File Systems:
Consistency Issues

File Systems: Consistency Issues

+ File systems maintains many data structures
» Free list/bit vector
» Directories
» File headers and inode structures
» Data blocks

+ All data structures are cached for better performance
» Works great for read operations

> ... but what about writes?

< |f modified data is in cache, and the system crashes - all modified data
can be lost

< |f data is written in wrong order, data structure invariants might be
violated (this is very bad, as data or file system might not be consistent)
» Solutions:

<+ Write-through caches: Write changes synchronously - consistency at
the expense of poor performance

<+ Write-back caches: Delayed writes - higher performance but the risk of
loosing data

What about Multiple Updates?

+ Several file system operations update multiple data structures

+ Examples:

» Move a file between directories
<+ Delete file from old directory
<+ Add file to new directory

> Create a new file

<+ Allocate space on disk for file header and data
<+ Write new header to disk
<+ Add new file to a directory

+ What if the system crashes in the middle?
» Even with write-through, we have a problem!!

+ The consistency problem: The state of memory+disk might
not be the same as just disk. Worse, just disk (without
memory) might be inconsistent.

Which is a metadata consistency problem?

¢+ A. Null double indirect pointer
+ B. File created before a crash is missing

¢ C. Free block bitmap contains a file data
block that is pointed to by an inode

¢ D. Directory contains corrupt file name

Consistency: Unix Approach

+ Meta-data consistency
» Synchronous write-through for meta-data
» Multiple updates are performed in a specific order
» When crash occurs:
<+ Run “fsck” to scan entire disk for consistency
<+ Check for “in progress” operations and fix up problems

<+ Example: file created but not in any directory - delete file; block
allocated but not reflected in the bit map - update bit map

» Issues:
+ Poor performance (due to synchronous writes)
<+ Slow recovery from crashes

Consistency: Unix Approach (Cont’d.)

+ Data consistency
» Asynchronous write-back for user data
+ Write-back forced after fixed time intervals (e.g., 30 sec.)
+ Can lose data written within time interval

» Maintain new version of data in temporary files; replace older
version only when user commits

+ What if we want multiple file operations to occur as a
unit?
» Example: Transfer money from one account to another -
need to update two account files as a unit
» Solution: Transactions

Transactions

+ Group actions together such that they are
» Atomic: either happens or does not
» Consistent: maintain system invariants

» Isolated (or serializable): transactions appear to happen one after
another. Don'’t see another tx in progress.

» Durable: once completed, effects are persistent

+ Critical sections are atomic, consistent and isolated, but not
durable

+ Two more concepts:

» Commit: when transaction is completed
» Rollback: recover from an uncommitted transaction

Implementing Transactions

+ Key idea:
» Turn multiple disk updates into a single disk write!
¢ Example:
Begin Transaction
X=x+1
y=y-—1 :> Create a write-ahead log for
Commit the transaction

+ Sequence of steps:

» Write an entry in the write-ahead log containing old and new values
of x and y, transaction ID, and commit

» Write x to disk
» Write y to disk
» Reclaim space on the log

+ |n the event of a crash, either “undo” or “redo” transaction

Transactions in File Systems

+ Write-ahead logging = journaling file system

» Write all file system changes (e.g., update directory, allocate
blocks, etc.) in a transaction log

» “Create file”, “Delete file”, “Move file” --- are transactions

+ Eliminates the need to “fsck” after a crash

+ In the event of a crash
» Read log

> If log is not committed, ignore the log
> If log is committed, apply all changes to disk

+ Advantages:
» Reliability
» Group commit for write-back, also written as log

+ Disadvantage:
» All data is written twice!! (often, only log meta-data)

Vista writing its journal

G =l
tizb Reliability and Perfor_mance Mﬂtor

@@ File Action View Favorites Window Help =] x
e |[EHE P E
(f’ Reliability and Performai " = &
9 ,ty i Resource Overview &)
4 . Monitoring Tools
. 0, -
il Performance Moni| CPU 100% Disk 10 MB/sec Network 1 Mbps Mmo 10 Hard Faults/...
== Reliability Monitor N -
i # Data Collector Sets
@ Reports
60 Seconds 0% 0 7
CPU M 16% [T 100% Maximum Frequency (=
Disk B 0 MB/sec I 100% Highest Active Time (=)
Image PID File Read (B/min) Write (B/min) <
System 4 C:\System Volume Information\{4b212ea6-3ebd-11de-a00b-0019b9414d0d}{... 0 6,311,205 =
System 4 C:\$LogFile (NTFS Volume Log) 711,023 929,111
System 4 C:\Users\root\AppData\Local\Microsoft\Windows\UsrClass.dat 500,644 306,957
Searchindexer.exe 5216 C:\System Volume Information\{4b212ea6-3ebd-11de-a00b-0019b9414d0d}{... 0 295,030
System 4 C:\ProgramData\Spybot - Search & Destroy\ProcCache.sbc 0 282,624
SearchIndexer.exe 5216 C:)\ProgramData\Microsoft\Search\Data\Applications\Windows\Windows.edb 17,149 278,440
Quctem a CASNAfE (NITFS Macter File Tahle) 4Q 15?2 757 Q48 %
< 1)
< 11 M — — — %

Where on the disk would you put the journal for a journaling file
system?

1. Anywhere
2. Outer rim
3. Innerrim
4. Middle
3

Wherever the inodes are

Transactions in File Systems: A more complete way

¢ Log-structured file systems

» Write data only once by having the log be the only copy of data and
meta-data on disk

+ Challenge:

» How do we find data and meta-data in log?
< Data blocks - no problem due to index blocks

<+ Meta-data blocks = need to maintain an index of meta-data blocks
also! This should fit in memory.

+ Benefits:

» All writes are sequential; improvement in write performance is
important (why?)

+ Disadvantage:
» Requires garbage collection from logs (segment cleaning)

