CMPT 300

Introduction to Operating Systems

Virtual Memory

Agenda

Virtual Memory Intro

Page Tables

Translation Lookaside Buffer
Demand Paging

System Calls

Summary

Overarching Theme for Today

“Any problem in computer
science can be solved by an
extra level of indirection.”

— Often attributed to Butler Lampson
(Berkeley PhD and Professor,

Turing Award Winner), who in turn,
attributed it to David Wheeler, a

— L . -

British computer scientist, who Butler Lampson
also said “... except for the problem
of too many layers of indirection!”

Virtualizing Resources

 Different Processes share the same HW
— multiplex CPU (finished: scheduling)
— multiplex and share Memory (Today)
— multiplex disk and devices (later in term)

 Why worry about memory sharing?

— complete working state of a process and/or kernel is
defined by its data in memory (and registers)

— Don’t want different processes to have access to each
other’s memory (protection)

Basic Memory Management Concepts
Address spaces

+ Physical address space — The address space
supported by the hardware

> Starting at address 0, going to address MAX___

+ Logical/virtual address space — A process’s
view of its own memory

» Starting at address 0, going to address MAX_ . oq

But where do addresses come from?
MOV r0, @QOxfffa620e

MAX

MAX

Sys

prog

Program

+ Which is bigger, physical or virtual address
space?
» A. Physical address space
» B. Virtual address space
» C. It depends on the system.

Review: Memory Management

~FFFF FFFF,_

— Static storage: global variable
storage, basically permanent,
entire program run

— Stack: local variable storage,
parameters, return address

— Heap (dynamic storage):
malloc () grabs space from
here, free () returns it

global data

code

Basic Concepts
Address generation

0
Library
Routines
—— o, 0 100
. push ...
f;o() PEShSE. inc SP, 4 :
Tne St X jmp 75 jmp 175
: jmp foo] .
end P foo: 75 175
Compilation Assembly Linking

+ The compilation pipeline

1000
Library

Routines

1100

jmp 1175

Loading

Program Relocation

¢+ Program issues virtual addresses
+ Machine has physical addresses.

¢ |If virtual == physical, then how can we have multiple
programs resident concurrently?

+ Instead, relocate virtual addresses to physical at run
time.

» While we are relocating, also bounds check addresses for
safety.

+ | can relocate that program (safely) in two registers...

Basic Concepts (Cont’d.)

Address Translation

MAX

Sys
MEMORY

EXCEPTION

Logical t Physical

@ Addresses : @ Addresses 1200
 husical

T T gddress |

1000 | _space

Instructions 1000]

MAX - -
i)gProgram Limit Base]
D Register Register —

logical -
address -

space o

+ With base and bounds registers, the OS needs a hole
In physical memory at least as big as the process.
> A. True
» B. False

Evaluating Dynamic Allocation Techniques
The fragmentation problem

+ External fragmentation MAX

» Unused memory between units of
allocation
» E.g, two fixed tables for 2, but a party of 4
+ Internal fragmentation
» Unused memory within a unit of allocation__.-----="""_.-~
» E.g.,apartyof3at __.----T7" g
a table for 4
Program Code
(“teXt”)
Data

Execution Stack

-

>

~
~
S
| o
(

Processes

Recall: Single and Multithreaded

code data files code data files
registers stack registers ||| registers ||| registers
stack stack stack

thread —» ; ;

single-threaded process
 Threads encapsulate concurrency
— “Active” component of a process

« Address spaces encapsulate protection
— Keeps buggy program from trashing the system

; ;4—— thread|

multithreaded process

Aspects of Memory Multiplexing

* Controlled overlap:

— State of threads should not collide in physical memory.
Obviously, unexpected overlap causes chaos!

— Converse : ability to overlap when desired (for communication)

 Translation:

— When translation exists, processor uses virtual addresses,
physical memory uses physical addresses. (allows relocation)

 Protection:

— Prevent access to private memory of other processes

 Different pages of memory can be given special behavior (Read Only,
Invisible to user programs, etc).

* Kernel data protected from User programs. programs from each other

Uniprogramming

* Uniprogramming (no Translation or Protection)

— Application always runs at same place in physical memory
since only one application at a time

— Application can access any physical address

Operating
System

Application

OxXFFFFFFFF

alid 32-bit
ddresses

Vv
A

0x00000000

— Application given illusion of dedicated machine by giving it

reality of a dedicated machine

The Problem

 What if less physical memory than full
address space?

— 32 bit addresses =>4 GB address space, RAM
hasn’t always been larger than 4 GB.

— 64 bit addresses => 16 exibytes.

» What if we want to run multiple
programs at the same time?

The Problem

* Limited physical memory, one or more
programs each with their own address

~ FFFF FFFF, stack ~ FFFF FFFF, stack

G |

Hgpx/772772% t

heap heap
static data static data
Physical
code . code Y
™ Opex Opex Memory

Application 1 Application 2

Multiproarammina (Version with

 Can we protefgtprograms from each other

without translation
OxFFFFFFFF
Operating « Bound=0x1000

Application2 OXOOOZOEOO Base:OXZOOO

Applicationl
0x00000000

— Yes: use two special registers base and bound to prevent
user from straying outside designated area

* If user tries to access an illegal address, cause an error

ldea #1: Segmentation

Location-independent programs
Program doesn’t need to specify its absolute
memory addresses; need for a

Protection
Independent programs should not affect each other
inadvertently: need for a limit (or bound) register

Segmentation Hardware

Segment Length

Limit
Register
Flw ... Effective
—
5 Address
Base
Register
:is.r:aé.r:.a..r.r.] -
Address
Space

g Bounds
"\~ Violation?

Physical
Address

4

Base Physical Address

A 4

current
segment

\ 4

Use base and limit registers to perform address translation.

Trap to OS if bounds violation detected (“seg fault”/”core dump”)

Physical Memory

Segmentation Example

subroutine stack
1400 P
! segment 3 segment 0
2400
symbol
segment 0 table
Fo e Fatrerane |
limit_| base_
ment 4 0| 1000 | 1400
S i 1| 400 | 6300 3200
|
\ main 2| 400 | 4300
program 3| 1100 | 3200 segment 3
411000 | 4700
segment table 4300
segment 1 segment 2
nt2
4700 []
logical address space segment 4
5700
6300
nt 1
6700
physical memory

* Animation: http://cs.uttyler.edu/Faculty/Rainwater/COSC3355/Animations/
segmentation.htm 21

http://cs.uttyler.edu/Faculty/Rainwater/COSC3355/Animations/segmentation.htm
http://cs.uttyler.edu/Faculty/Rainwater/COSC3355/Animations/segmentation.htm
http://cs.uttyler.edu/Faculty/Rainwater/COSC3355/Animations/segmentation.htm
http://cs.uttyler.edu/Faculty/Rainwater/COSC3355/Animations/segmentation.htm

Processes Sharing Physical

procs 4 & 5 procs 2 & 5 free

0S arrive oS leave oS

> | °pece > |sSpace

proc 1

proc 2
proc 4

proc 4 a

proc 3 proc 3

proc 5

As processes come and go, the storage is “fragmented”. Therefore, at some stage
processes have to be moved around to compact the storage.

Animation: http://cs.uttyler.edu/Faculty/Rainwater/COSC3355/Animations/
multiplepartcma.htm

22

http://cs.uttyler.edu/Faculty/Rainwater/COSC3355/Animations/multiplepartcma.htm
http://cs.uttyler.edu/Faculty/Rainwater/COSC3355/Animations/multiplepartcma.htm
http://cs.uttyler.edu/Faculty/Rainwater/COSC3355/Animations/multiplepartcma.htm
http://cs.uttyler.edu/Faculty/Rainwater/COSC3355/Animations/multiplepartcma.htm

Agenda

Virtual Memory Intro

Page Tables

Translation Lookaside Buffer
Demand Paging

System Calls

Summary

ldea #2: Page Tables to avoid
Fragmentation

Divide memory address space into equal
sized blocks, called pages

— Page: a unit of memory translatable by memory
management unit (MMU)

— Traditionally 4 KB or 8 KB

Use a level of indirection to map program
addresses into physical memory addresses

— One indirection mapping per address space page
"his table of mappings is called a Page
able

Address Space (Process) switch: change

Two Views of Memory

Virtual Physical
MMU/ | Addresses
TLB

Addresses
Untranslated read or write

* Address Space:

— All the addresses and state a process can touch
— Each process and kernel has different address space

« 2 views of memory:
— CPU (what program sees, virtual memory)
— Actual memory (physical memory)
— Translation box converts between the two views

* Translation helps to implement
— Portability: program can be linked separately
— Protection: programs don’t overlap with each other

Processes and Virtual Memory

* Allows multiple processes to
simultaneously occupy memory
— provides protection -
— process cannot Rd/Wr memory from another

» Address space - give each program the
illusion of own private memory
— Suppose code starts at address 0x00400000. But
different processes have different code, both residing

at the same (virtual) address. So each program has a
different view of memory.

Paging Terminology

* Program addresses called virtual
addresses

— Space of all virtual addresses called virtual memory

— Divided into fixed-granularity (typically 4KB) pages
indexed by Virtual Page Number (VPN).

 Memory addr. called phys. addresses
— Space of all phys. addr. called physical memory

— Divided into pages indexed by Physical Page
Number (PPN).

Paged Memory Systems

Virtual memory address is split into:

Virtual Page # ‘ Offset 32-bit memory address
20 bits 12 bits 4KB pages

Offset refers to which byte in the page.
Page# refers to page in address space.

PageTable is a “MAP” : stores VPN to PPN,
a page in physical memory.

Paged Memory Systems

e Page table contains the physical address of the base
of each page:

0 . B . 0
This Address : 1 2
Space ; 2 ><
consists of 3 1 :
8x 4K Byte A 4 Physical
5 5 Memory
pages or c
16768 Bytes 6 7 3
7
_ Page Table 4
Virtual (contains 7
Address VPN => PPN
Space mapping)

Page tables make it possible to store the pages of a
program non-contiguously.

Address Translation via Page
Table

virtual address | Virtual Page Number Page Offset
valid PageTable
- Physical Page Number
hysical address | Physical Page Number Page Offset

* Generally, VPN has more bits than PPN, since phys.
mem. is smaller (# virtual pages = # physical page)

* Page offset determines page size, which is the same
for both virt. and phys. memory

Addr Translation Example

Virtual address

:‘; ' :‘;'A' '/'7‘ /}‘: -/. " 1,' .l c‘ I ,' l/ I l '(' !. :": L B B " /.] 'A'

Virtual page number Page offset

| |
Current Sys.: Physical address : 48 bits

Virtual address : 64 bits

| Physical page number ‘ Page offset I

Ph'_‘y"‘-i‘ al address

Virtual Address: 32 bits

Physical Address: 29 bits

Page size: 2A12=4KB

Note: Page offset here refers to byte address within a page (e.g., 4KB);

What is in a Page Table Entry
(PTE)?

. Flgure on Slide 24 is simplified. Several Additional bits in PTE
— Physical Page Number (PPN), also called Page frame number

— Present/absent bit, 1, in memory and O not in memory. Accessing a page
table entry with this bit set to 0 causes a page fault to get page from disk.

— Protection bits tell what kinds of access are permitted on the page. 3 bits,
one bit each for enabling read, write, and execute.

— Modified (M) bit, also called dirty bit, is set to 1 when a page is written to

— Referenced (R) bit, is set whenever a page is referenced, either for reading or
writing.
* M and R bits are very useful to page replacement algorithms

- Cachinqhdisabled bit, important for pages that map onto device registers
t

rather than memory
Caching
disabled Modified Present/absent
/ / /
7 14 14 T
é/// (Physical) Page frame number
A |, .
/ SR

Other possible bits Referenced Protection

Separate Address Space per

Proc 1

Page Table

Proc 2

Page Table

—p

Proc 3 VA1

Page Table

e Each program has own page table

e Page table contains an entry for each program page

Physical Memory

33

Protection + Indirection =
Virtual Address Space

~ FFFF FFFF, stack ~ FFFF FFFF,,, stack
77 _¢_ 1 7 7 !
6 6
5 5
4 4
g \ +
eap 2) eap
static data 1 1 static data
0 0
code code
~0hex Page Page ~0hex
Table Table
Application 1 Application 2
Virtual Memory Virtual Memory

Physical Memory

Protection + Indirection =
Virtual Address Space

~ FFFF FFFF, stack
- _‘_ — 5
6
5
1 4
- T =1 3
heap 2 ‘
static data 1
0 \
code
~0,., Page
Table
Application 1

Virtual Memory

Stack 1
Heap 1
Static 1
Code 1

Physical Memory

~ FFFF FFFF,
7
6
5
4
3
2
1
0
Page o,
Table

stack

t

heap

static data

code

Application 2
Virtual Memory

Protection + Indirection =
Virtual Address Space

~ FFFF FFFF, stack ~ FFFF FFFF,,, stack
27 7 [7 !
6 6
5 5
4 4
2N \ t
heap heap
2 \ Stack 2 2
static data 1 Heap 2 ;? 1 static data
0 ‘ Static 2 0
d d
~0,,, “o0e Page —— Page ~0,., “ofe
e Tabl Stack 1 Table e
able
. Heap 1
Application 1 Statii 1 Application 2
Virtual Memory Code Virtual Memory

Physical Memory

Dynamic Memory Allocation

~ FFFF FFFF stack

hex

heap

~ FFFF FFFF

——— —

7/

—

static data

O FRL N WP UTO

code

hex

O, N W PH U O

Application 1
Virtual Memory

Page
Table

malloc(4097)

Physical Memory

stack

t

heap

static data

code

Application 2

Virtual Memory

Dynamic Memory Allocation

~ FFFF FFFF

~ FFFF FFFF

stack
6 6
| ® ;
————1 Stack’ 2 4
h 3 Heap 1 3
eap 2 { Stack 2 2
static data 1 Hean 2)‘/ 1
0 ‘ static2 ¥ b
code Code 2 f/
Page Page
Stack 1
Table Table
o Heap 1
Application 1 Static 1
Virtual Memory Code
malloc(4097) Physical Memory

stack

\
t

heap

static data

code

Application 2
Virtual Memory

Recursive function call

Controlled Sharing

~ FFFF FFFF, stack ~ FFFF FFFF,,, stack
7 _‘_ 1 7 7 ‘
6 6
5 5
4 4
V2% % : t
heap) l) heap
static data 1 Stack 2 / 1 static data
0 ‘ Heap 2 / 0
_ code p Static 2 Page _ code
ohex age StaCk 1 ohex
Table Heap 1 Table
Application 1 Static 1 Application 2
Virtual Memory Code Virtual Memory

Physical Memory Shared Code Page
“X” Protection Bit

Controlled Sharing

~ FFFF FFFF, stack ~ FFFF FFFF,,, stack
77 _¢_ -1 7 7 !
6 6
5 5
4 4
2N \ t
heap 2 {) heap
static data 1 1 static data
0 ‘ Stack 2 0
code Heap 2 code
~0hex Page StaCk 1 Page ~0hex
Table Heap 1 Table
Application 1 Static Application 2
Virtual Memory Code Virtual Memory
Shared Globals) shared Code P
“RW” Protection Physical Memory area Lode Fage

) “X” Protection Bit
Bits

Address Translation & Protection

Virtual Address Virtual Page No. (VPN)
Kernel/User Mode

Read/Write

¢

Exception?

Physical Address Physical Page No. (PPN)

Every instruction and data access needs address translation and protection checks

offset

v

offset

Animation: http://cs.uttyler.edu/Faculty/Rainwater/COSC3355/Animations/

paginghardware.htm

http://cs.uttyler.edu/Faculty/Rainwater/COSC3355/Animations/pagingmodel.htm

http://cs.uttyler.edu/Faculty/Rainwater/COSC3355/Animations/pagingexample.htm

41

http://cs.uttyler.edu/Faculty/Rainwater/COSC3355/Animations/paginghardware.htm
http://cs.uttyler.edu/Faculty/Rainwater/COSC3355/Animations/paginghardware.htm
http://cs.uttyler.edu/Faculty/Rainwater/COSC3355/Animations/paginghardware.htm
http://cs.uttyler.edu/Faculty/Rainwater/COSC3355/Animations/paginghardware.htm
http://cs.uttyler.edu/Faculty/Rainwater/COSC3355/Animations/pagingexample.htm
http://cs.uttyler.edu/Faculty/Rainwater/COSC3355/Animations/pagingexample.htm
http://cs.uttyler.edu/Faculty/Rainwater/COSC3355/Animations/pagingexample.htm
http://cs.uttyler.edu/Faculty/Rainwater/COSC3355/Animations/pagingexample.htm

Where Should Page Tables
Reside?

« Space required prop to the address space, ...

— Space requirement is large:
e.g., 232 byte virtual address space, 4K(2'%)byte page size
= 220 PTEs (per process)

— If each PTE is 4 bytes, then total bytes 4 * 220 = 4MB

« Each process has its own page table. Suppose
50 processes running on a system, then
200MB of memory used for page tables!

Where Should Page Tables
Reside?

* Too large to keep in cache. Keep in main
memory

— Keep physical address of page table in P-Table Base
Reg..

— One access to retrieve the physical page address.
— Second memory access to retrieve the data word
— Doubles the number of memory references!
e Use TLB to avoid the double memory access (later)
 What if Page Table doesn’t fit in memory?

— Multiple levels of page tables, (x86 (32bit) 3 levels x86
(64 bit) 4 levels or

— segmentation + paging (Discussed later)

Page Tables In Physical Memory

—PT User 1

%

----------------------)

BRI PT User 2 =~

User 1 Virtual Address
Space

N

/////////

///////// %:-:-:-:-:-:-:-:-:-:
User 2 Virtual Address ;;;;;g;;;;;;;;;;;;;;;;;;
Space i

%

Physical Memory

44

Segmentation + Paging (Multi-level Translation)

- What about a tree of tables?
- Lowest level page table=memory still allocated with bitmap
- Higher levels often segmented

- Could have any number of levels. Example (top segment):

Virtual
Address:

|
page #0 | V.R l

page #1 | V.R - Offset |

Physical Address

Basez | Limit2 page #3 |V.R,.W
page #4 | N
page #5 V.R,.W heck Pern]
v
Access

Error

Two-level Page Tables

32-bit address: PTES

10

10

P1 index

P2 index

Often the top-most parts and bottom-
most parts of virtual memory are used

— bottom for text and data segments
— top for stack,
— free memory in between.

— The multilevel
few of the sma
the required pages.

12
age offset 1K
page PTEs "

A\

Al

\ v

Fage table may keep a _
ler page tables to cover _

I\

Two-level Page Tables Example

Virtual address (32 bits =» 4 Gbyte virtual address space)

10 bits Root index 10 bits page index Offset

L 4Kb root table

Process v
User table

4-Gb user
address space

Two-level Page Tables Example

31 22 21 12 11 0
U vcctoy-" .'d'_)lc O“SC[|

A 12 4-KByte Page

|

/10 A10 Page Table > Physical Address
Page Directory
—%1 Page-Table Entry | /2 5 >
» Directory Entry L s
_— J '
A 39 1024 PDE » 1024 PTE = 2% Pages
CR3 (PDBR)

*32 bits aligned onto a 4-KByte boundary.
* PDBR: Page Directory Base Register
* PDE: Page Directory Entry "

Inverted Page Tables

* As the size of virtual memory address space grows,
additional levels must be added to multilevel page tables to
avoid that the root page table becomes too large

« Assuming 64-bits address space, 4-Kb page size (12 bits
for page offset), each page table can store 1024 entries, or
10 bits of address space. Thus [(64-12) /10]= 6 levels are

required 2 6 memory accesses for each address translation

 Inverted page tables:

— Indexed by PPN instead of VPN = # entries is equal to # PPNs, which is generally
much smaller than #VPNs

Inverted Page Tables Lookup
Example

pid vpn offset

Index PID W

0x0 | OxA63

Ox18F1B 0x123

Ox18FIB ;—0 Ox1
ppn offset

Ox18FIC| 3 | O0x31AB

Inverted Page Tables

* Consider a simple inverted page table
— One entry per Physical Page.

— The table is now shared by the processes, so each PTE
must contain the pair <process ID, virtual page #>

— Translation : Virtual Page # and Process ID # are
compared against each entry,

— |If a match is found, its index in the inverted page table is
the PPN

Inverted Page Tables

* The search can be very inefficient.

* Solution: Hashed IPT to reduce #
memory accesses (Worst case: all entries)

* Q: Is PPN stored in the table?

* A: No, since the table index is PPN.
Remember that we are doing a reverse
lookup.

Agenda

Virtual Memory Intro

Page Tables

Translation Lookaside Buffer
Demand Paging

System Calls

Summary

Translation Lookaside Buffer

« PageTable entry Cache (128-256 entries).

* Note that is caches the final translation (no
intermediate points on the tree)

—Looks up Virtual Address; returns Physical Address

Splitinto T, 1, O! virtual address VPN pffset
|
!

v R W[[tag PPN (VPN = virtual page number)

(PPN = physical page number)

’ | 1 |

hit? physical address [PPN offset

TLB is Cache

M Data at
emory memory
Address Data/ 2ddress
g : —

next cac

On miss: Access

he level /

main memory

Virtual Page Physical
Number Page
TLB Number

On miss: Access
Page Table in

memory

55

TLB: More Detalils

Cache Page Table Entries in TLB
TLB hit => Single Cycle Translation
TLB miss => Access Page-Table to fill

A memory management unit (MMU) is hardware that walks the page tables and
reloads the TLB

Virtual
Address

Physical
Address

viemor\

Data Read or Write
(untranslated)

TLB Lookup Sequence

Virtual Address

!

I hardware
ES hardware or software
software

Restart instruction

.....

denieV\Wd

Page Fault tindate TIR Protection Physical

............... F It Add
(OS Ioads ai (to c;ilS”:Z)
page)

SEGFAULT 57

What Happens on a Context
Switch?

* Recall each process has its own page table
and virtual address space; But there is
only a single TLB in the system

— TLB entries no longer valid upon process context-
switch

* Options:
— Invalidate TLB: set valid bits of all TLB entries to O

» Simple but might be expensive
 What if switching frequently between processes?

— Include ProcessID in TLB

e This is an architectural solution: needs hardware support

What TLB organization makes
sense?

T

CI Mive

Q)

* Needs to be really fast

— Critical path of memory access

* Thus, this adds to access time (reducing cache
speed)

 However, needs to have very few conflicts!
— With TLB, the Miss Time extremely high!

— This argues that cost of Conflict (Miss Time) is
much higher than slightly increased cost of
access (Hit Time)

TLB organization

How big does TLB actually have to be?
—Usually small: 128-512 entries

—Not very big, can support higher
associativity without much performance
degradation

*TLB is usually fully-associative, but can
also be set-associative

*Q: Is TLB write-through or write-back?

* A: write-through - always keep TLB and
page table consistent

What Actually Happens ona TLB
Miss?

« HW/SW looks at current page table to fill
TLB (may walk multiple levels).

— x86 (hardware), SPARC (hardware and
software)

— If PTE valid (page present in memory), refill
— If PTE marked as invalid (page on disk), causes Page
Fault, then kernel gets the page from disk

 Example: http://cs.uttyler.edu/Faculty/
Rainwater/COSC3355/Animations/
padingtlb.htm

http://cs.uttyler.edu/Faculty/Rainwater/COSC3355/Animations/pagingtlb.htm
http://cs.uttyler.edu/Faculty/Rainwater/COSC3355/Animations/pagingtlb.htm
http://cs.uttyler.edu/Faculty/Rainwater/COSC3355/Animations/pagingtlb.htm
http://cs.uttyler.edu/Faculty/Rainwater/COSC3355/Animations/pagingtlb.htm
http://cs.uttyler.edu/Faculty/Rainwater/COSC3355/Animations/pagingtlb.htm
http://cs.uttyler.edu/Faculty/Rainwater/COSC3355/Animations/pagingtlb.htm

Effective Access Time with TLB

« TLB lookup time = o time unit

* Memory access time = m time unit

— Assume: Page table needs single access (no multilevel page
tables)

— There is no cache
« TLB Hit ratio = 7

« Effective access time:
—EAT=(m+o)n+(2m+o)(1-n)=2m+o0-mn

Valid & Dirty Bits

* TLB entries have valid bits and dirty
bits.

— valid bit: 0 means TLB miss

— The dirty bit has different meanings. Page
corresponding to this TLB entry has been changed.

Cache Addressing

* Cache can be virtually addressed ...

— the virtual address is broken into tag-index-offset to look up
data in cache

— Must either clear cache on context-switch or store Process ID
with the Tag.

— Address translation only needed upon cache miss

* ... or physically addressed

— the virtual address is first converted to a physical address (using
page table)

— the physical address is used to find data in cache

* Virtually addressed caches are faster, but
make sharing data between processes
complicated.

— Next examples assume physically-addressed
cache

Example

- Consider the TLB
+Physically-Addressed
Cache:

— Virtual address = 32 bits
— Physical address = 32 bits
— Fully associative TLB

— Direct mapped cache

— Cache blocksize = one word
(4 bytes)
— Pagesize = 4KB = 27212 bytes

— Cache size = 16K entries =
64KB

Virtual address

| Page number

[Offset]

N.20
: TLB
Valid Tag Frame number

N 12

TLB

TLB hit

Frame number
Physi
Cache Tag

Ofttset
| address
Cache Index

N 16

W 2
Byt

oftset
LValid Tag Cache Data

16

'S
e
e

N.32

4
Data

Address Translation in CPU

INS g — |3 o+ Da g
TLB miss? Page Fault? TLB miss? Page Fault?
Protection violation? Protection violation?

* Need mechanisms to cope with the additional
latency of a TLB:

— Slow down the clock

— Pipeline the TLB and cache access (make it span multiple
page stages)

— Virtually-addressed cache

Parallel TLB &Cache Acc

€SS

/ \ Cache
VA VPN | 0 Index
\ /]
Direct-map Cache
A k
TLB 2'blocks
Y 29-byte block
PA PPN Page Offset
AN /
Tag O\

\"/ Physical Tag
hit?

Index | is available without consulting the TLB
=> cache access and TLB access can begin simultaneously
Tag comparison is made after both accesses are completed to determine cache

hit or miss

Data

Only works if | + O < k (Page Offset has same or more number of bits as Cache Index+Offset)
e.g., won’t work for example on Slide 58 with cache T:1:0=16:14:2

Day in the Life of an
(Instruction) Address

PA PA

PC P e e e e e e e e e —_—> MEM
Instruction \

No Cache, No Virtual Memory
(Note: PA - Physical Address, VA - Virtual Address)

Day in the Life of an
(Instruction) Address

VA (VPN, Offset)

> |
| !
PA (PPN, Offset) PA

TLB | D o o e e S MEM
Hit
Instruction

No Cache, Virtual Memory, TLB Hit

Day in the Life of an

(Instruction) Address

PC ——>‘

TLB

Miss

PTBR _1' lVPN

Page Table
Base Register

<+

—>

 /
PA (PPN, Offset)>

Addr of Page
Table Entry)

Hit

MEM
Instruction \

PA Data Cache, Virtual Memory, TLB Miss, Page Table in DS
(NOTE: PA cache means addresses translation before caching)

Day in the Life of an

(Instruction) Address

VA (VPN, Offset)

PC ——>‘ |
TLB
Miss
PTBR —1, lVPN
Page Table S
Base Register + DS
(Addr of Page
Table Entry)
—> MEM

Miss

2
PA (PPN, Offset)

PA
> MEM —
Instruction
<

PA Data Cache, Virtual Memory, TLB Miss, Page Table not in DS,

PT Access in Memory

Day in the Life of an

(Instruction) Address

VA (VPN, Offset)
PC —>| |
TLB
Miss
PR lVPN
Page Table S
Base Register + D> Miss
(Addr of Page
Table Entry)
MEM PA > 1S i
— (PPN, |
Offset) Instruction
_

PA Data & Instruction Cache, Virtual Memory, TLB Miss, Page Table not in DS,
PT Access in Memory, Instruction in IS

Day in the Life of an
(Instruction) Address

1S

VA (VPN, Offset)
PC —> |
TLB
Miss
PTBR
v ‘i,VPN
Page Table + PA s
Base Register (@Page DS Miss
Table Entry)
PA
PA___ 5| MEM —
(@Page (PPN,
Table Entry) Offset)p

Instruction

MEM :|

Miss

PA Data & Instruction Cache, Virtual Memory, TLB Miss, Page Table Access,
Instruction not in IS, Instruction access in Memory

Hit/Miss possibilities

TLB

hit

hit

hit

hit

miss

miss

miss

miss

Page
hit
hit
miss
miss
hit
hit
miss

miss

Cache Remarks

hit

miss

hit

miss

hit

miss

hit

miss

Possible, page table not checked on TLB hit, data from cache

Possible, page table not checked, cache block loaded from
memory

XXXXXXXXX, TLB references in-memory pages
XXXXXXXXX, TLB references in-memory pages

Possible, TLB entry loaded from page table, data from cache

Possible, TLB entry loaded from page table, cache block loaded
from memory

XXXXXXXXX, cache is a subset of memory

Possible, page fault brings in page, TLB entry loaded, cache
block loaded from memorv

Agenda

Virtual Memory Intro

Page Tables

Translation Lookaside Buffer
Demand Paging

System Calls

Summary

Demand Paging

» What if required pages no longer fit
into Physical Memory?

— Think running out of RAM on a machine

* Physical memory becomes a cache for
disk.

— Page not found in memory => Page Fault, must
retrieve it from disk.

— Memory full => Invoke replacement policy to swap
pages back to disk.

Just Another Level in the Memory
Hierarchy

Regs Upper Level
Instr. Operands N

Faster
‘Cache ‘

IBIocks

‘ L2 Cache ‘
IBIocks

Virtual Memory
Me#%ry{ |Pages
Disk
IFiIes Y
Larger
‘ Tape Lower Level

VM Provides

lllusion of a large, private, uniform store

Protection & Privacy
Several users, each with their private address
Space and one or more shared address spaces

Demand Paging
Provides ability to run programs larger than the
primary memory

Price is address translation on each
memory reference;

And disk so slow that performance suffers if
going to disk all the time (“thrashing”)

OS
user,
Swapping
~Store ~\
Primary \/
Memory
p
—1
:><
N
VA PA

—| Mapping —

Historical Retrospective:
1960 versus 2010

Memory expensive $$%; Now desktop
memory is cheap: <$10 per GB

New Limitation : Power. Apps intensive.

Many apps’ data could not fit
— Big data and analytics is getting there)

Programmers moved data memory and
distk

— OS takes care of it.

BLAST FROM THE PAST

CELL PHONES -
Maximum # of applications limited.

If Total space required exceeds space;
application shut down.

Limited memory space.

Demand Paging in Atlas (1962)

“A page from secondary
storage is brought into the
primary storage whenever it
is (implicitly) demanded by
the processor.”

Tom Kilburn

Primary memory as a cache
for secondary memory

User sees 32 x 6 x 512 words
of storage

Primary

(~physical memory)
32 Pages

512 words/page

Main
Memory

Secondary
(~disk)
32x6 pages

81

Caching vs. Demand Paging

ammmd Cache

Caching

cache entry
cache block (~32 bytes)
cache miss rate (1% to 20%)
cache hit (~1 cycle)
cache miss (~100 cycles)
a miss is handled

in hardware

Ssecondary

memory

Demand paging

page frame
page (~4K bytes)
page miss rate (<0.001%)
page hit (~100 cycles)
page fault (~5M cycles)
a miss is handled

mostly in software

82

Design Issues

Design issues for VM are related to HUGE cost of a miss

— Accessing disk may take MILLIONS of clock cycles
e Cache (SRAM): 5-25ns
« Memory (DRAM): 60-120ns
* Disk: 10-20 million ns

Page size should be large enough to cover page miss cost
— transfer time is much less than access time
— 4KB to 16KB common (newer systems: 32KB - 64KB)

Reducing page fault rate has high priority

— fully-associative page placement

— write back + write allocate (instead of write though) to minimize writes to disk
Page faults are handled in software by OS

— overhead is small compared to cost of disk access

— use clever algorithms to minimize page faults

Demand Paging Scheme

* On a page fault:
— Allocate a free page in memory, if available.

— If no free pages, invoke replacement policy to select
page to swap out.

— Replaced page is written to disk

— Page table is updated - The entry for the replaced page
is marked as invalid. The entry for the new page is filled
in.

Demand Paging

* OS must reserve Swap Space on disk
for each process

— Place to put swapped out pages.

* To grow a process, ask OS
— If unused pages available, OS uses them first
— If not, OS swaps some old pages to disk

— Many page replacement algorithms, discussed
next lecture

Impacton TLB

« Keep track of whether written page

* Set “Page Dirty Bit” in TLB when any
data in page is written

* TLB entry replaced, corresponding
PageDirty Bit is set in PageTable Entry

Agenda

Virtual Memory Intro

Page Tables

Translation Lookaside Buffer
Demand Paging

Summary

Summary #1

* Virtual Memory supplies two features:
— Translation (mapping of virtual address to physical address)
— Protection (permission to access word in memory)

* All desktops/servers have full demand-
paged Virtual Memory

— Portability between machines with different memory
— Share small physical memory among active tasks

 HW protection: User/Kernel Mode (cannot
touch PTE).

Summary #2

 PTE: Page Table Entries

— Includes physical page number

—Cor)1tro| info (valid bit, writeable, dirty, user,
etc

* “Translation Lookaside Buffer” (TLB)
— Relatively small number of entries (< 512)
— Fully Associative
— TLB entries contain PTE and optional ASID

Summary #3

* On TLB miss, page table must be
traversed
— If located PTE is invalid, cause Page Fault

* On context switch/change in page
table

— TLB entries must be invalidated (If
ProcessID is not contained)

» TLB is logically in front of cache

— But can be overlapped with cache access
In some cases

Quiz: Tag Bits

* Q: For a fully-associate cache, tag bits in each cache block
are used to disambiguate among multiple candidate
memory blocks that can map to the same cache block. For
fully-associative page placement, and # virtual pages > #
physical page frames =2 VPN bits > PPN bits. Hence it
seems like a Tag field with VPN bits - PPN bits is needed.
Why are there no tag bits in each page table entry?

* A:The page table performs a one-way translation: it
always maps from virtual page to physical page, but not
vice versa, hence we do not need to distinguish between
multiple possible virtual pages mapped to the same
physical page 2 no need for tags.

Quiz: Write-Through vs Write-
Back

Q: On a write, should we write the new value through to
(memory/disk) or just keep it in the (cache/memory)
and write it back to (memory/disk) when the (cache-
block/page) is replaced?

A:

Write-back has fewer writes to (memory/disk) since
multiple writes to the (cache-block/page) may occur
before the (cache-block/page) is evicted.

For caching, the cost of writing through to memory is
E:ss t%{i\n 100 cycles, so the cost of write through is
earable

For paging, the cost of writing through to disk is on the
order of 1,000,000 cycles. Since write-back has fewer
writes to disk, it is used.

Quiz: True or False

Each process must have its own Page
Table.

True. Each VPN in each address space
must have its own mapping.

Quiz I: True

or False

A program tries to load a word at X that causes a

TLB miss but not a page fa
False:

1. A TLB miss means thatt

ult. Which are True or

ne page table does not

contain a valid mapping for virtual page
corresponding to the address X

2. There is no need to look up in the page table

because there is no page

fault

3. The word that the program is trying to load is

Red)1F, 2F 3F Purple)1T,2F,3F

Blue)1F,2F,3T White) 1T, 2F, 3T

Green)1F,2T,3F

Quiz: Write-Allocate

* Recall “write allocate” in caching: fetch the block
from memory to cache before writing to cache.

* Consider a cache with 2-word (8-byte) cache block size.
Assume we do a 4-byte write to memory location 0x000000
and causes a cache miss. We have to load the entire block
(Bytes 0-7) from memory to cache before we write the
cache tag and the 4-byte data into Bytes 0-3.

— Q: For paging, do we need to fetch the page from disk

to memory before writing to a page?

* A:Yes, if a write causes a page fault; then we have to
load the entire page from disk to memory before we
write the word.

Quiz Il

* Consider a processor with 32-bit virtual
addresses, and 28-bit real addresses.

— A 4-way set associative cache that can hold 512 cache
blocks; cache block size is 128 Bytes

— A 2-way set associative TLB with 64 entries; memory
page size is 4096 Bytes.

 The cache is physically addressed and
memory references use byte addressing.
Describe in detail the steps involved in
processing a load instruction which
results in a TLB hit and a cache hit.

TLB and Cache Both Hit

Cache Tag:Index:Offset is 14:7:7 (physical memory address is 28 bits)

— Offset =7 bits since the cacheline size is 128=2/7 Bytes; Index=7 bits since there are 512/4 = 128 = 277
sets (each set has 4 cache blocks). The remaining higher-order bits are the Tag=28-(7+7)=14

TLB Tag:Index:Offset is 15:5:12 (virtual memory address is 32 bits)

— Offset=12 bits since the page size is 4096 = 2212 Bytes; Index=5 bits since there are 64/2 = 32 = 25 sets
in the TLB (each set has 2 entries). The remaining high-order bits are the Tag = 32-(5+12)=15. The
physical page number in each TLB entry is 28-12=16 bits.

We first look up the memory address in the TLB. We use the index field, bits
16-12 (numbering from 31 for the left—-most bit and O for the right-most one),
to index into the TLB. There are two entries at this index (since the TLB is 2-way
set associative) - we check to see if either entry there has a tag field that
matches the 15 bit tag of the virtual address (bits 31-17). We are told that this
is a TLB hit, so one of the two entries in this set matches the ta%_(and the
corresponding valid bit is "1"). So we take the 16 bit PPN in the TLB and prepend
it to the 12 bit offset of the virtual address to form the 28 bit physical address.

Now we need to use this physical address to look up the data in cache. We use
the index (bits 7-13 of the physical address?}to choose a set, and compare the
tag (bits 27-14 of the physical address) to the 4 tags stored in the chosen set.
Again, we are told it is a cache hit, so the corresponding line in cache has the
desired data. We use the offset field (bits 0-6) of the physical address to tell us
¥vhich byte in the cache block is the first byte of the data that we are looking
or.

TLB and Cache Both Miss

In the case of cache and TLB misses, we start out as before,
but don't find the desired virtual address in the TLB. Thus, we
must use the virtual pa%e number (bits 31-12 of the virtual
address? to index into the page table. There we find the
physical page number. Let's assume the "valid" bit in the page
table is set to "1°, meaning the page actually is in main
memory. (If not, we need to invoke the operating system to go
off to disk and find it). So we form the physical address from
the 16 bit physical page number (in the page table)
concatenated with the 12 bit offset. We also bring this
information into the TLB using the TLB index described earlier.
A{(_;fam, we break the physical pa%e number into tag-index-
offset as described earlier, look tor the data in cache, and
don't find it. Thus, we go to main memory and bring into
cache the block that holds the desired data, kicking out the
least recently block in the set at the referenced index. If the
replaced block happens to be dirty, we must also write it back

to memory.

