduler can efficiently order lots of requests
 Some files need never get written to disk! (e..g

temporary scratch files written /tmp often donʼt exist for
30 sec)

 Disadvantages
 What if system crashes before file has been written

out?

63

