
1

CMPT 300
Introduction to Operating Systems

Page Replacement Algorithms

Demand Paging
 Modern programs require a lot of physical memory

 But they donʼt use all their memory all of the time
 90-10 rule: 90% of their time in 10% of their code
 Wasteful to require all of userʼs code to be in memory

 Solution: Swap overflowed memory to disk

O
n-C

hip
C

ache

Control

Datapath

Secondary
Storage
(Disk)

Processor

Main
Memory
(DRAM)

Second
Level
Cache

(SRAM)

Tertiary
Storage
(Tape)

Caching

2

Page
Table

TLB

Physical
Memory
512 MB

Disk
500GB

∞

Virtual
Memory

4 GB

Illusion of Infinite Memory

 Disk is larger than physical memory ⇒
 In-use virtual memory > physical memory
 U (VM_proc) larger than physical memory

 Principle: Transparent Level of Indirection (page table)
 Supports flexible placement of physical data (disk or mem)
 Variable location of data transparent to user program

3

Demand Paging is Caching

 Since Demand Paging is Caching, must ask:
 What is block size? Page

 Search for a page in the cache when look for it?
 Check TLB, Check PageTable

 Replacement policy. No space in mem? (i.e. LRU)
 This requires more explanation… (kinda LRU)

 What happens on a miss
 Refill from disk

 What happens on a write? (write-through, write back)
 Write-back. Need dirty bit!

4

Demand Paging Example
 Demand Paging like caching, can compute avg.

access time! (“Effective Access Time”)
 EAT = Hit Rate x Hit Time + Miss Rate x Miss Time

 Example:
 Memory = 200 ns; Average page-fault = 8 ms
 p = Miss Prob., 1-p = Probably of hit
 EAT = (1 – p) x 200ns + p x 8,000,000ns

 = 200ns + p x 7,999,800ns

 1 miss out of 1,000 causes a page fault, then
 EAT = 8.2 μs: 40x slowdown

 What if want slowdown by less than 10%?
 200ns x 1.1 < EAT ⇒ p < 2.5 x 10-6 ; 1 fault in 400000!

5

What Factors Lead to Misses?
 Compulsory Misses: First-access to new pages

 How might we remove these misses?
 Prefetching: loading them into memory before needed

 Capacity Misses: Not enough memory.
 How to increase size?

 Increase amount of DRAM (how cheap?) (not quick fix!)
 Adjust budget for each process

 Policy Misses: Pages in memory, kicked out prematurely
 Better replacement policy??

6

Replacement policy

 Why do we care about Replacement?#
 The cost of being wrong is high: must go to disk
 Must keep important pages in memory, not toss

them out

 The simplest algorithm:
 Random
 Typical solution for TLB. Simple hardware
 Unpredictable – makes it hard to make real-

time guarantees

7

Recall: What is in a Page Table Entry (PTE)?

 Page frame number. Physical memory address of this page
 Present/absent bit, (valid bit) : 1 : the page is in memory. 0: the page is

NOT currently in memory. Page fault to get page from disk.

 Protection bits accesses permitted on the page. Read, Write, and EXE.
 Modified (M) bit, also called dirty bit, Page is written. Writeback on swap out
 Referenced (R) bit, is set whenever a page is Read/Write.

 M and R bits are very useful to page replacement algorithms
 Caching disabled bit, Device registers. Memory Mapped I/O

8

R & M bits
 Referenced (R) bit : Page recently used.

 Set to 1 when page is Read/Write
 OS defines a clock period. Every clock period, the R bit for

each page is reset to 0.
 R=0 page is old (not used for some time)
 R=1 page is new (recently used)

 Modified (M) bit indicates if the page has been
modified (written to)
 The flag is reset when the page is saved to disk
 When a page is removed from physical memory

 M=1 it will be saved to disk
 M=0 it will be abandoned and not saved to disk

9

 PTE helps us implement demand paging
 Present ⇒ Page in memory, PTE points at physical page
 Absent ⇒ Use PTE to find it on disk

 Absent PTE ⇒ Page fault
 Choose Old page; Writeback, if necessary.

 Change its PTE and any cached TLB to be invalid

 Load new page into memory from disk

 Update PTE, invalidate TLB for new entry; Restart thread

 TLB for new page will be loaded when thread continues!
 While pulling pages off disk, OS runs another process

Demand Paging Mechanisms

10

Steps in Handling a Page Fault

11

• Optimal (OPT)
• Not recently used (NRU)
• First-In, First-Out (FIFO)
• Second chance (SC)
• Least recently used (LRU)
• Not frequently used (NFU)
• Aging algorithm
• Clock algorithm
• Working set
• WSClock

Page Replacement Algorithms

OPT page replacement

 Replace page that wonʼt be used for the
longest time

 Optimal, but infeasible in practice, since
canʼt really know future…

 Good Baseline (canʼt do better)

13

14

Not recently used (NRU)
 Use the referenced and modified bits in the page

table entries. 4 possibilities:
1. NOT referenced, not modified
2. NOT referenced, modified (not recently touched)
3. Referenced, NOT modified
4. Referenced, modified

 When a page fault occurs, prioritize in order 1--4

 If there is more than one page in the lowest group,
randomly choose one page from the group.

 Rationale: replace the page that has not been
referenced or modified.

15

FIFO

 Throw out oldest page.
 Be fair – let every page live in memory for

same amount of time.

 Bad, because it may throw out heavily
used pages instead of infrequently used

 Second-chance algorithm gives recently-
used pages a second chance

Second-Chance Algorithm
 Give recently-used pages a 2nd chance

 If the OLDEST page has R=0, then choose it for
replacement; if R=1, then move to end of LRU stack.

16

Least Recently Used (LRU)

 Replace page that hasnʼt been used for the longest time
 Programs have locality, if page not used for a while,

unlikely to be used in the near future.
 Seems like LRU should be a good approximation to OPT.

 Expensive
 List must be updated at every memory reference!

 In practice, people approximate LRU

Page 6 Page 7 Page 1 Page 2Head

Tail (LRU)

17

 Consider a cache size of 3 page frames,
 Accesses : A B C A B D A D B C B
 FIFO Page replacement:

 FIFO: 7 faults.
 When referencing D, replacing A is bad choice,

since need A again right away

Example: FIFO

C

B

A

D

C

B

A

BCBDADBACBA

3

2

1

Ref:
Page:

18

 Suppose we have the same reference stream:
 A B C A B D A D B C B

 Consider OPT Page replacement:
 5 faults
 Where will D be brought in? Look for page not referenced

farthest in future (C).
 What will LRU do?

 Same decisions as OPT here, but wonʼt always be true!

Example: OPT

C

DC

B

A

BCBDADBACBA

3

2

1

Ref:
Page:

19

 Consider Stream: A B C D A B C D A B C D
 LRU (same as FIFO here):

 Every reference is a page fault!

When will LRU perform badly?

D

C

B

A

D

C

B

A

D

C

B

A

CBADCBADCBA D

3

2

1

Ref:
Page:

20

OPT Does much better
 But itʼs not implementable

21

B

C

DC

B

A

CBADCBADCBA D

3

2

1

Ref:
Page:

Exercise
 Consider a cache size of 3 page frames, and

following reference stream of virtual pages:
 7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1
 Run FIFO, OPT and LRU on this example.

 Answer:
 FIFO: http://cs.uttyler.edu/Faculty/Rainwater/

COSC3355/Animations/fifopagereplacement.htm
 OPT: http://cs.uttyler.edu/Faculty/Rainwater/

COSC3355/Animations/optimalpagereplacement.htm
 LRU: http://cs.uttyler.edu/Faculty/Rainwater/

COSC3355/Animations/lrupagereplacement.htm

22

http://cs.uttyler.edu/Faculty/Rainwater/COSC3355/Animations/fifopagereplacement.htm
http://cs.uttyler.edu/Faculty/Rainwater/COSC3355/Animations/fifopagereplacement.htm
http://cs.uttyler.edu/Faculty/Rainwater/COSC3355/Animations/fifopagereplacement.htm
http://cs.uttyler.edu/Faculty/Rainwater/COSC3355/Animations/fifopagereplacement.htm
http://cs.uttyler.edu/Faculty/Rainwater/COSC3355/Animations/optimalpagereplacement.htm
http://cs.uttyler.edu/Faculty/Rainwater/COSC3355/Animations/optimalpagereplacement.htm
http://cs.uttyler.edu/Faculty/Rainwater/COSC3355/Animations/optimalpagereplacement.htm
http://cs.uttyler.edu/Faculty/Rainwater/COSC3355/Animations/optimalpagereplacement.htm
http://cs.uttyler.edu/Faculty/Rainwater/COSC3355/Animations/lrupagereplacement.htm
http://cs.uttyler.edu/Faculty/Rainwater/COSC3355/Animations/lrupagereplacement.htm
http://cs.uttyler.edu/Faculty/Rainwater/COSC3355/Animations/lrupagereplacement.htm
http://cs.uttyler.edu/Faculty/Rainwater/COSC3355/Animations/lrupagereplacement.htm

Graph of Page Faults Versus The
Number of Page Frames

 One desirable property: More memory the miss rate goes down
 Does this always happen? Seems like it should, right?

 No: Beladyʼs anomaly
 Certain algorithms (FIFO) donʼt have this obvious property!

23

BeLady’s anomaly
 Does adding memory reduce number of page faults?

 Yes for LRU and OPT; not necessarily for FIFO! (Called Beladyʼs anomaly)
 After adding memory:

 With FIFO, contents can be completely different
 In contrast, with LRU or OPT, contents of memory with X frames subset of

contents with X+1 Pages.

D
C

E

B
A

D

C
B

A

DCBA EBADCBA E

3
2
1

Ref:
Page:

CD4

E
D

B
A

E

C
B

A

DCBAEBADCBA E

3
2
1

Ref:
Page:

9 page faults

10 page faults

24

Implementing LRU
 Perfect:

 Timestamp page on each reference
 Keep list of pages ordered by time of reference
 Too expensive to implement in reality

 Replace an old page, not the oldest.
 Hardware techniques

 64-bit counter; n x n matrix
 Software techniques

 Not recently used (NRU)
 Aging Algorithm
 Clock Algorithm

25

LRU in hardware

 Implementation #1:
 64 bit counter, C, incremented on every access
 Each page also has a 64 bit counter
 When page is referenced, C copied to counter.
 Page with lowest counter is oldest.

LRU in hardware

 Implementation #2:
 Given n page frames, let M be a n x n matrix

of bits initially all 0.
 Reference to page frame k occurs.
 Set all bits in row k of M to 1.
 Set all bits in column k of M to 0.
 Row with lowest binary value is least recently

used.

Figure 3-17. LRU using a matrix when pages are referenced in
the order 0, 1, 2, 3, 2, 1, 0, 3, 2, 3.

LRU in hardware:
implementation #2 example

oldest

Not frequently used (NFU)
 A software counter associated with each page,
 At end of each clock period, the operating system

scans all the pages in memory.
 For each page, the R bit (0 or 1), is added to the

counter (arithmetic addition), which roughly keeps
track of how often each page has been
referenced. When a page fault occurs, the page
with the smallest counter is chosen for
replacement.

 Problem: It never forgets!
 So pages that were frequently referenced (during

initialization for example) but are no longer needed
appear to be FU.

29

30

Aging algorithm
 Idea: Gradually forget the past

 A k-bit software counter is associated with each page,
the counter is initialized to 0

 Shift all counters to right 1 bit before R bit is added in.
 Then R bit is added to MSb (Most Significant

(leftmost) bit)
 Page with lowest counter value is chosen for removal.

Aging algorithm example

 Shown are six pages for five clock periods. The five clock
periods are represented by (a) to (e).

31

Aging vs. LRU

 Aging has a finite history of memory
 Consider aging with an 8-bit counter with

value 0. It cannot distinguish between a page
referenced 9 clock periods ago, and another
referenced 1000 block periods ago.

 If the counter has infinitely many bits, then it
implements LRU exactly.

 8 bits generally enough#
 If clock period is 20ms, a history of 160ms is

perhaps adequate
32

Clock Algorithm
 A variant of second-chance algorithm
 Recall “R” (reference) bit in PTE:

 Clear it at page-fault events
 Arrange physical page frames in a circle with

single clock hand. On each page fault:
 Advance clock hand (not real-time)
 Check R bit:

 R=1→used recently; clear and leave alone
 R=0→selected candidate for replacement

 Will always find a page or loop forever?
 Even if all R bits set, will eventually loop around

⇒ FIFO

33

Clock Algorithm

Set of all pages
in Memory

Single Clock Hand:
Advances only on page fault!
Check for pages not used recently
Mark pages as not used recently

 What if hand moving slowly?
 Not many page faults and/or find page quickly

 What if hand is moving quickly?
 Lots of page faults and/or lots of reference bits set

 Animation: http://gaia.ecs.csus.edu/~zhangd/oscal/ClockFiles/Clock.htm
(usrname/passwd: CSC139/csus.os.prin)

 Uncheck “use modified bit” button. Note that it uses “U” instead of “R” for
the reference bit. 34

http://gaia.ecs.csus.edu/~zhangd/oscal/ClockFiles/Clock.htm
http://gaia.ecs.csus.edu/~zhangd/oscal/ClockFiles/Clock.htm

Nth Chance version of Clock
Algorithm

 Nth chance algorithm: Give page N chances
 OS keeps counter per page: # sweeps
 On page fault, OS checks R bit:

 R=1⇒clear R bit and also set counter to N
 R=0⇒decrement count; if count=0, replace page

 Means that clock hand has to sweep by N times

 How do we pick N?
 Large N? Better approx to LRU

 N ~ 1K, good approximation
 Small N? More efficient

 Otherwise might have to look a long way to find free page

 What about dirty pages?
 Overhead to replace a dirty page, give more chance?

 Clean pages, use N=1; Dirty pages, use N=2
35

Allocation of Page Frames
 Vend physical frame among different procs?

 Does every process get the same fraction?
 Should we completely swap some processes?

 Each process needs min. guarantee
 Want to make sure that all processes that are

loaded into memory can make forward progress

 Example: IBM 370: 6 pages to handle SS
MOVE instruction:
 instruction is 6 bytes, might span 2 pages
 2 pages to handle from
 2 pages to handle to 36

Possible Replacement Scopes:

 Possible Replacement Scopes:
 Global replacement – process selects

replacement frame from entire set; one
process can take a frame from another
 Achieve effective utilization.

 Local replacement – each process selects
from only its own set of allocated frames
 Achieve memory isolation among processes

37

Fixed/Priority Allocation
 Equal allocation (Fixed Scheme):

 Every process gets same amount of memory
 Example: 100 frames, 5 processes⇒process gets 20

frames
 Proportional allocation (Fixed Scheme)

 Allocate according to the size of process
 Computation proceeds as follows:
! ! si = size of process pi and S = Σsi
m = total number of frames
ai = allocation for pi =

 Priority Allocation:
 Proportional scheme using priorities rather than size

 Same type of computation as previous scheme
 Possible behavior: Select lower priority process.

38

Page-Fault Frequency Allocation
 Can we reduce Capacity misses by dynamically

changing the number of pages/application?

 Establish “acceptable” page-fault rate
 If actual rate too low, process loses frame
 If actual rate too high, process gains frame

 Question: What if we just donʼt have enough memory?
39

Thrashing

 If a process does not have “enough” pages, the page-fault rate is very high. This leads to:
 low CPU utilization
 operating system spends most of its time swapping to disk

 Thrashing ≡ a process is busy swapping pages in and out
 Questions:

 How do we detect Thrashing?
 What is best response to Thrashing?

40

 Program Memory Access
Patterns have temporal
and spatial locality
 Group of Pages

accessed along a given
time slice called the
“Working Set”

 Working Set defines
minimum number of
pages needed for
process to behave well

 Not enough memory for
Working Set⇒Thrashing
 Better to swap out

process?

Locality In A Memory-Reference
Pattern

41

Working-Set Model

 Δ ≡ working-set window ≡ fixed number of page references
 Example: 10 million references

 WSi (working set of Process Pi) = total set of pages referenced in
the most recent Δ (varies in time)
 if Δ too small will not encompass entire locality
 if Δ too large will encompass several localities
 if Δ = ∞ ⇒ will encompass entire program

 D = Σ|WSi| ≡ total demand frames
 if D > m ⇒ Thrashing

 Policy: if D > m, then suspend one of the processes
 This can improve overall system behavior by a lot!

42

What about Compulsory Misses?
 Recall that compulsory misses are misses that occur

the first time that a page is seen#
 Pages that are touched for the first time
 Pages that are touched after process is swapped out/

swapped back in
 Clustering:

 On a page-fault, bring in multiple pages “around” the
faulting page

 Since efficiency of disk reads increases with sequential
reads, makes sense to read several sequential pages

 Working Set Tracking:
 Use algorithm to try to track working set of application
 When swapping process back in, swap in working set

43

Maintaining WS: A Simple Way
 Store page numbers in a shift register of length k,

and with every memory reference, we do
 Shift the register left one position, and
 Insert the most recently referenced page number on

the right
 The set of k page numbers in the register is the

working set.
 Too expensive to do this for each memory

reference.

p1 p2 … pk

the oldest page

p2 p3 … p(k+1)
Page (k+1) is

referenced The most recent page

45

Implementation:
Defining a working set

 Since not practical to keep history of past Δ
memory references, use working set window of τ
ms.
 e.g., instead of defining working set as those pages

used during previous 10 million references, define it
as pages used during past working set window of
100ms

 Note: not wall-clock time! If a process starts running
at time T, and runs for 40ms at time T+100ms, itʼs
execution time is 40ms. (the other 60ms is used for
running other processes)

 We use the term current virtual time to denote
execution time of a process since its start
 Working set of a process is set of pages it referenced during

the past τ ms of virtual time

46

Working set algorithm
 Recall: the R bit of a PTE is cleared every clock period.

Assume the working set window τ ms spans multiple clock
periods.

 On every page fault, the page table is scanned to look for a
suitable page to evict. The R bit of each PTE is examined.
 If R=1 the page has been accessed this clock period and is part of

WS.
 Its Time of last use is updated to the present time.
 If R=1 for all pages in memory, a random page is evicted

 If R=0 the age (difference between the present time and Time of last
use) is determined.
 If age > τ, then the page is no longer considered to be part of

WS. It may be removed and replaced with the new page
 If age ≤ τ, then the page is still in WS. If all pages in physical

memory are still in WS, the oldest one is chosen for eviction

Working set algorithm example

47

WSClock algorithm
 Scanned page-table at every fault until a victim is located

 WSClock :Clock algorithm + Working set algorithm:
 Instead of clearing R on timer, clear it at page-fault events

 Arrange physical page frames in a circle with single
clock. On each page fault:
 Advance clock hand (not real time)
 Check R bit:

 R=1→used recently; clear and leave alone
 R=0→additional checking for page age:

 If age > τ, not in WS; selected candidate for replacement
 If age ≤ τ, in WS. If all pages in physical memory are still in WS, the oldest

one is chosen for eviction

 Worst-case same as WS algorithm, but avg. case better
 (Note: this is a simplified version of WSclock. The algorithm in

textbook is more complex and uses the modified bit.)
48

49

 Operations of
the WSClock
algorithm.

 (a) and (b) give
an example of
what happens
when R = 1. (c)
and (d) give an
example of R =
0 and age > τ.

Summary
 Replacement algorithms

 OPT: Replace page that will be used farthest in future
 FIFO: Place pages on queue, replace page at end
 Second-chance: giving recently-used pages a second chance
 LRU: Replace page used farthest in past
 Approximations to LRU

 NFU & Aging:
 Keep track of recent use history for each page

 Clock Algorithm:
 Arrange all pages in circular list
 Sweep through them, marking as not “in use”
 If page not “in use” for one pass, than can replace

 Nth-chance clock algorithm
 Give pages multiple passes of clock hand before replacing

 Working Set:
 Set of pages touched by a process recently

 Working set algorithm:
 Tries to keep each working set in memory

 Thrashing: a process is busy swapping pages in and out
 Process will thrash if working set doesnʼt fit in memory
 Need to swap out a process

50

51

Summary
Algorithm Comment

Optimal Not implementable, good as benchmark
NRU Very crude
FIFO Might throw out important pages
Second chance Big improvement over FIFO
Clock Realistic
LRU Excellent, but difficult to implement exactly
NFU Fairly crude approximation to LRU
Aging Efficient algorithm approximates LRU well
Working set Somewhat expensive to implement
WSClock Good efficient algorithm

