
1	

Synchronization via
Transactions	

2	

Concurrency	
 Quiz	

If two threads execute this program concurrently, how
many different final values of X are there?

Initially, X == 0.

void increment() {
 int temp = X;
 temp = temp + 1;
 X = temp;
}

void increment() {
 int temp = X;
 temp = temp + 1;
 X = temp;
}

Thread 1	

 Thread 2	

Answer:	

A.  0	

B.  1	

C.  2	

D.  More than 2	

3	

Schedules/Interleavings	

! Model of concurrent execution
! Interleave statements from each thread into a single

thread
! If any interleaving yields incorrect results, some

synchronization is needed

tmp1 = X;
tmp1 = tmp1 + 1;
X = tmp1;

tmp2 = X;
tmp2 = tmp2 + 1;
X = tmp2;

Thread 1	

 Thread 2	

tmp1 = X;
tmp2 = X;
tmp2 = tmp2 + 1;
tmp1 = tmp1 + 1;
X = tmp1;
X = tmp2;

If X==0 initially, X == 1 at the end. WRONG result!

4	

Locks	
 :ix	
 this	
 with	
 Mutual	
 Exclusion	

! Is mutual exclusion really what we want? Don’t we
just want the correct result?

! Some interleavings may give the correct result. Why
can’t we keep these?

void increment() {
 lock.acquire();
 int temp = X;
 temp = temp + 1;
 X = temp;
 lock.release();
}

5	

Providing	
 atomicity	
 and	
 isolation	
 directly	

! Critical regions need atomicity and isolation

! Definition: An atomic operation’s effects either all
happen or none happen.
  Money transfer either debits one acct and credits the other, or no

money is transferred

! Definition: An isolated operation is not affected by
concurrent operations.
  Partial results are not visible
  This allows isolated operations to be put in a single, global order

6	

Providing	
 atomicity	
 and	
 isolation	
 directly	

! Implementing atomicity and isolation
 Changes to memory are buffered (isolation)
 Other processors see old values (isolation)
  If something goes wrong (e.g., exception), system rolls back

state to start of critical section (atomicity)
 When critical region ends, changes become visible all at

once (atomicity)

! Hardware
 Processor support for buffering and committing values

! Software
 Runtime system buffers and commits values

7	

Transactions	

! Transaction begin (xbegin)
 Start of critical region

! Transaction end (xend)
 End of critical region

! xbegin/xend can be implicit with atomic{}
! Transaction restart (or abort)

 User decides to abort transaction
  In Java throwing an exception aborts the transaction

atomic {	

 acctA -= 100;	

 acctB += 100;	

}	

Transaction to transfer	

$100 from acctA to	

acctB.	

8	

Atomicity	
 and	
 Isolation	

! AcctA starts with $150
! Different blocks to update balance

 Overnight batch process to read/process/write accounts
 Debit $100

  Telephone transaction to read/process/write quickly
 Debit $90

! Isolation guarantees that phone update is not lost
  It is allowed by atomicity
  In fact, both transactions (in either order) should result in

overdraft
 AcctA = -$40

9	

Atomicity	
 and	
 Isolation	

! AcctA starts with $150
! Different blocks to update balance

 Overnight batch process to read/process/write accounts
 Debit $100

  Telephone transaction to read/process/write quickly
 Debit $90

! Isolation guarantees that phone update is not lost
  This is a lost update

atomic{	

 Read AcctA (150)	

	

 Decrement AcctA	

 by 100	

 Write AcctA (50)	

atomic{	

 AcctA -= 90	

} 	

tim
e 	

10	

! AcctA == 200 initially. After these two concurrent
transactions AcctA==350. What property does that
violate?
 A. No property is violated
 B. Atomicity
 C. Isolation
 D. Durability

atomic{	

 AcctA += 150	

	

 	

	

}	

atomic{	

 AcctA -= 90	

} 	

11	

Atomicity	
 and	
 Isolation	

! Atomicity is hard because
  Programs make many small changes.

  Most operations are not atomic, like x++;
  System must be able to restore state at start of atomic operation

  What about actions like dispensing money or firing missles?

! Isolation is hard because
 More concurrency == more performance
 …but system must disallow certain interleavings
 System usually does not allow visibility of isolated state

(hence the term isolated)
 Data structures have multiple invariants that dictate

constraints on a consistent update
! Mutual exclusion provides isolation
 Most popular parallel programming technique

Parallel programming: how to provide isolation (and
possibly atomicity)

12	

Concrete	
 Syntax	
 for	
 Transactions	

! The concrete syntax of JDASTM.

Transaction	
 tx	
 =	
 new	
 Transaction(id);	

boolean	
 done	
 =	
 false;	

while(!done)	
 {	

	
 	
 	
 try	
 {	

	
 	
 	
 	
 	
 	
 tx.BeginTransaction();	

	
 	
 	
 	
 	
 	
 //	
 party	
 on	
 my	
 data	
 structure!	

	
 	
 	
 	
 	
 	
 done	
 =	
 tx.CommitTransaction();	

	
 	
 	
 }	
 catch(AbortException	
 e)	
 {	

	
 	
 	
 	
 	
 	
 tx.AbortTransaction();	

	
 	
 	
 	
 	
 	
 done	
 =	
 false;	

	
 	
 	
 }	

}	

13	

Transaction’s	
 System	
 Bookkeeping	

! Transaction A’s read set is RA
 Set of objects (addresses) read by transaction A

! Transaction B’s write set is WB
 Set of objects (addresses) written by transaction B

! Transaction A’s address set is RA UNION WA
 Set of objects (addresses) read or written by transaction A

atomic {	

 acctA -= 100;	

 acctB = acctA;	

}	

Read: acctA	

Write: acctA, acctB	

14	

Transactional	
 Safety	

! Conflict serializability – If one transaction writes data
read or written by another transaction, then abort one
transaction.

! Recoverability – No transaction that has read data
from an uncommitted transaction may commit.

atomic {	

 x++;	

}	

atomic {	

 load t0, [x]	

 add t0, 1	

 store t0, [x]	

}	

! Safe if abort transaction A or B whenever
! WA ∩ (RB UNION WB) ≠ EMPTYSET

15	

Safety	
 examples	

Transaction 0 Transaction 1

atomic {
load t0, [x]
add t0, 1
store t0, [x]

}

atomic {
load t0, [x]
add t0, 1

Read:	

Write:	

x	

 Read:	

Write:	

x	

x	

Conflict: Transaction 1 should restart	

16	

How	
 Isolation	
 Could	
 Be	
 Violated	

! Dirty reads
! Non-repeatable reads
! Lost updates

17	

Restarting	
 +	
 I/O	
 =	
 Confusion	

! Transactions can restart!
 What kind of output should I expect?
Transaction	
 tx	
 =	
 new	
 Transaction(id);	

boolean	
 done	
 =	
 false;	

while(!done)	
 {	

	
 	
 	
 try	
 {	

	
 	
 	
 	
 	
 	
 tx.BeginTransaction();	

	
 	
 	
 	
 	
 	
 …	

	
 	
 	
 	
 	
 	
 System.out.println(“Deja	
 vu	
 all	
 over	
 again”);	

	
 	
 	
 	
 	
 	
 done	
 =	
 tx.CommitTransaction();	

	
 	
 	
 }	
 catch(AbortException	
 e)	
 {	

	
 	
 	
 	
 	
 	
 tx.AbortTransaction();	

	
 	
 	
 	
 	
 	
 done	
 =	
 false;	

	
 	
 	
 }	

}	

18	

Reading	
 Uncommitted	
 State	

! What about transactional data read outside a
transaction?
 Hardware support: strong isolation for all reads
 Software: Uncommitted state is visible

! In your lab, a lane can go from colored to white when
a transaction rolls back
  The GUI updating thread reads uncommitted state outside of

a transaction

! Why would we want to read data outside of a
transaction?
 Performance

19	

Transactional	
 Communication	

! Conflict serializability is good for keeping transactions
out of each other’s address sets

! Sometimes transactions must communicate
 One transaction produces a memory value
 Other transaction consumes the memory value

! Communication is easy to do with busy waiting
  Just read the variable that will change
  Transaction will restart when its written by other thread

20	

Communicating	
 Transactions	

! Transactions busy-wait for each other.
  The variable count is in the read set, so any write to count will restart the

transaction

CokeMachine::Deposit(){
 atomic {
 while (count == n) ;
 Add coke to the machine;
 count++;
 }
}

CokeMachine::Remove(){
 atomic {
 while (count == 0) ;
 Remove coke from machine;
 count--;
 }
}

Class CokeMachine{
 …
 int count = 0;
}

21	

Tx	
 Communication	
 Without	
 Busy-­‐Waiting	

! Retry: how to block with transactions
 Pause transaction
  deschedule this thread
 Reschedule whenever another transaction conflicts with this

transaction

! Transactional thread is suspended until another
thread modifies data it read
 E.g., count variable

22	

Retry:	
 Communication	
 Without	
 Busy-­‐Wait	

! Scheduler and runtime cooperate to monitor address sets of
transactions that are descheduled

CokeMachine::Deposit(){
 atomic {
 if(count == n) {retry; }
 Add coke to the machine;
 count++;
 }
}

CokeMachine::Remove(){
 atomic {
 if(count == 0) { retry; }
 Remove coke from machine;
 count--;
 }
}

Class CokeMachine{
 …
 int count = 0;
}

23	

Comparing	
 Transactions	
 and	
 Monitors	

CokeMachine::Deposit(){
 lockacquire();
 while (count == n) {

 notFull.wait(&lock); }
 Add coke to the machine;
 count++;
 notEmpty.notify();
 lockrelease();
}

CokeMachine::Remove(){
 lockacquire();
 while (count == 0) {

 notEmpty.wait(&lock); }
 Remove coke from to the machine;
 count--;
 notFull.notify();
 lockrelease();
}

Which is better? 	

A. Transactions	

B. Monitors	

CokeMachine::Deposit(){
 atomic {
 if(count == n) {retry; }
 Add coke to the machine;
 count++;
 }
}

CokeMachine::Remove(){
 atomic {
 if(count == 0) {retry; }
 Remove coke from machine;
 count--;
 }
}

24	

Load	
 linked/Store	
 Conditional	

! Load linked/store conditional.
  Idea is to let user load a data item, compute, then store back

and if “no one else” (i.e., another processor or an I/O
device) has touched that memory location, then allow the
store since the read-modify-write was atomic.

tmp = r1 = [addr]; // Load linked into r1
do_whatever (some restrictions);
 // Store conditional from r2
if(tmp == [addr]) then [addr] = r2; r2 = 1;
 else r2 = 0;

 Restrictions on compute: no memory accesses, limited
number of instructions, no interrupts or exceptions.

! Hardware queue locks

25	

Load	
 linked/Store	
 Conditional	

! All of these events, if they happen between the load
linked and the store conditional will cause the store
conditional to fail. EXCEPT which?
 A. Breakpoint instruction
 B. Branch instruction
 C. External write to loaded memory address
 D. Return from exception instruction

