
1

CMPT 300
Introduction to Operating Systems 

File systems



2

Outline
 Files
 Directories
 File system implementation



File System

 Physical reality
 Physical sector is 

unit of storage 
 Block oriented
 No protection 

among users of the 
system

 Data might be 
corrupted if machine 
crashes

 File system model
 File is a unit of storage
 File is a sequence of 

bytes
 Users protected from 

each other
 Robust to machine 

failures



4

What is a ‘file’?
 A file is 

 an abstraction to describe stored information.  
 A logical unit of information created by a process.

 A file has  (from users point of view)
 A name (usually conveys meaning about the contents 

of the file)
 May have an extension to denote the type of contents or 

associated application (that created or uses the file).
 Stored information
 A size
 Information on ownership



5

File systems
 Files should be 

 Persistent
 Exists regardless of if processes are using it

 Shareable between processes
 Have a consistent and clearly defined 

structure (how they are stored)
 This is important to the OS that manages the files



File naming
 Naming rules are dependent on the OS. 
 Naming rules specify

 Characters legal within the name
 Maximum / minimum number of characters
 Whether name is case sensitive
 Structure of name (are there extensions, etc.)
 Are file names fixed length or variable length
 …

6



Some typical file name 
extensions

7



File Structure
 An unstructured sequence of bytes 

 Most widely used, e.g., UNIX and Windows
 User programs impose meaning of files

 A sequence of fixed-length records
 Records have internal structure
 Read/write in records
 Not used in any current general-purpose system

 A tree of records
 Search records by keys
 Used on some large mainframe computers

8



Examples of  File Structures

Byte sequence

Name: Jack
SIN
Address
Account #
Name: Carole
SIN
Address
Account #
Name: Nicola
SIN
Address
Account #
Name: Andrew
SIN
Address
Account #

Record sequence

Tree

Ant Fox Pig

Cat Cow Dog Goat Lion Owl

Hen Ibis Lamb

1 byte 1 record

9



File types
 Regular files – store userʼs information

 ASCII files (text file): lines of text
 Can be displayed and printed as is.
 E.g., source code file (*.cpp, *.h)

 Binary files: binary streams
 Internal structure know to programs
 e.g., Object file, executable code (*.o, *.exe). 

 Directories – maintained by system
 Maintaining the structure of the file system

 UNIX special files: modeling I/O devices
 Character special files: serial I/O devices
 Block special files: disks/block devices

10



File Access
 Sequential access

 Read all the bytes in order from the beginning
 Rewind if read again

 Random access files
 Read the bytes/records by  specifying  positions
 Applications: database, etc.
 All the files are random access nowadays

 How to specify the starting point for reading
 Use seek operation to set the current position

 Roll forward/backward for n bytes
11



File 
Attributes

Attribute Meaning

Protection Who can access the file and in what way

Password Password needed to access the file

Creator ID of the person who created the file

Owner Current owner

Read-only flag Read/write or read only

Hidden flag Normal file or the file does not display in listings

System flag Normal file or system file

Archive flag The file has been backed up or not

Random access flag Sequential access only or random access

ASCII/binary flag ASCII file or binary file

Temporary flag Normal file or file will be deleted on process exit

Lock flags Unlocked or locked

Record length Number of bytes in a record

Key position Offset of the key within each record

Key length Number of bytes in the key field

Creation time Data and time the file was created

Time of last access Date and time the file was last accessed

Time of last change Date and time the file was last changed

Current size Number of bytes in the file

Maximum size Number of bytes the file may grow to

File protection and 
access

Flags control/enable 
some specific 
property

Used in file with 
records having a key

Time stamps

Size



13

Operations on files
The most common system calls relating to files:

• Append
• Seek
• Get Attributes
• Set Attributes
• Rename

• Create
• Delete
• Open 
• Close
• Read
• Write



Directory
 A collection of files and/or other directories
 Also called “folder” on Windows machines.

14



Organization: Single-level / Two-level

 Single-level: one directory for all the files
 Not good for huge amount of files
 Not good for multi-user system

 Two-level: userdirectory
 A large number of files from one user, 

inconvenient

root

User A:
File mymails

User B:
File mymails

root

User A User B

File mymails File mymails

15



Hierarchical Directory 
Systems
 A general hierarchy: a tree of directories

root

directory

file

directory directory

directory directory

directory

file file

file

file

file

file

User directory

16



A UNIX directory tree.

17



Directory Structure
 Not really a hierarchy!

 Many systems allow directory structure to be organized as 
an acyclic graph or even a (potentially) cyclic graph

 Hard Links: different names for the same file
 Multiple directory entries point at the same file
 ʻlnʼ command in UNIX

 Soft (symbolic) Links: “shortcut” pointers to other files
 Implemented by storing the logical name of actual file
 ʻln –sʼ command in UNIX 

 Name Resolution: The process of converting a logical 
name into a physical resource (like a file)
 Traverse succession of directories until reach target file

18



Path Names
 Mechanism to locate files
 Absolute path name

 Path starting from the root directory
 E.g., /usr/fran/mailbox. ʻ/ʼ is path separator (ʻ\” on 

Windows)
 Relative path name

 Relative to the current working directory
 E.g., if working directory is /usr/fran, then /usr/fran/mailbox = 

mailbox
 Each process has its own working directory
 Current directory “.” and parent directory “..”

 E.g., ../cindy/mailbox, ./mailbox 

19



Directory Operations (UNIX)
 Create: a directory is created

 Empty except ʻ.ʼ and “..” entries
 Delete, rename a directory

 Link (hard link)
 Allow a file to appear in more than one directory
 One copy of a file, multiple directory entries

 Unlink
 A directory entry is removed
 Link count == 0

 Yes: remove the file (free the i-node and data blocks)
 No: keep the file

20



21

File Management System
 System software to provide I/O services to users

 Meet needs of user, access and organize files and 
directories, providing standardized interface
 Each user can create, modify, delete their own files and 

directories and have controlled access to files of other users
 Each user may control access by others to their files
 Each user should be able to organize their files for efficient 

use, and refer to them by symbolic names
 Verify validity of files, minimize lost/damaged data 
 Optimize throughput and system usage for I/O to files
 Provide support for a variety of devices



File System Components
 Disk management

 Arrange collection of disk blocks 
into files

 Naming
 To locate file data, user provides to 

file system file name, not track or 
sector number

 Access Security
 Keep information secure, donʼt leak, 

donʼt allow someone else to modify 
file

 Reliability/durability
 When system crashes, may lose 

data in main memory (volatile), but 
want files to be durable

User

File
Naming

File
Access

Disk
Management

Disk
driver



23

File Descriptor

File descriptor (fd) 
 The user process side

 Before reading or writing a file, user process has to call open
(filename, mode): mode is either r, rw, w, …
 open(…) checks if access is valid (Unix has fopen(…))

 fd=open(…) returns a unique integer called the file descriptor
 User process needs to use fd for all future operations on that file 

read(fd, buff) or write(fd, buff)
 When user process done with that file, it calls close(fd)

 The file system side
 File system maintains an internal data structure for each open 

file, i.e., for each valid file descriptor. Created on open(…), 
deleted on close(…). 

 Open file table : system-wide list of file descriptors in use 



Reading A Block

PCB

Open
file

table

Metadata

read( fd, userBuf, size )

Logical → physical

read( device, phyBlock, size )

Get physical block to sysBuf
copy to userBuf

Disk device driver

Buffer
cache

PCB: Process Control Block



25

File System Layout
 Disk is divided up into several partitions

 Each partition has one file system
 MBR – master boot record

 Boot the computer & contain the partition table
 Partition table

 Starting & ending addresses of each partition
 One partition is marked as active

 Within each partition
 Boot block – first block, a program loads the OS
 Superblock – key parameters about the file sys.

MBR Partition 1 Partition 2 Partition 3 Partition 4

Boot block Super block Free space mgmt I-nodes Root dir Files and directories



26

Implementing Files
 Key issue: how to keep track of which disk 

sectors go with which file?
 E.g., block size= 512B, file size=2014B, so 

where are these 2014/514=4 blocks on disk?
 Many methods

 Contiguous allocation
 Linked list allocation
 I-nodes
 Each one has its own pros and cons 26



File systems Implementation 
Challenges

 Files grow and shrink in pieces
 Little a priori knowledge of this dynamism
 Several orders of magnitude in file sizes – 

smallest files are 0B large, largest are a few 
GBʼs-TeraBytesʼs (thatʼs 1024 GBʼs)

 Need to overcome/hide/mask disk 
performance behavior 

 Desire for efficiency
 Coping with failure (of devices, or by users)



Contiguous Allocation

28

Figure 4-10. (a) Contiguous allocation of disk space for 7 files. 
(b) The state of the disk after files D and F have been removed.



29

Internal vs. External 
Fragmentation 

 Internal fragmentation: space wasted at the end of each 
block

 External fragmentation: Free blocks are scattered 
throughout the disk, instead of forming a few large contiguous 
sets of free blocks

File 2

File 1

File 3

Block 1 Block 3Block 2 Block 4 Block 6Block 5



30

Enlarging a File
 What happens if file2 in Block3 grows by two blocks?
 Cannot allocate next contiguous block (block 4) because it is 

already in use
 To assure the file is contiguous

 Find a large enough series of empty blocks to hold the extended file 
 Copy existing portion to this series of block, then append the new 

blocks  (copy block 3 to block 1, then append new blocks, block 3 is 
now available)

File 2
File 1
File 3

Block 
7

Block 
3

Block 
8

Block 
4

Block 
6

Block 
5

Block 
9

Block 
10

Block 
1

Block 
2

Block 
0



31

Contiguous Allocation Pros 
and Cons
 Pros

 Simple to implement
 Each file has two numbers, starting address & length

 Read performance is excellent
 Cons

 Expensive to grow a file if relocation is necessary
 Deletion of files may cause external fragmentation



Linked-List Allocation
 File A uses 

disk blocks 4, 
7, 2, 10, and 
12, in that 
order

 File B uses 
disk blocks 6, 
3, 11, and 14, 
in that order.

32

Figure 4-11. Storing a file as a linked list of disk blocks.



33

File Allocation Methods
Linked allocation

Pluses
 Easy to create, grow & shrink files
 No external fragmentation

 Minuses
 Impossible to do true 

random access
 Reliability

 Break one link in the chain 
and...

 Files stored as a linked list of blocks
 File header contains a pointer to the first and last file 

blocks

I



34

Linked List Allocation Pros 
and Cons
 Pros

 No space is lost due to disk fragmentation (except for 
internal fragmentation in the last block)
 Makes expansion/contraction of file simple

 File is still referenced by a single pointer to its first block
 Sequential access of file is efficient

 Just follow the pointers!

 Cons:
 Random access of file not efficient

 Must chase pointers from the first block
 The pointer takes up a few bytes, so data blocks no longer 

2N long
 Less efficient for many programs that expect 2N block sizes



35

File Allocation Methods
Linked allocation – File Allocation Table (FAT) (Win9x, OS2)

Maintain linked list in a separate table
 A table entry for each block on disk
 Each table entry in a file has a pointer to the next entry in that 

file (with a special “eof” marker)
 A “0” in the table entry  free block

Comparison with linked allocation
 If FAT is cached  better sequential and random access 

performance 
 How much memory is needed to cache entire FAT?

 400GB disk, 4KB/block  100M entries in FAT  400MB 
 Solution approaches

 Allocate larger clusters of storage space
 Allocate different parts of the file near each other  better locality 

for FAT



File Allocation Table (FAT)

36

 Same example as 
before:

 File A uses disk blocks 
4, 7, 2, 10, and 12, in 
that order

 File B uses disk 
blocks 6, 3, 11, and 
14, in that order.

 Used by MS/DOS and 
early Windows



FAT Pros and Cons 
 Pros:

 No pointers in data blocks  data blocks are 2N 
long

 Random access is easy, since pointer-chasing is 
done on the table, no need to access disk blocks

 Cons:
 Entire table must be kept in memory; can get 

large
 With a 200-GB disk and a 1-KB block size, the table 

needs 200 million entries. Each entry has to be a 
minimum of 3 bytes. Thus the table will take up 600 
MB of main memory

37



38

Vista reading the master file table
MFT contains a record for each file, inlines small files



39

File Allocation Methods
Direct allocation

File header points to each data block

 Pluses
 Easy to create, grow & 

shrink files
 Little fragmentation
 Supports direct access

 Minuses
 Inode is big or variable size
 How to handle large files?

I



40

File Allocation Methods
Indexed allocation

Create a non-data block for each file called the index block
 A list of pointers to file blocks

File header contains the index block

 Pluses
 Easy to create, grow & 

shrink files
 Little fragmentation
 Supports direct access

 Minuses
 Overhead of storing index 

when files are small
 How to handle large files?

IBI



41

Linked index blocks (IB+IB+…)

Multilevel index blocks (IB*IB*…)

Indexed Allocation
Handling large files

IB IBI IB

IB IBI IBIB



42

Why bother with index blocks?
 A. Allows greater file size.
 B. Faster to create files.
 C. Simpler to grow files.
 D. Simpler to prepend and append to files.
 E. Scott Summers is the X-men’s Cyclops



I-nodes
 I-node (index-

node) lists disk 
addresses of 
the fileʼs blocks

 Used in UNIX

43



44

Multi-level Indirection in Unix

File header contains 13 pointers
 10 pointes to data blocks; 11th pointer  indirect block; 12th pointer 

 doubly-indirect block; and 13th pointer  triply-indirect block

Implications
 Upper limit on file size (~2 TB)
 Blocks are allocated dynamically (allocate indirect blocks only for 

large files)

Features
 Pros

 Simple
 Files can easily expand
 Small files are cheap

 Cons
 Large files require a lot of seek to access indirect blocks



45

Indexed Allocation in UNIX
Multilevel, indirection, index blocks

2nd Level
Indirection

Block

n
Data

Blocks

n3

Data
Blocks

3rd Level
Indirection

Block

IB

IB IB

1st Level
Indirection

Block

IB

IB

IB

IB

IB

IB

IB

IB

n2

Data
BlocksIB

Inode

10 Data Blocks



I-nodes Pros and Cons
 Pros:

 Small size: an i-node need only be in memory when the 
corresponding file is open, hence total size of i-nodes is 
proportional to max number of files that are open 
simultaneously
 In contrast, FAT table size is proportional to total number of 

disk blocks
 Cons:

 Each i-node has a fixed number of disk addresses; a 
file may grow beyond the limit
 Solution: reserve the last disk address for the address of a 

block containing additional disk block addresses (indirect 
blocks)

46



47

How big is an inode?
 A. 1 byte
 B. 16 bytes
 C. 128 bytes
 D. 1 KB
 E. 16 KB



Implementing Directories
 Directory system: map the ASCII file name onto 

the info needed to locate the data
 Directory entry

 Where are the attributes stored?
 In the directory entry (MS-DOS/Windows)
 In the i-nodes (UNIX)

Games Attributes

Mail Attributes
News Attributes
Work Attributes
DOS/Windows

Games

Mail
News
Work

File attributes

Address of disk block 0

Address of disk block 1

…

i-node

UNIX
48



Locate A File: /usr/ast/
mbox

1 .
1 ..

4  bin

7 dev

14 lib

9 etc

6 usr

8 tmp

Attr.

132
…..

6 .
1 ..

19  dick

30 erik

51 jim

26 ast

45 bal

Attr.

406
…..

26 .
6 ..

64 grants

92 books

60 mbox

81 simix

17 src

root
I-node 6 is 
for /usr

Block 132 
is /usr dir.

I-node 26 is 
for /usr/ast

Block 406 is /
usr/ast dir.

Looking up usr 
yields i-node 6

/usr is in 
block 132

/usr/ast is i-node 26

/usr/ast  is in 
block 406

/usr/ast/mbox  is i-node 
60

49



 Sequence of disk accesses to resolve “/usr/ast/mbox”?
 Read in inode for root (fixed position on disk)
 Read in first data bock for root; search for “usr” to get address of its 

inode.
 Table of file name/index pairs.  Search linearly – ok since directories 

typically very small
 Read in inode for “usr” to get addresses of its data blocks
 Read in first data block for “usr”; search for “ast” to get address of 

its inode.
 Read in inode for “ast” to get addresses of its data blocks
 Read in first data block for “ast”; search for “mbox” to get address of 

its inode.
 Read in inode for “mbox” to get addresses of its data blocks

 Current working directory: Per-address-space pointer to a 
directory (inode) used for resolving file names
 Allows user to specify relative filename instead of absolute path (if 

CWD=““/usr/ast/”, then can resolve “mbox” without absolute path.)
50



Virtual File System

 An additional layer of software to hide differences among 
different file systems and present a uniform interface (e.g., 
POSIX) to the user

51



52

Approaches:  Summary
 Contiguous storage:

 Excellent access time (sequential and random)
 Poor space usage with external fragmentation
 Simple management, no need for data structures to relate non contiguous blocks
 VERY difficult and inefficient to extend existing files !!!!   

 FAT
 Good sequential access (2 dereferences per block)
 Good random access (order N)
 Good space usage with some internal fragmentation
 One pointer per block must be stored in memory and on disk, size increases as 

size of disk increases
 Not efficiently scalable to large disks

 I-nodes
 Good sequential access (2-4 dereferences per block)
 Better random access (order logN)
 Good space usage with some internal fragmentation
 One pointer and one I-node per file on disk
 One pointer and one I-node per OPEN file in memory



53

Choosing a block size
 Large block size means 

 Large amount of internal fragmentation, decreased 
disk space utilization (less of the disk actually being 
used)

 Wasted space!
 Small block size means

 Most files occupy multiple blocks, thus need multiple 
seeks and rotational delays to access

 Reduced performance!



54

Free list
 Need to keep track of which blocks are free.
 Two common approaches

 Linked list of disk blocks holding addresses of free 
blocks 

 Bitmap, 1 bit for each block, 0 if not allocated, 1 if 
allocated.

 The list or bitmap is kept on the disk (not in 
memory) to prevent data loss upon system crash



Free list management: linked 
list

 Addresses of free 
blocks are kept in a 
list of disk blocks

 Suppose each disk 
block address is 
32-bits (4 Bytes), 
then each 1KB-disk 
block holds 255 
addresses for free 
blocks (plus one 
address for the 
next block)

55

Figure 4-22. (a) Storing the free list on a linked list



Free list management: bitmap
 A disk with n blocks requires a 

bitmap with n bits.
 Each bit in the bitmap refers to 

a block
 1 indicates free blocks
 0 indicates allocated blocks

 1-bit per block, on contrast to 
32-bits per block for the linked 
list

56



57

Free list management: bitmap 
cont’
 How much space is required?

 One bit for each block on the disk
 Disk size in bytes / (8 * block size in bytes)

 Dividing by 8 is for converting from # bits to # bytes
 Example for an 8GB disk with 2KB blocks
 8*230/(8*2*210)=0.5*220=0.5 MB (250 disk blocks)

 Less space
 But more time searching 

 Used by MacOS, NTFS(Windows)
 Q: When will linked-list scheme require less space 

than bitmap scheme?
 A: When the disk is nearly full (with few free blocks)



File System Caching
 Key Idea: Exploit locality by caching data in memory

 Name translations: Mapping from paths→inodes
 Disk blocks: Mapping from block address→disk content#

 Buffer Cache: Memory used to cache kernel resources, 
including disk blocks and name translations
 Can contain “dirty” blocks (blocks yet on disk)
 Example, ʻUse Onceʼ:

 File system can discard blocks as soon as they are used

58



 Replacement policy?  LRU
 Can afford overhead of timestamps for each disk block
 Advantages:

 Works very well for name translation
 Works well in general as long as memory is big enough to 

accommodate a hostʼs working set of files.
 Disadvantages:

 Fails when some application scans through file system, thereby 
flushing the cache with data used only once

 Example: find . –exec grep foo{}

 Other Replacement Policies?
 Some systems allow applications to request other policies

59



File System Caching (con’t)
 Cache Size: How much memory should the OS allocate to 

the buffer cache vs virtual memory?
 Too much memory to the file system cache ⇒ wonʼt be able to 

run many applications at once
 Too little memory to file system cache ⇒ many applications may 

run slowly (disk caching not effective)
 Solution: adjust boundary dynamically so that the disk access 

rates for paging and file access are balanced

60



 Read Ahead Prefetching: fetch sequential blocks early
 Key Idea: exploit fact that most common file access is 

sequential by prefetching subsequent disk blocks ahead of 
current read request (if they are not already in memory)

 Elevator algorithm can efficiently interleave groups of 
prefetches from concurrent applications

 How much to prefetch?
 Too many imposes delays on requests by other applications
 Too few causes many seeks (and rotational delays) among 

concurrent file requests

61



File System Caching (con’t)
 Delayed Writes: Writes to files not immediately 

sent out to disk (similar to write-back cache)
 Instead, write() copies data from user space 

buffer to kernel buffer (in cache)
 Enabled by presence of buffer cache: can leave written 

file blocks in cache for a while
 If some other application tries to read data before written 

to disk, file system will read from cache 
 Worse yet, what if system crashes before a directory file 

has been written out? (lose pointer to inode!)

62



 Flushed to disk periodically (e.g. in UNIX, every 
30 sec)

 Advantages: 
 Disk scheduler can efficiently order lots of requests
 Some files need never get written to disk! (e..g 

temporary scratch files written /tmp often donʼt exist for 
30 sec)

 Disadvantages
 What if system crashes before file has been written 

out?

63


