
1

CMPT 300
Introduction to Operating Systems 

Introduction to Deadlocks



Preemptible resources
 Resources that can be taken away from a 

process without adversely affecting outcome

 Example: memory (swapping)
 Can make a copy of memory on disk, suspend proc.
 Give memory to another proc. 
 When other process is done replace information from 

disk to memory and proceed with initial task

 Can be thought of as reusable resources

 These are generally not involved in deadlock 2



Non-Preemptable resources
 Cannot be taken away from the present user 

without causing the process to fail

 Eg., Output to CD/printer. Taking the resource 
away and giving it to another proc. produces 
unusable outputs

 Must protect the resource (mutual exclusion)

 Requesting process may be forced to wait or re-
request the resource later

 Sharing may lead to deadlock 3



4

What is a deadlock
 Permanent blocking of a set of processes 

that share multiple resources.
 Each process is waiting for resource that,
 only another proc. in the can make available. 

4



5

A typical deadlock
 Arises when sharing multiple resources

 Process A is using resource 1 and waiting 
for resource 2

 Process B is using resource 2 and waiting 
for resource 1

 Neither process can proceed



Starvation vs Deadlock
 Starvation: thread waits indefinitely

 Example, low-priority thread waiting for resources constantly in use by 
high-priority threads

 Deadlock: circular waiting for resources
 Thread A owns Res 1 and is waiting for Res 2

Thread B owns Res 2 and is waiting for Res 1

 Deadlock ⇒ Starvation but not vice versa
 Starvation can end (but doesnʼt have to)
 Deadlock needs external intervention Res 2Res 1

Process
B

Process
A

Wait
For

Wait
For

Owned
By

Owned
By

6



Bridge Crossing Example
 Each segment of road can be viewed as a resource

 Car must own the segment under them ; acquire segment before moving
 For bridge: must acquire both halves 

 Traffic only in one direction at a time 
 Problem occurs when two cars in opposite directions on bridge:

 If a deadlock occurs, it can be resolved if one car backs up 
 Several cars may have to be backed up 

 Starvation is possible
 East-going traffic really fast ⇒ no one goes west

H
on
k!

7



Trains (Wormhole routing)
 Circular dependency (Deadlock!)

 Each train wants to turn right; Blocked by other trains

 Imagine grid extends in all four directions
 Force ordering of channels (fixed global order on resource requests)

 Protocol: Always go horizontal (east-west) first, then vertical (north-south) 


Disallow



Dining Philosopher Problem
 5 forks/5 philosophers

 Need two forks to eat
 What if all grab left fork at same time?

 Deadlock!
 How to fix deadlock?

 Make one of them give up a fork
 Eventually everyone will get chance to eat

 How to prevent deadlock?
 Never let philosopher take last fork if no hungry 

philosopher has two forks afterwards
9



10

Necessary conditions for 
deadlock
 Mutual exclusion

 Only one process at a time can use a resource
 Hold and wait

 A process may hold resources while waiting for other 
resources

 No preemption
 Resource cannot be forcibly removed from a process

 Circular wait
 A circle of processes exists such that each process 

holds at least one resource needed by the previous 
process in the circle

10



11

Deadlock handing 
 Prevention 

 Make sure one of the conditions necessary to create a 
deadlock cannot occur

 Detection 
 Resource Allocation Graph (multi-resource ?)
 Bankerʼs algorithm for detecting (potential) deadlocks

 Recovery  
 Let deadlock happen
 Monitor the system state periodically to detect
 Break the deadlock 11



Deadlock Prevention 
Techniques

12

Figure 6-14. Summary of approaches to deadlock prevention.

12



Spooling
 A single daemon process directly uses the 

resource; other processes send their requests 
to the daemon, e.g.:

 Resource is no longer shared by multiple 
processes

13

Proc 1

Proc 2

Printing 
Daemon Printer

13



14

Request all resources initially

 Disallow hold and wait
 Make each process request all resources at the same 

time; block until all resources are available

 May be inefficient
 Process may have to wait a long time instead of working with the 

resources that were available

 Resources allocated to a process may remain unused for long 
periods of time blocking other processes

 Processes may not know all resources they will require in 
advance. 

14



Order resources numerically
 Prevent circular wait

 Define a total order of resource type; (# id)
 If a process holds certain resources,
  it can request only resources that follow the types of 

held resources in the total order.

 Prevents a process from requesting a resource that might 
cause a circular wait. 
 Two chefs need salt, then each chef has to wait for long time.
 Can deny resources unnecessarily.  
 May be impossible to re-request the same resource

15



Example from text: deadlock
semaphore res1, res2;

 void procA( ) {
" semWait(&res1);
" semWait(&res2);
" useBothRes( );
" semSignal(&res2);
" semSignal(&res1);
}

 void procB( ) {
" semWait(&res2);
" semWait(&res1);
" useBothRes( );
" semSignal(&res1);
" semSignal(&res2);
}

16



Example from text: no deadlock

semaphore res1, res2;

 void procA( ) {
" semWait(&res1);
" semWait(&res2);
" useBothRes( );
" semSignal(&res2);
" semSignal(&res1);
}

 void procB( ) {
" semWait(&res1);
" semWait(&res2);
" useBothRes( );
" semSignal(&res2);
" semSignal(&res1);
}

17



Take resources away
 Allow preemption 

 If a process holding a resource is denied another resource 
must relinquish the resource it is holding

 lower prio. process yields resource to higher prio.  process.

 Requires additional OS  and/or program complexity

 Really used for deadlock recovery, not 
prevention (more later)

18



Ostrich algorithm
 Ignore the possibility of deadlock, maybe it wonʼt happen

 In some situations this may even be reasonable, but not in all

 If a deadlock in a process will happen only once in 100 years of 
continuous operation we may not want to make changes that will 
likely decrease efficiency to avoid that rare event.

 Events will occur randomly, we donʼt know that the 1 in 100 
years will not occur in 1 second. In mission critical applications? 

19



Symbols

Resource-allocation graph
 System Model" " " "

 A set of Processes P1, P2, . . ., Pn

 Resource types R1, R2, . . ., Rm
! CPU cycles, memory space, I/O devices

 Each resource type Ri has Wi instances.
 Each thread utilizes a resource as follows:

 Request() / Use() / Release()

 Resource-Allocation Graph:
 V is partitioned into two types:

 P = {P1, P2, …, Pn}, set of processes in the system.
 R = {R1, R2, …, Rm}, set of resource types in system

 request edge – directed edge P1 → Rj

R1
R2

P1 P2

20



RAG for deadlock detection
 For any given sequence of requests for and 

releases of resources a Resource Allocation 
Graph can be constructed.

 We check the graph
 no cycle  no deadlock 
 Each resource has a single instance AND cycle  

deadlock (necessary and sufficient) 
 Each resource has multiple instances AND cycle  

maybe deadlock (but not sufficient condition) 
 Need Bankerʼs algorithm to detect deadlocks

21



A RAG with a deadlock

P1 P2

R1

R2

Resource 1 held by 
process 2

Resource 2 requested 
by process 2

22



Example
 A requests R

R

A B C

S T

 Consider 3 processes A, B and C 
scheduled using round-robin algorithm

23



Example
 A requests R
 A holds R

R

A B C

S T

24



Example
 A requests R
 A holds R
 C requests T
 C holds T

R

A B C

S T

25



Example
 A requests R
 A holds R
 C requests T
 C holds T
 B requests S
 B holds S

R

A B C

S T

26



Example
 A requests R
 A holds R
 C requests T
 C holds T
 B requests S
 B holds S
 B requests R

R

A B C

S T

27



Example
 A requests R
 A holds R
 C requests T
 C holds T
 B requests S
 B holds S
 B requests R
 C requests S

R

A B C

S T

28



Example: cycle (deadlock)
 A requests R
 A holds R
 C requests T
 C holds T
 B requests S
 B holds S
 B requests R
 C requests S
 A requests T

R

A B C

S T

29



Another example with 
deadlock

30



Deadlock is avoided by 
delaying B’s request

31



Resource Allocation Graph 
Examples

T1 T2 T3

R1 R2

R3
R4

No Cycle; 
No Deadlock

T1 T2 T3

R1 R2

R3
R4

Deadlock (cycle R3->T2->R2->T3
And cycle R3->T1->R1->T2->R2->T3

T1

T2

T3

R2

R1

T4

Cycle, 
but No Deadlock

 Animation:  http://cs.uttyler.edu/Faculty/Rainwater/COSC3355/Animations/
deadlock.htm 

32

http://cs.uttyler.edu/Faculty/Rainwater/COSC3355/Animations/deadlock.htm
http://cs.uttyler.edu/Faculty/Rainwater/COSC3355/Animations/deadlock.htm
http://cs.uttyler.edu/Faculty/Rainwater/COSC3355/Animations/deadlock.htm
http://cs.uttyler.edu/Faculty/Rainwater/COSC3355/Animations/deadlock.htm
http://cs.uttyler.edu/Faculty/Rainwater/COSC3355/Animations/deadlock.htm


Deadlock detection
 In order to avoid deadlocks we need to be 

able to detect them, preferably before they 
occur. 

 RAG can only detect deadlocks reliably for 
the case of single-instance resources.

 Bankerʼs algorithm is more general and 
can deal with multiple-instance resources.

33



Banker’s algorithm for 
deadlock detection
 Bankerʼs algorithm is used to recognize when it 

is safe to allocate resources

 If unsafe, break actual or potential deadlocks 

 Do not grant additional resources to a process if this 
allocation might lead to a deadlock

34



Defining our problem: 1
 n processes and m different types of resources. 

E is the Existing resource vector  

 We can have multiple instances of a resource type, 
so the value of Ei is the number of resources of type i 
that are exist in the system

 track # of instances of each resource available 
(not in-use) with A, the Available resource vector

35



Defining our problem: 2
 Which processes are using which of the resources that 

are in use? C is the Current allocation matrix:

 If process i is using 2 resources of type j then Cij = 2.  
Process i has claimed these 2 resources.

36



Defining our problem: 3
 We also want to know which processes will need which 

of the resources during their execution. R is the Total 
Request matrix:

 If process i is will need 4 resources of type j then Rij = 
4.  Process i will need these 4 resources.

37



Defining our problem: 4
 No process can claim more than the total 

amount of resources in the system
"  " " " For all i and j
 No process is allocated more resources of any 

type than the process originally claimed to need
" " " " For all i and j

38



State of  the system
 # of resources of each available type presently allocated 

to it, and the MAX# of resources of each type needed.

 Union of the states of all the procs. along with the # of 
available and allocated resources of each type.

 Given by the information in the matrices 
 E (Existing resource vector)
 A (Available resource vector)
 R (Total Request matrix) 
 C (Current allocation matrix)

39



Recap of  the 4 data structures

40



Safe states and unsafe states
 The state of the system can be either safe or unsafe

 Safe state: There exists at least one allocation that will 
allow all processes to complete without deadlock

 Unsafe state : there exists no series of resource allocation 
that will complete all processes in the system

 Each time a resource is requested, 
 determine the state of the system after the resource 

is allocated, check state.

 If unsafe we block the process and do not allocate 

41



An example system: 
starting state

42



Request to check for safety
 Assume the starting state is a safe state (left to 

student to demonstrate)
 Process 2 is now requesting 2 more of resource 

1 and 1 more of resource 3
 Do we grant this request? Might this request 

cause deadlock?
 Step 1: Calculate the state of the system if this 

request is filled
 Step 2: determine if the new state is a safe state with 

Bankers algorithm

43



An example system: new state

44



Bankers algorithm: preliminaries

 To determine if the new state is a safe state need 
to compare two vectors. 

 One vector will be row L in the matrix (R-C) of 
unmet resource needs

 The other vector will be the available resources 
vector A

 (R-C)L <= A
   IF   (RLk –CLk) <= Ak   for all k

45



Banker’s algorithm

1. Look for an unmarked process, Pi , for 
which the i-th row of R =< A.

2. Add the i-th row of C to A, mark the 
process, and go back to step 1.

3. If no such process exists, the algorithm 
terminates.

46



Banker’s algorithm cont’
 When a process makes a request for one 

or more resources
 Update the state of the system assuming the 

requests are granted
 Determine if the resulting state is a safe state

 If so grant the request for resources
 Otherwise block the process until it is safe to grant 

the request

47



 Check row L=1

 (R-C)1 = [2, 2, 2, 1]      (R-C) 1 > A
 Process 1 cannot run to completion

An example: is new state safe

48



 Check row L=2

 (R-C)2 = [0, 0, 1, 0]      (R-C) 2 <= A
 Allocate resources and run process 2 to completion; 
 Reallocate all freed resources from process 2 to available (A): 

 A=[0 3 1 4]+[7 1 2 1] = [7 4 3 5]

An example: is new state safe

49



 Check row L=1 again

 (R-C)1 = [2, 2, 2, 1]      (R-C) 1 <= A
 Allocate resources and run process 1 to completion; 
 Reallocate resources from process 1 to available (A): 

 A = [7 4 3 5] + [1 0 0 0]=[8 4 3 5]

An example: is new state safe
Row (process marked as completed)

50



 Check row L=3

 (R-C)3 = [1, 0, 3, 0]      (R-C) 3 <= A
 Allocate resources and run process 3 to completion; 
 Reallocate resources from process 3 to available (A)

 A = [8 4 3 5] + [2 1 1 0] = [10 5 4 5]

An example: is new state safe

51



 Check row L=4

 (R-C)4 = [4, 2, 0, 1]      (R-C) 4 <= A
 Allocate resources and run process 4 to completion
 Reallocate resources from process 4 to available (A)

 A = [10 5 4 5] + [0 0 2 0] = [10 5 6 5]

An example: is new state safe

52
 © Zonghua Gu, CMPT 300, Fall 2011 



 Now:

 All process can complete successfully
 Therefore, this is a safe state
 Allow the resources to be allocated and proceed with execution of all 

processes

An example: is new state safe

53



New starting state: next request

54



Next Request to Check for Safety

 Start from safe state and consider the next 
request for resources

 Process 1 is now requesting 1 more of resource  
of resource 3 

 Do we grant this request? Might this request 
cause deadlock?
 Step 1: Calculate the state of the system if this 

request is filled
 Step 2: Determine if the new state is a safe state, use 

the bankers algorithm

55



 Check row L=1,  L=2, L=3

 (R-C)1 = [2, 2, 1, 1]      (R-C)1 > A
 (R-C)2 = [0, 0, 1, 0]       (R-C)2 > A
 (R-C)3 = [1, 0, 3, 0]       (R-C)3 > A
 (R-C)4 = [4, 2, 1, 0]       (R-C)4 > A

New starting state: next request
Is this state safe?

UNSAFE!!!, no row 
marked as complete!

Processes may be 
deadlocked

56



57

Unsafe state vs. deadlock
 unsafe state: indicates that there is potential for deadlock 

if the system operates in that state

 Thus, to avoid deadlock we do not allow the system to 
allocate resources that would put it into an unsafe state. 

 This is a conservative strategy. 

 ʻDetectionʼ of a deadlock on worst case assumptions
 The process may use ALL the resources it needs at any time 



Banker’s algo applied to 
Dinning Philosophers
 State is safe if when a philosopher tries to take a fork, either

 It is not the last fork
 Or it is the last fork, but someone will have 2 forks afterwards
 i.e., Do not let a philosopher take the last fork if no one will have 

2 forks afterwards

 Consider N philosophers 
 If each of the N-1 philosophers holding LEFT fork, then the Nth 

philosopher will be prevented from taking the last fork.
 If a philosopher is holding LEFT fork, he can safely pick up his 

RIGHT fork if available.

 If one or more philosophers are holding 2 forks and eating, then 
any remaining forks can be picked up safely another philosopher.

58



Banker’s algo applied to 
Dinning Philosophers cont’

 Note: you need to model 
each fork as a separate 
resource.

 5 philosophers numbered 
1-5, and 5 forks numbered 
1-5;

 left fork : i 
 right fork : (i+1)%5.

59

1

2

3

45

1 2

3

4

5



When 4 philosophers each holds 
his left fork

60

 If the 5th philosopher makes a request for his left fork, 
should we grant it?



The deadlocked state when each 
holds his left fork

61

 No. Here is the deadlock state reached if request is granted.



Multi-Armed Lawyers
 Consider a large table with IDENTICAL multi-

armed alien lawyers. One chopstick/hand.

 Center is a pile of chopsticks. 

 The lawyers are so busy talking that they can 
only grab one chopstick at a time. 

 Assume total number of chopsticks >= number 
of hands of each lawyer.

62



63

 Allows a lawyer to grab one chopstick.
 Puts a lawyer to sleep if he cannot be granted a chopstick 

w/o deadlock. 



64

 ReleaseAll() : Lawyer releases all chopsticks  

 Wakes up others



65

 BankerCheck() :  #Lawyer id,
  checks resources,
 True: one new chopstick 

 Assume Mesa-style monitor, hence while loop is used in 
GrabOne().



BankerCheck() Method

 State is safe if when a lawyer tries to take a chopstick, either
 It is the last chopstick, but someone will have NumArms chopsticks 

afterwards
 Or it is the 2nd to last chopstick, but someone will have NumArms-1 

chopsticks afterwards
 Or…

66



Dining Lawyers Questions I
 Q: Why didnʼt we check for the case of 

NumChopsticks == 0?
 A: In this case, (NumChopsticks-1) == -1, 

hence the if statement would always fail – 
exactly what we would want to do when 
NumChopsticks == 0

67



Dining Lawyers Questions II
 Q: Is it a generalization of the 2-armed 

Dining Philosophers problem?
 A: Not exactly.  
 We should model them as a single 

resource with multiple instances,
  Dining Philosophers: Multiple resources 

for the Dining Philosophers. 
 Hence the R and C matrices have a single 

column.
68



Review: Dining Lawyers 
Questions III
 Q: In its general form, the Bankerʼs algorithm makes multiple 

passes through the set of resource takers, finishing one at a 
time until all resource takers have finished. Explain why this 
particular application allows the BankerCheck method to 
implement the Bankerʼs algorithm by taking a single pass 
(until any one lawyer can get NumArms chopsticks).

 A: Since every Lawyer has the same maximum allocation, 
and all chopsticks are equivalent. As a result, if we can find a 
single Lawyer that can finish, given the remaining resources, 
we know that all Lawyers can finish. 

 Reason: once that Lawyer finishes and returns their 
resources we know that there will be at least NumArms 
chopsticks on the table – hence everyone else can potentially 
finish. Thus, we donʼt have to go through the exercise of 
returning resources and reexamining the remaining Lawyers 
(as in the general specification of the Bankerʼs algorithm).

69



Dining Lawyers Variation I
 Q: Each lawyer has 2 arms, 
 Pile of knives and forks at center of the table. 
 lawyer steps:

 (1) Pick up a knife 
 (2) Pick up a fork 
 (3) Eat
 (4) Return the knife and fork to the pile 

 Can the system be deadlocked?
 A: No, since itʼs not possible to have circular 

waiting.

70



Dining Lawyers Variation II
 Q: Each lawyer has 4 arms, 
 Assume there are at least 2 knives and 2 forks,   

lawyer steps:
 (1) Pick up 2 knives at the same time
 (2) Pick up 2 forks at the same time
 (3) Eat
 (4) Return the knives and forks to the pile 

 Can the system be deadlocked?
 A: No, since itʼs not possible to have circular 

waiting.

71



Dining Lawyers Variation III
 Q: Lawyer 4 arms. 2knives and fork per lawyer  
 Each lawyer follows the following steps:

 (1) Pick up a knife 
 (2) Pick up another knife
 (3) Pick up a fork 
 (4) Pick up another fork
 (5) Eat
 (6) Return the knife and fork to the pile 

 Can the system be deadlocked?
 A: Yes, since requests for each resource type (knife or fork) are not granted 

atomically. Need Bankerʼs algorithm to detect (potential) deadlocks.
 Consider 2 lawyers, and a total of 2 knives and 2 forks available. If each lawyer 

picks up a knife, the system is deadlocked.
 No total order on knives or forks.

72



Dining Lawyers Variation III
 Q: What if each lawyer has a different # of 

arms, req. a different ratio of knives vs. forks?

 A: e.g., have an array of variables NumArms[] 
instead of a single variable NumArms, and so 
on.

73



Minimum Resource Constraint
 Minimum number of resources to allow at 

least one process to finish. 

 System cannot even start execution, 
hence the problem is ill-defined.

 Consider the dining philosophers problem 
with a single fork, or no fork available. 

74



When to run Banker’s 
algorithm?

 Run it each time a resource allocation request is 
made. This can be expensive.

 Driven by a timer. Longer interval 
 Higher efficiency due to less checking
 Undetected deadlocks can persist for longer times

 What to do if an actual deadlock is 
detected?

75



Deadlock recovery
1. Abort all deadlocked processes: 

 most common solution implemented in OSs
2. Rollback: 

 Back up each process periodically 
 Roll back to the previous backup (checkpoint). 

 Nondeterministic nature of the execution of 
concurrent processes (different interleaving)

 It is possible the deadlock may reoccur.

76



Deadlock recovery: 2
3. Successively abort deadlocked processes. 

 Abort 1 deadlocked process at at time
 Then check if the deadlock still occurs

 If it does abort the next process
 If it does not, continue execution of the remaining processes 

without aborting any more processes
4. Successively preempt resources from blocked jobs

 Preempt 1 deadlocked resource in 1 process
 Roll back that process to the point where the preempted 

resource was allocated
 Check if deadlock still occurs

 If it does preempt resource from the next process
 If it does not, continue execution of the remaining processes 

without preempting any more resources

77



Choosing processes/resources

 For options 3 and 4 it is necessary to choose 
which of the possibly deadlocked processes to 
abort or which resource to preempt (and the 
possibly deadlocked process to preempt it from)

 Can base this decision on a number of different 
criteria
 Lowest priority
 Most estimated run time remaining
 Least number of total resources allocated
 Smallest amount of  CPU consumed so for

78



Issues
 None of these approaches is appropriate for all 

types of resources
 Some processes (like updating a database) cannot be 

killed and rerun safely
 Some resources cannot be safely preempted (some 

of these like printers can be preempted if spooling is 
used)

 Some processes cannot be rolled back 
 How do you roll back shared variables that have been 

successively updated by multiple processes
 Process rollback is expensive

 Successive checkpoints must save both image and state
 Multiple checkpoints need to be saved for a process

79



Communication Deadlocks
 Process A sends a request message to 

process B, and then blocks until B sends 
back a reply message. 

 Suppose that the request message gets 
lost. A is blocked waiting for the reply. B is 
blocked waiting for a request asking it to 
do something. Deadlocked.

 Deadlock not due to shared resources 

80



Livelock

 Both processes use the polling primitive 
enter_region() to try to acquire locks via busy-
waiting; process_A gets resource_1 and process_B 
gets resource_2.

 Livelock, not deadlock, since no process is blocked.

81



Summary
 Four conditions for deadlocks

 Mutual exclusion
 Only one process at a time can use a resource

 Hold and wait
 Process holding at least one resource is waiting to 

acquire additional resources held by other processes
 No preemption

 Resources are released only voluntarily by the 
processes

 Circular wait
 Cyclic waiting pattern

82



 Bankerʼs algorithm: 
 Look one step ahead: upon receiving a request from a process, 

assume the request is granted hypothetically, 
 Run deadlock detection algorithm to evaluate if the system is in a 

“SAFE” state. 
 There exists a sequence of process executions {P1, P2, … Pn} with P1 

requesting all remaining resources, finishing, then T2 requesting all 
remaining resources, etc..that can finish successfully.

 Algorithm allocates resources dynamically, and allows the 
sum of maximum resource needs of processes > total.

Summary (2)

83


