
1

CMPT 300  
Introduction to Operating Systems

I/O

Acknowledgement: some slides are taken from Anthony D. Joseph’s course material at UC Berkeley
and Dr. Janice Reagan’s course material at SFU

Outline
! Overview
! Principles of I/O hardware
! Principles of I/O software
! Disks

2

In a picture

• I/O devices you recognize are supported by I/O Controllers
• Processors accesses them by reading and writing IO registers as if

they were memory
– Write commands and arguments, read status and results

L3 Cache 
(shared)Registers

Core

Core

Secondary  
 Storage  

(Disk)

Processor

Main
Memory
(DRAM)

RegistersL1 Cache

L1 CacheL2 Cache

L2 Cache

Secondary  
 Storage  

(SSD)

I/O
Controllers

Read /
Write

Read /
Write wires

interrupts

DMA transfer

The Requirements of I/O

• So far in this course:
– We have learned how to manage CPU, memory

• What about I/O?
– Without I/O, computers are useless (disembodied
brains?)

– But… thousands of devices, each slightly different
» How can we standardize the interfaces to these

devices?
– Devices unreliable: media failures and transmission
errors

» How can we make them reliable???
– Devices unpredictable and/or slow

» How can we manage them if we don’t know what they will
do or how they will perform?

Operational Parameters for I/O

• Data granularity: Byte vs. Block
– Some devices provide single byte at a time (e.g.,

keyboard)
– Others provide whole blocks (e.g., disks, networks, etc.)

• Access pattern: Sequential vs. Random
– Some devices must be accessed sequentially (e.g., tape)
– Others can be accessed “randomly” (e.g., disk, cd, etc.)

» Fixed overhead to start sequential transfer (more later)

• Transfer Notification: Polling vs. Interrupts
– Some devices require continual monitoring
– Others generate interrupts when they need service

• Transfer Mechanism: Programmed IO and DMA

Kernel Device Structure

The System Call Interface

Process
Management

Memory 
Management Filesystems

Device 
Control Networking

Architecture
Dependent

Code

Memory 
Manager

Device 
Control

Network 
Subsystem

File System
Types

Block  
Devices

IF drivers

Concurrency, 
multitasking

Virtual 
memory

Files and dirs: 
the VFS

TTYs and 
device access Connectivity

The Goal of the I/O Subsystem

• Provide Uniform Interfaces, Despite Wide Range of
Different Devices
– This code works on many different devices:
 FILE fd = fopen(“/dev/something”,”rw”);  
 for (int i = 0; i < 10; i++) {  
 fprintf(fd,”Count %d\n”,i);  
 }  
 close(fd);

– Why? Because code that controls devices (“device driver”)
implements standard interface.

• We will try to get a flavor for what is involved in
actually controlling devices in rest of lecture
– Can only scratch surface!

Want Standard Interfaces to Devices

• Block Devices: e.g. disk drives, tape drives, DVD-ROM
– Access blocks of data
– Commands include open(), read(), write(), seek()
– Raw I/O or file-system access
– Memory-mapped file access possible

• Character Devices: e.g. keyboards, mice, serial ports,
some USB devices
– Single characters at a time
– Commands include get(), put()
– Libraries layered on top allow line editing

• Network Devices: e.g. Ethernet, Wireless, Bluetooth
– Different enough from block/character to have own interface
– Unix and Windows include socket interface

» Separates network protocol from network operation
» Includes select() functionality

– Usage: pipes, FIFOs, streams, queues, mailboxes

How Does User Deal with Timing?

• Blocking Interface: “Wait”
– When request data (e.g. read() system call), put process to
sleep until data is ready

– When write data (e.g. write() system call), put process to
sleep until device is ready for data

• Non-blocking Interface: “Don’t Wait”
– Returns quickly from read or write request with count of bytes
successfully transferred

– Read may return nothing, write may write nothing
• Asynchronous Interface: “Tell Me Later”

– When request data, take pointer to user’s buffer, return
immediately; later kernel fills buffer and notifies user

– When send data, take pointer to user’s buffer, return
immediately; later kernel takes data and notifies user

Chip-scale features of Recent x86 (SandyBridge)

• Significant pieces:
– Four OOO cores

» New Advanced Vector eXtensions  
(256-bit FP)

» AES instructions
» Instructions to help with Galois-Field mult
» 4 µ-ops/cycle

– Integrated GPU
– System Agent (Memory and Fast I/O)
– Shared L3 cache divided in 4 banks
– On-chip Ring bus network

» Both coherent and non-coherent transactions
» High-BW access to L3 Cache

• Integrated I/O
– Integrated memory controller (IMC)

» Two independent channels of DDR3 DRAM
– High-speed PCI-Express (for Graphics cards)
– DMI Connection to SouthBridge (PCH)

SandyBridge I/O: PCH

• Platform Controller Hub
– Used to be “SouthBridge,”

but no “NorthBridge” now
– Connected to processor

with proprietary bus
» Direct Media Interface

– Code name “Cougar Point”
for SandyBridge
processors

• Types of I/O on PCH:
– USB
– Ethernet
– Audio
– BIOS support
– More PCI Express (lower

speed than on Processor)
– Sata (for Disks)

SandyBridge
System Configuration

Modern I/O Systems

network

Example: PCI Architecture

CPURAM Memory
Bus

USB 
Controller

SCSI  
Controller

Scanner

Hard
DiskCD ROM

Root Hub

Hub Webcam

Mouse Keyboard

PCI #1

PCI #0
PCI Bridge

PCI Slots

Host Bridge

ISA Bridge

ISA  
Controller

Legacy 
Devices

Example Device-Transfer Rates in Mb/s 
 (Sun Enterprise 6000)

• Device Rates vary over 12 orders of magnitude !!!
– System better be able to handle this wide range
– Better not have high overhead/byte for fast devices!
– Better not waste time waiting for slow devices

10m

How does the processor actually talk to the device?

Device
Controller

read
write
control
status

Addressable
Memory
and/or
QueuesRegisters

(port 0x20)

Hardware
Controller

Memory Mapped
Region: 0x8f008020

Bus
Interface

• CPU interacts with a Controller
– Contains a set of registers that  
can be read and written

– May contain memory for request  
queues or bit-mapped images

• Regardless of the complexity of the connections and buses,
processor accesses registers in two ways:
– I/O instructions: in/out instructions

» Example from the Intel architecture: out 0x21,AL
– Memory mapped I/O: load/store instructions

» Registers/memory appear in physical address space
» I/O accomplished with load and store instructions

Address+
Data

Interrupt Request

Processor Memory Bus

CPU

Regular
Memory

Interrupt
Controller

Bus
Adaptor

Bus
Adaptor

Other Devices
or Buses

Example: Memory-Mapped Display Controller

• Memory-Mapped:
– Hardware maps control registers and display

memory into physical address space
» Addresses set by hardware jumpers or

programming at boot time
– Simply writing to display memory (also called

the “frame buffer”) changes image on screen
» Addr: 0x8000F000—0x8000FFFF

– Writing graphics description to command-queue
area

» Say enter a set of triangles that describe
some scene

» Addr: 0x80010000—0x8001FFFF
– Writing to the command register may cause on-

board graphics hardware to do something
» Say render the above scene
» Addr: 0x0007F004

• Can protect with address translation

Display
Memory

0x8000F000

0x80010000

Physical Address
Space

Status0x0007F000
Command0x0007F004

Graphics
Command
Queue

0x80020000

17

Direct I/O
! Each control register is assigned a port number PORT
! Use special assembler language I/O instructions

" IN REG, PORT: reads in control register PORT and stores
result in CPU register REG

" OUT PORT, REG: writes content of REG to control register
PORT

18

Memory-mapped I/O
! Map all I/O control

registers into the
memory space

! Memory map will have a
block of addresses that
physically corresponds
the registers on the I/O
controllers rather than to
locations in main
memory

! When you read from/
write to mem region for I/
O control registers, the
request does not go to
memory; it is
transparently sent to the
I/O device

OS

Memory region for
I/O control registers

Process N

Process M

Memory map

Example: Memory-Mapped
Display Controller

! Memory-Mapped:
" Hardware maps control registers

and display memory into physical
address space
Addresses set by hardware jumpers

or programming at boot time
" Simply writing to display memory

(also called the “frame buffer”)
changes image on screen
Addr: 0x8000F000—0x8000FFFF

Display
Memory

0x8000F000

0x80010000

Physical Address
Space

Status0x0007F000
Command0x0007F004

Graphics
Command

Queue

0x80020000

19

20

" Writing graphics description to
command-queue area
Say enter a set of triangles that

describe some scene
Addr: 0x80010000—0x8001FFFF

" Writing to the command register
may cause on-board graphics
hardware to do something
Say render the above scene
Addr: 0x0007F004

! Can protect with page tables

Display
Memory

0x8000F000

0x80010000

Physical Address
Space

Status0x0007F000
Command0x0007F004

Graphics
Command

Queue

0x80020000

21

Advantages: memory mapped I/O
! Allows device drivers and low level control software to be

written in C rather than assembler
! Every instruction that can access memory can also access

controller registers, reducing the number of instructions
needed for I/O

! Can use virtual memory mechanism to protect I/O from
user processes

" Memory region for I/O control registers are mapped to kernel
space

I/O Device Notifying the OS

•The OS needs to know when:
– The I/O device has completed an operation
– The I/O operation has encountered an error

•I/O Interrupt:
– Device generates an interrupt whenever it needs service
– Pro: handles unpredictable events well
– Con: interrupts relatively high overhead

•Polling:
– OS periodically checks a device-specific status register

» I/O device puts completion information in status register
– Pro: low overhead
– Con: may waste many cycles on polling if infrequent or unpredictable
I/O operations

•Actual devices combine both polling and interrupts
– For instance – High-bandwidth network adapter:

» Interrupt for first incoming packet
» Poll for following packets until hardware queues are empty

Example (fast network)
• Consider a gpbs link (125 MB/s)
• With a startup cost S = 1 ms
• Theorem: half-power point occurs at n=S*B:

– When transfer time = startup T(S*B) = S + S*B/B

Example: at 10 ms startup (disk)

0		

5		

10		

15		

20		

25		

30		

35		

40		

45		

50		

0		

2,000		

4,000		

6,000		

8,000		

10,000		

12,000		

14,000		

16,000		

18,000		

0		 50,000		100,000		150,000		200,000		250,000		300,000		350,000		400,000		450,000		500,000		

Ba
nd
w
id
th
!(m
B/
s)!

La
te
nc
y!(
us
)!

Length!(b)!

Performance!of!gbps!link!with!10!ms!startup!

What determines peak BW for I/O ?

• Bus Speed
– PCI-X: 1064 MB/s = 133 MHz x 64 bit (per lane)
– ULTRA WIDE SCSI: 40 MB/s
– Serial Attached SCSI & Serial ATA & IEEE 1394
(firewire) : 1.6 Gbps full duplex (200 MB/s)

– USB 1.5 – 12 mb/s
• Device Transfer Bandwidth

– Rotational speed of disk
– Write / Read rate of nand flash
– Signaling rate of network link

• Whatever is the bottleneck in the path

Storage Devices

• Magnetic disks
– Storage that rarely becomes corrupted
– Large capacity at low cost
– Block level random access
– Slow performance for random access
– Better performance for streaming access

• Flash memory
– Storage that rarely becomes corrupted
– Capacity at intermediate cost (50x disk ???)
– Block level random access
– Good performance for reads; worse for random writes
– Erasure requirement in large blocks
– Wear patterns

Are we in an inflection point?

Memory and I/O space

! (a) Separate I/O and memory space.
! (b) Memory-mapped I/O: map device memory (data buffers and control

registers) into CPU memory; each device memory address is assigned a
unique CPU memory address

! (c) Hybrid: data buffers are memory-mapped; control registers have separate
memory space (I/O ports)

28

29

Disadvantages:  
memory mapped I/O

! Need additional complexity in the OS
" Cannot cache controller registers
" Changes made in cache do not affect the controller!
" Must assure that the memory range reserved for

memory mapped control registers cannot be cached.
(disable caching)

! All memory modules and I/O devices must
examine all memory references

30

Single Bus: memory mapping
! CPU sends requested address along bus
! Bus carries one request/reply at a time
! Each I/O device controller checks if requested address is in thier memory

space
! Device controller whose address space does contain the address replies with

the requested value from that address

CPU memory I/O I/O

31

Memory Bus: memory mapping
! Most CPUs have a high-speed bus for memory access, and a low-

speed bus for peripheral I/O device access.
! CPU first sends memory request to the memory bus, and if that

fails (address not found in memory), send it to the I/O bus.

CPU memory I/O I/O

Low-Speed Bus

HS Bus

Direct Memory Access (DMA)
! Request data from I/O without DMA

" Device controller reads data from device
" It interrupts CPU when a byte/block of data available
" CPU reads controller’s buffer into main memory
" Too many interruptions, expensive

! DMA: direct memory access
" A DMA controller with registers read/written by CPU
" CPU programs the DMA: what to transfer where

Source, destination and size
" DMA interrupts CPU only after all the data are

transferred.
32

Operations of
DMA

CPU

DMA
controller

Disk
controller

Main
memory

Bus

Address
Count

Control

Drive
1. CPU
programs the
DMA and
controller

Buffer

2. DMA requires
transfer to memory

3. Data
transferred

4. Ack

Interrupt when
done

33

DMA Details
1. CPU programs DMA controller by setting registers

Address, count, control
2. DMA controller initiates the transfer by issuing a

read request over the bus to the disk controller
3. Write to memory in another standard bus cycle
4. When the write is done, disk controller sends an

acknowledgement signal to DMA controller
" If there is more to transfer, go to step 2 and loop

5. DMA controller interrupts CPU when transfer is
complete.
" CPU doesn’t need to copy anything.

34

Transfer Modes

! Word-at-a-time (cycle stealing)
" DMA controller acquires the bus, transfer one word,

and releases the bus
" CPU waits for bus if data is transferring
" Cycle stealing: steal an occasional bus cycle from

CPU once in a while
! Burst mode

" DMA holds the bus until a series of transfers
complete

" More efficient since acquiring bus takes time
" Block the CPU from using bus for a substantial

amount of time
35

Outline
! Overview
! Principles of I/O hardware
! Principles of I/O software
! Disks

36

Device Drivers
• Device Driver: Device-specific code in the kernel that

interacts directly with the device hardware
– Supports a standard, internal interface
– Same kernel I/O system can interact easily with different
device drivers

– Special device-specific configuration supported with the
ioctl() system call

• Device Drivers typically divided into two pieces:
– Top half: accessed in call path from system calls

» implements a set of standard, cross-device calls like open(),
close(), read(), write(), ioctl(), strategy()

» This is the kernel’s interface to the device driver
» Top half will start I/O to device, may put thread to sleep

until finished
– Bottom half: run as interrupt routine

» Gets input or transfers next block of output
» May wake sleeping threads if I/O now complete

3/30/15 Kubiatowicz CS162 ©UCB Spring 2015 38

Life Cycle of An I/O Request

Device Driver
Top Half

Device Driver
Bottom Half

Device
Hardware

Kernel I/O
Subsystem

User
Program

Basic Performance Concepts

• Response Time or Latency: Time to perform an
operation (s)

• Bandwidth or Throughput: Rate at which operations
are performed (op/s)
– Files: mB/s, Networks: mb/s, Arithmetic: GFLOP/s

• Start up or “Overhead”: time to initiate an
operation

• Most I/O operations are roughly linear
– Latency (n) = Ovhd + n/Bandwidth

Logical Position of Device
Drivers

User program

Rest of the OS

Printer driver

Printer controller

printer

User space

Kernel space

Hardware

Devices

40

How to Install a Driver?
! Re-compile and re-link the kernel

" Drivers and OS are in a single binary program
" Used when devices rarely change

! Dynamically loaded during OS initialization
" Used when devices often change

! Dynamically loaded during operation
" Plug-and-Play

41

42

Device-Independent I/O Software
! Why device-

independent I/O
software?
" Perform I/O

functions common to
all devices

" Provide a uniform
interface to user-
level software

! It provides:
" Uniform interfacing for

devices drivers
" Buffering
" Error reporting
" Allocating and releasing

dedicated devices
" Providing a device-

independent block size
User-level I/O software

Device-independent I/O software

Device drivers

Interrupt handlers

Hardware

Uniform Interfacing for Device
Drivers

! New device $ modify OS, not good
! Provide the same interface for all drivers

" Easy to plug a new driver
" In reality, not absolutely identical, but most functions

are common
! Name I/O devices in a uniform way

" Mapping symbolic device names onto the proper
driver

" Treat device name as file name in UNIX
E.g., hard disk /dev/disk0 is a special file. Its i-node

contains the major device number, which is used to locate
the appropriate driver, and minor device number.

43

Uniform Interfacing for Device
Drivers

44

Figure 5-14. (a) Without a standard driver interface. (b) With a
standard driver interface.

45

Types of I/O
! Synchronous I/O

" Programmed I/O:
Process busy-waits (polls) while I/O is completed

! Asynchronous I/O
" Interrupt driven I/O:

CPU issues an I/O command to I/O device
CPU enters wait state
CPU continues with other processing (same or more likely different

process)
I/O device generates an interrupt when it finishes and the CPU finishes

processing the interrupt before continuing with its present calculations.

" Direct Memory Access (DMA)

Programmed I/O: Writing a
String to Printer

46
33

Programmed I/O
! First the data are copied to the kernel.

Then the operating system enters a tight
loop outputting the characters one at a
time.
" After outputting a character, the CPU

continuously polls the device in a while loop to
see if it is ready to accept another one.

! Busy waiting wastes CPU time while
waiting for IO to complete

47

Interrupt-Driven I/O

! (a) Code executed at the time the print system call is made. Buffer is copied to
kernel space; 1st char is copied to printer as soon as it is ready to accept a char

! (b) ISR for printer interrupt. When printer has printed the 1st char, it generates an
interrupt to run the ISR; if no more chars to print, it unblocks the user process;
otherwise, it prints the next char and returns from the interrupt. Each interrupt grabs
one char from the kernel buffer and prints it.

48

I/O using DMA

! (a) Code executed when the print system call
is made.

! (b) ISR for printer interrupt
! Let the DMA controller feed the chars to

printer one at a time to free up the CPU
49

Interrupt Handlers
! Hide I/O interrupts deep in OS

" Device driver starts I/O and blocks (e.g., down a
mutex)

" Interrupt wakes up driver
! Process an interrupt

" Save registers (which to where?)
" Set up context (TLB, MMU, page table)
" Run the handler (usually the handler will be blocked)
" Choose a process to run next
" Load the context for the newly selected process
" Run the process

50

Buffering for Input
! Motivation: consider a process that wants to

read data from a modem
" User process handles one character at a time.
" It blocks if a character is not available
" Each arriving character causes an interrupt
" User process is unblocked and reads the character.
" Try to read another character and block again.
" Many short runs in a process: inefficient!

Overhead of context switching

51

Buffering in User Space

User space

Kernel space

Buffering in user space

%Set a buffer in user process’ space

%User process is waked up only if the buffer is filled up by
interrupt service procedure. More efficient.
%Can the buffer be paged out to disk?

%If yes, where to put the next character?

%No, by locking page in memory: the pool of other (available) pages shrink

52

Buffering in Kernel
! Two buffers: one in kernel and one in user
! Interrupt handler puts characters into the buffer

in kernel space
" Kernel buffers are never paged to disk

! When full, copy the kernel buffer to user buffer
" But where to store the new arrived characters when

the user-space page is being loaded from disk?

User space

Kernel space

Buffering in kernel

53

Double Buffering in Kernel
! Two kernel buffers
! When the first one fills up, but before it has

been emptied, the second one is used.
! Buffers are used in turn: while one is being

copied to user space, the other is
accumulating new input

User space

Kernel space
Double buffering

54

Downside of Data Buffering
! Many sequential buffering steps slow down

transmission
Process A

1

2
Network controller

Network

4

5

3

User space

Kernel space

Process B

55

Handling I/O Errors
! Programming errors: ask for something

impossible
" E.g. writing a keyboard, reading a printer
" Invalid parameters, like buffer address
" Report an error code to caller

! Actual I/O error
" E.g. write a damaged disk block
" Handled by device driver and/or device-independent

software
! System error

" E.g. root directory or free block list is destroyed
" display message, terminate system

56

Allocating Dedicated Devices
! Before using a device, make the system

call open
! When the device is unavailable

" The call fails, or
" The caller is blocked and put on a queue

! Release the device by making the close
system call

57

Summary: I/O Software

User-level I/O software Make I/O call; format I/O; spooling

Device-independent OS
software

Naming, protection, blocking,
buffering, allocation

Device drivers Setup device registers; check
status

Interrupt handlers Wake up driver when I/O
completed

Hardware Perform I/O operation

I/O request I/O reply

58

Outline
! Overview
! Principles of I/O hardware
! Principles of I/O software
! Disks

59

Types of Disks
! Magnetic disks

" Hard disks and floppy disks
" Reads/writes are equally fast
" Ideal secondary memory
" Highly reliable storage

! Optical disks
" CD-ROM, CD-R: 600MB
" DVD: 4.7-17GB

! Flash disks
" USB drive

60

61

Disk Geometry
track

Sector
Platter

Platter

Platter

Disk Arm

Each surface on the platter are divided into tracks and each track
is further divided into sectors. A sector is the smallest unit that
can be read or written. A cylinder consists of multiple tracks at the
same position on different platters.

Properties

! Independently addressable element: sector
" A block is a group of sectors. OS always

transfers multiple blocks.
! A disk can access directly any given block of

information it contains (random access). Can
access any file either sequentially or
randomly.

! A disk can be rewritten in place: it is possible
to read/modify/write a block from the disk

! Typical numbers (depending on the disk
size):
" 500 to more than 20,000 tracks per surface
" 32 to 800 sectors per track

62

Comparison of old and new
disks

63

! Figure 5-18. Disk parameters for the original IBM PC 360-KB floppy disk and a
Western Digital WD 18300 hard disk.

64

Zones

zone

!Real disks will have zones
with more sectors towards
the outer edge and fewer
toward the inner edge

!Most disks present a
virtual geometry to the OS,
which assumes a constant
number of sectors per
track. The controller maps
the OS requested sector to
the physical sector on the
disk

Physical vs. Virtual Geomery

65

Figure 5-19. (a) Physical geometry of a disk with two zones.  
(b) A possible virtual geometry for this disk.

Cylinders
! In the disk there are multiple platters (often two

sided). And there are heads to read each side of
each platter

! All the heads move in and out together.
! If we consider one head it is above a particular

track on a particular platter of the disk
! If we consider the whole disk, A cylinder is the

group of tracks (track n on each side of each
platter) that can be read when the heads are in a
particular position (above a certain track)

66

67

Sectors
! Each sector contains

" Preamble: synchronization marker
" Sector information, cylinder and sector number
" Data
" Error detection/correction information

! Whole sector is read to buffer in controller
! Error detection/correction is performed
! Data is transferred to its destination memory

address from the disk controller’s buffer

Format of a Sector
Preamble Data ECC

A disk sector

• Preamble: recognize the start of the sector. It also
contains the cylinder and sector numbers.

• Data: most disks use 512-byte sectors

• ECC (Error Correcting Code): can be used to recover
from errors

• Gap between sectors

Gap

68

Cost of Read / Write A Disk Block
! Seek time

" Time to move the arm to the proper cylinder
" Dominate the other two times for most disks
" E.g., 0.8 msec for adjacent cylinders

! Rotational delay
" Time for the proper sector to rotate under the head
" E.g, 0.03 msec for adjacent sectors

! Data transfer time
" E.g., 17 µsec for one sector

69

Cylinder Skew
! The position of sector 0 on each track is offset from

the previous track. This offset is called cylinder skew.
! Allow the disk to read multiple tracks in one

continuous operation without losing data

0

1

2

3

0

1

2

3
0

1

2

3

3

0

1

2

Direction of disk
rotation

Direction of disk
rotation

No skew 1-sector skew

70

Sector Interleaving
• Consider a controller with one sector buffer. A request of

reading two consecutive sectors. When the controller is
busy with transferring one sector of data to memory, the
next sector will fly by the head.

• Solution: sector interleaving

1

2
3

0

4

5

6
7

4

1
5

0

2

6

3
7

3

6
1

0

4

7

2
5

No interleaving Single interleaving Double interleaving

71

72

Disk Scheduling
! Want to schedule disk requests to optimize

performance. Must consider
" Seek time (time to move the arm to the proper

cylinder)
" Rotational delay (time for the proper sector to rotate

under the head)
" Data transfer time

! Different approaches to the order in which disk
accesses are processed

73

First Come First Serve
! Requests are removed from the queue in

the order that they arrived.
" For a small number of processes, each

process will have clusters of nearby accesses
so some improvement over random
scheduling may occur

" For a large number of processes, many areas
on the disk may be in demand. May perform
very similarly to random request order

FCFS Example
! Consider a disk with 40 cylinders. Requests for

cylinder # 11, 1, 36, 16, 34, 9, 12 come in that
order

! From initial position of 11, the disk arm serves
requests in the order of (1, 36, 16, 34, 9, 12) with
movements of (10, 35, 20, 18, 25, 3), total of 111
cylinders

74

75

Shortest seek first (SSF)
! Choose the request in the queue whose location on the

disk is closest to the present location of the head (shortest
seek time)

" More efficient than FCFS, transfer time cannot be changed so
minimizing seek time will help optimize the system

" Can cause starvation, If there are many requests in one area of the
disk, processes using other parts of the disk may never have their
requests filled.

" On a busy system the arm will tend to stay near the center of the
disk

" Need a tie breaking algorithm (what if there are two requests the
same distance away in different directions)

SSF Example

! From initial position of 11, the disk arm serves requests
in the order of (12, 9, 16, 1, 34, 36) with movements of
(1, 3, 7, 15, 33, 2), total of 61 cylinders

76

Problem with SSF
! Suppose more requests keep coming in while the

requests are being processed.
" For example, if, after going to cylinder 16, a new

request for cylinder 8 is present, that request will have
priority over cylinder 1. If a request for cylinder 13 then
comes in, the arm will next go to 13, instead of 1.

! With a heavily loaded disk, the arm will tend to
stay in the middle of the disk most of the time, so
requests at either extreme will have to wait a long
time
" Requests far from the middle may get poor service.

77

78

Elevator Algorithm (SCAN)
! Keep moving in the same direction until there

are no more outstanding requests in that
direction, then switch directions.

SCAN Algorithm Example

79

!From initial position of 11, the disk arm serves requests
in the order of (12, 16, 34, 36, 9, 1) with movements of
(1, 4, 18, 2, 27, 8), total of 61 cylinders

Circular SCAN
! A variant of SCAN
! Always scan in the same direction. When the

highest numbered cylinder with a pending request
has been serviced, the arm goes to the lowest-
numbered cylinder with a pending request and
then continues moving in an upward direction.

! Q: What is the upper bound of disk arm movement
distance for serving one request for SCAN? For C-
SCAN?

! A: both twice the number of total cylinders

80

Quiz

1 5 0 7 2 3 6 4Request order

Cylinder Number 1 6 9 13 19

Initial position

8 16 18

FCFS: cylinder 8$1$13$16$19$6$18$9, total 59 cylinders

SSF: cylinder 8$9$6$1$13$16$18$19, total 27 cylinders

SCAN: cylinder 8$9$13$16$18$19$6$1, total 29 cylinders

Assume the direction is initially UP.

What is the sequence of servicing requests for FCFS, SSF, SCAN and C-SCAN?

C-SCAN: cylinder 8$9$13$16$18$19$1$6, total 34 cylinders

Assume the direction is initially UP.
81

Exercise
! Workout the sequence of servicing requests for FCFS, SSF

and SCAN for the following order of requests (initial position
of disk head is 53):
" 98, 183, 37, 122, 14, 124, 65, 67

! Answer:
! FCFS: http://cs.uttyler.edu/Faculty/Rainwater/COSC3355/

Animations/diskschedulingfcfs.htm
! SSF: http://cs.uttyler.edu/Faculty/Rainwater/COSC3355/

Animations/diskschedulingsstf.htm
! SCAN:
! http://cs.uttyler.edu/Faculty/Rainwater/COSC3355/

Animations/diskschedulingscan.htm

82

http://cs.uttyler.edu/Faculty/Rainwater/COSC3355/Animations/diskschedulingfcfs.htm
http://cs.uttyler.edu/Faculty/Rainwater/COSC3355/Animations/diskschedulingfcfs.htm
http://cs.uttyler.edu/Faculty/Rainwater/COSC3355/Animations/diskschedulingfcfs.htm
http://cs.uttyler.edu/Faculty/Rainwater/COSC3355/Animations/diskschedulingsstf.htm
http://cs.uttyler.edu/Faculty/Rainwater/COSC3355/Animations/diskschedulingsstf.htm
http://cs.uttyler.edu/Faculty/Rainwater/COSC3355/Animations/diskschedulingsstf.htm
http://cs.uttyler.edu/Faculty/Rainwater/COSC3355/Animations/diskschedulingscan.htm
http://cs.uttyler.edu/Faculty/Rainwater/COSC3355/Animations/diskschedulingscan.htm

83

RAID
! Redundant Array of Inexpensive Disks

" A set of physical disk drives seen as a single logical
drive by the system (OS)

" Data (individual files) are distributed across multiple
physical drives
Access can be faster, access multiple disks to get the data
Controller controls mapping and setup of RAID structure on

the group of disks
OS sees the equivalent of a single disk

" Different levels of optimization, different approaches

84

RAID Level 0
! Individual disk controllers are replaced by a single RAID 0

controller than simultaneously manages all disks. It is
capable of simultaneously transferring from all the disks

! Each disk is divided into stripes. A stripe may be a block,
a sector, or some other unit.

! When a large write to disk is requested the RAID 0
controller will break the requested data into strips. The
first strip will be placed on the first disk, the second on the
second disk and so on in a round robin fashion.

Stripe 12
Stripe 8
Stripe 4
Stripe 0

Stripe 13
Stripe 9
Stripe 5
Stripe 1

Stripe 14
Stripe 10
Stripe 6
Stripe 2

Stripe 15
Stripe 11
Stripe 7
Stripe 3Stripes

indicated
by colours

RAID Level 0
! Dividing the data between N disks allows the RAID 0

controller to read/write the data N time faster
! If two requests are pending there is a good chance they

are on different disks and can be serviced
simultaneously. This reduces the average time in the I/
O queue

! Works best for large read/write requests
! Decreases mean time to failure over single large disk
! Also called striping, no redundancy (so not true RAID)

85

86

RAID Level 1
! All data is duplicated, each logical strip is mapped to two

different disks (same data stored in the two strips).
! Each disk has a mirror disk that contains the same data

copy.
! To recover from failure on one disk read the data from the

mirror disk

Stripe 12
Stripe 8
Stripe 4
Stripe 0

Stripe 13
Stripe 9
Stripe 5
Stripe 1

Stripe 14
Stripe 10
Stripe 6
Stripe 2

Stripe 15
Stripe 11
Stripe 7
Stripe 3

Stripe 12
Stripe 8
Stripe 4
Stripe 0

Stripe 13
Stripe 9
Stripe 5
Stripe 1

Stripe 14
Stripe 10
Stripe 6
Stripe 2

Stripe 15
Stripe 11
Stripe 7
Stripe 3

87

RAID Level 1
! Each disk has a mirror disk that contains the same data.
! A read request can be serviced by either disk containing

the data (choose faster of the two available reads)
! A write request requires both disks containing the data to

be updated. (limited by slower or two writes)
! Expensive, requires double the storage capacity
! Useful, providing real time backup
! If the bulk of I/O requests are reads can approach double

the access speed of RAID0
! (Details omitted for RAID2-6)

Summary
! Hardware Principle

" Device controller: between devices and OS
" Memory mapped I/O Vs. I/O port number
" DMA vs. Interrupt

! Software Principle
" Programmed I/O: waste CPU time
" Interrupts: overheads
" DMA: offload I/O from CPU

88

Summary (Cont.)
! Four layers of I/O software

" Interrupt handlers: context switch, wake up
driver when I/O completed

" Device drivers: set up device registers, issue
commands, check status and errors

" Device-independent software: naming,
protection, buffering, allocating

" User-space software: make I/O call, format I/
O, spooling

89

Summary (Cont.)
! Disks

" Structure: cylinder $ track $ sector
" Disk scheduling algorithms: FIFO, SSTF,

SCAN, C-SCAN

90

