
Goals for Today

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne

Goals for Today

• Continue with Synchronization Abstractions
– Semaphores and monitors

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne

Goals for Today

• Continue with Synchronization Abstractions
– Semaphores and monitors

• Readers-Writers problem and solutoin

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne

Goals for Today

• Continue with Synchronization Abstractions
– Semaphores and monitors

• Readers-Writers problem and solutoin
• Language Support for Synchronization

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne

Recall: Semaphores

Recall: Semaphores

• Definition: a Semaphore has a non-negative integer
value and supports the following two operations:

Recall: Semaphores

• Definition: a Semaphore has a non-negative integer
value and supports the following two operations:

– P(): an atomic operation that waits for semaphore to
become positive, then decrements it by 1

» Think of this as the wait() operation

Recall: Semaphores

• Definition: a Semaphore has a non-negative integer
value and supports the following two operations:

– P(): an atomic operation that waits for semaphore to
become positive, then decrements it by 1

» Think of this as the wait() operation
– V(): an atomic operation that increments the semaphore
by 1, waking up a waiting P, if any

» This of this as the signal() operation

Recall: Semaphores

• Definition: a Semaphore has a non-negative integer
value and supports the following two operations:

– P(): an atomic operation that waits for semaphore to
become positive, then decrements it by 1

» Think of this as the wait() operation
– V(): an atomic operation that increments the semaphore
by 1, waking up a waiting P, if any

» This of this as the signal() operation
– Only time can set integer directly is at initialization time

Recall: Semaphores

• Definition: a Semaphore has a non-negative integer
value and supports the following two operations:

– P(): an atomic operation that waits for semaphore to
become positive, then decrements it by 1

» Think of this as the wait() operation
– V(): an atomic operation that increments the semaphore
by 1, waking up a waiting P, if any

» This of this as the signal() operation
– Only time can set integer directly is at initialization time

Value=2

Recall: Semaphores

• Definition: a Semaphore has a non-negative integer
value and supports the following two operations:

– P(): an atomic operation that waits for semaphore to
become positive, then decrements it by 1

» Think of this as the wait() operation
– V(): an atomic operation that increments the semaphore
by 1, waking up a waiting P, if any

» This of this as the signal() operation
– Only time can set integer directly is at initialization time

Value=2Value=1

Recall: Semaphores

• Definition: a Semaphore has a non-negative integer
value and supports the following two operations:

– P(): an atomic operation that waits for semaphore to
become positive, then decrements it by 1

» Think of this as the wait() operation
– V(): an atomic operation that increments the semaphore
by 1, waking up a waiting P, if any

» This of this as the signal() operation
– Only time can set integer directly is at initialization time

Value=2Value=1Value=0

Recall: Semaphores

• Definition: a Semaphore has a non-negative integer
value and supports the following two operations:

– P(): an atomic operation that waits for semaphore to
become positive, then decrements it by 1

» Think of this as the wait() operation
– V(): an atomic operation that increments the semaphore
by 1, waking up a waiting P, if any

» This of this as the signal() operation
– Only time can set integer directly is at initialization time

Value=2Value=1Value=0

Recall: Semaphores

• Definition: a Semaphore has a non-negative integer
value and supports the following two operations:

– P(): an atomic operation that waits for semaphore to
become positive, then decrements it by 1

» Think of this as the wait() operation
– V(): an atomic operation that increments the semaphore
by 1, waking up a waiting P, if any

» This of this as the signal() operation
– Only time can set integer directly is at initialization time

Value=2Value=1Value=0

Recall: Semaphores

• Definition: a Semaphore has a non-negative integer
value and supports the following two operations:

– P(): an atomic operation that waits for semaphore to
become positive, then decrements it by 1

» Think of this as the wait() operation
– V(): an atomic operation that increments the semaphore
by 1, waking up a waiting P, if any

» This of this as the signal() operation
– Only time can set integer directly is at initialization time

Value=1Value=0

Value=2Value=1Value=0

Recall: Semaphores

• Definition: a Semaphore has a non-negative integer
value and supports the following two operations:

– P(): an atomic operation that waits for semaphore to
become positive, then decrements it by 1

» Think of this as the wait() operation
– V(): an atomic operation that increments the semaphore
by 1, waking up a waiting P, if any

» This of this as the signal() operation
– Only time can set integer directly is at initialization time

Value=1Value=0

Producer-consumer with a bounded buffer

Producer-consumer with a bounded buffer

• Problem Definition
– Producer puts things into a shared buffer
– Consumer takes them out

Producer ConsumerBuffer

Producer-consumer with a bounded buffer

• Problem Definition
– Producer puts things into a shared buffer
– Consumer takes them out

Producer ConsumerBuffer

Producer-consumer with a bounded buffer

• Problem Definition
– Producer puts things into a shared buffer
– Consumer takes them out

• Don’t want producer and consumer to have to work in
lockstep, so put a fixed-size buffer between them
– Need to synchronize access to this buffer
– Producer needs to wait if buffer is full
– Consumer needs to wait if buffer is empty

Producer ConsumerBuffer

Producer-consumer with a bounded buffer

• Problem Definition
– Producer puts things into a shared buffer
– Consumer takes them out

• Don’t want producer and consumer to have to work in
lockstep, so put a fixed-size buffer between them
– Need to synchronize access to this buffer
– Producer needs to wait if buffer is full
– Consumer needs to wait if buffer is empty

Producer ConsumerBuffer

Producer-consumer with a bounded buffer

• Problem Definition
– Producer puts things into a shared buffer
– Consumer takes them out

• Don’t want producer and consumer to have to work in
lockstep, so put a fixed-size buffer between them
– Need to synchronize access to this buffer
– Producer needs to wait if buffer is full
– Consumer needs to wait if buffer is empty

• Example 1: GCC compiler
– cpp | cc1 | cc2 | as | ld

Producer ConsumerBuffer

Correctness constraints for solution

Correctness constraints for solution
• Correctness Constraints:

– Consumer must wait for producer to fill buffers, if none full
(scheduling constraint)

– Producer must wait for consumer to empty buffers, if all full
(scheduling constraint)

– Only one thread can manipulate buffer queue at a time (mutual
exclusion)

Correctness constraints for solution
• Correctness Constraints:

– Consumer must wait for producer to fill buffers, if none full
(scheduling constraint)

– Producer must wait for consumer to empty buffers, if all full
(scheduling constraint)

– Only one thread can manipulate buffer queue at a time (mutual
exclusion)

• Remember why we need mutual exclusion
– Because computers are stupid
– Imagine if in real life: the delivery person is filling the

machine and somebody comes up and tries to stick their money
into the machine

Correctness constraints for solution
• Correctness Constraints:

– Consumer must wait for producer to fill buffers, if none full
(scheduling constraint)

– Producer must wait for consumer to empty buffers, if all full
(scheduling constraint)

– Only one thread can manipulate buffer queue at a time (mutual
exclusion)

• Remember why we need mutual exclusion
– Because computers are stupid
– Imagine if in real life: the delivery person is filling the

machine and somebody comes up and tries to stick their money
into the machine

• General rule of thumb:
Use a separate semaphore for each constraint
– Semaphore fullBuffers; // consumer’s constraint
– Semaphore emptyBuffers;// producer’s constraint
– Semaphore mutex; // mutual exclusion

Full Solution to Bounded Buffer (Coke Machine)

Full Solution to Bounded Buffer (Coke Machine)
 Semaphore fullBuffer = 0; // Initially, no coke

Full Solution to Bounded Buffer (Coke Machine)
 Semaphore fullBuffer = 0; // Initially, no coke
 Semaphore emptyBuffers = numBuffers;
 // Initially, num empty slots

Full Solution to Bounded Buffer (Coke Machine)
 Semaphore fullBuffer = 0; // Initially, no coke
 Semaphore emptyBuffers = numBuffers;
 // Initially, num empty slots

 Semaphore mutex = 1; // No one using machine

Full Solution to Bounded Buffer (Coke Machine)
 Semaphore fullBuffer = 0; // Initially, no coke
 Semaphore emptyBuffers = numBuffers;
 // Initially, num empty slots

 Semaphore mutex = 1; // No one using machine

Producer(item) {
 emptyBuffers.P(); // Wait until space
 mutex.P(); // Wait until machine free
 Enqueue(item);
 mutex.V();
 fullBuffers.V(); // Tell consumers there is
 // more coke
}

Full Solution to Bounded Buffer (Coke Machine)
 Semaphore fullBuffer = 0; // Initially, no coke
 Semaphore emptyBuffers = numBuffers;
 // Initially, num empty slots

 Semaphore mutex = 1; // No one using machine

Producer(item) {
 emptyBuffers.P(); // Wait until space
 mutex.P(); // Wait until machine free
 Enqueue(item);
 mutex.V();
 fullBuffers.V(); // Tell consumers there is
 // more coke
}

 Consumer() {
 fullBuffers.P(); // Check if there’s a coke
 mutex.P(); // Wait until machine free
 item = Dequeue();
 mutex.V();
 emptyBuffers.V(); // tell producer need more
 return item;
}

Discussion about Solution

Discussion about Solution

• Why asymmetry?

Discussion about Solution

• Why asymmetry?
– Producer does: emptyBuffer.P(), fullBuffer.V()

Discussion about Solution

• Why asymmetry?
– Producer does: emptyBuffer.P(), fullBuffer.V()
– Consumer does: fullBuffer.P(), emptyBuffer.V()

Discussion about Solution

• Why asymmetry?
– Producer does: emptyBuffer.P(), fullBuffer.V()
– Consumer does: fullBuffer.P(), emptyBuffer.V()

• Is order of P’s important?

Discussion about Solution

• Why asymmetry?
– Producer does: emptyBuffer.P(), fullBuffer.V()
– Consumer does: fullBuffer.P(), emptyBuffer.V()

• Is order of P’s important?
– Yes! Can cause deadlock

Discussion about Solution

• Why asymmetry?
– Producer does: emptyBuffer.P(), fullBuffer.V()
– Consumer does: fullBuffer.P(), emptyBuffer.V()

• Is order of P’s important?
– Yes! Can cause deadlock

• Is order of V’s important?

Discussion about Solution

• Why asymmetry?
– Producer does: emptyBuffer.P(), fullBuffer.V()
– Consumer does: fullBuffer.P(), emptyBuffer.V()

• Is order of P’s important?
– Yes! Can cause deadlock

• Is order of V’s important?
– No, except that it might affect scheduling efficiency

Discussion about Solution

• Why asymmetry?
– Producer does: emptyBuffer.P(), fullBuffer.V()
– Consumer does: fullBuffer.P(), emptyBuffer.V()

• Is order of P’s important?
– Yes! Can cause deadlock

• Is order of V’s important?
– No, except that it might affect scheduling efficiency

• What if we have 2 producers or 2 consumers?

Discussion about Solution

• Why asymmetry?
– Producer does: emptyBuffer.P(), fullBuffer.V()
– Consumer does: fullBuffer.P(), emptyBuffer.V()

• Is order of P’s important?
– Yes! Can cause deadlock

• Is order of V’s important?
– No, except that it might affect scheduling efficiency

• What if we have 2 producers or 2 consumers?
– Do we need to change anything?

Motivation for Monitors and Condition Variables

Motivation for Monitors and Condition Variables
• Semaphores are a huge step up, but:

– They are confusing because they are dual purpose:
» Both mutual exclusion and scheduling constraints
» Example: the fact that flipping of P’s in bounded buffer

gives deadlock is not immediately obvious
– Cleaner idea: Use locks for mutual exclusion and
condition variables for scheduling constraints

Motivation for Monitors and Condition Variables
• Semaphores are a huge step up, but:

– They are confusing because they are dual purpose:
» Both mutual exclusion and scheduling constraints
» Example: the fact that flipping of P’s in bounded buffer

gives deadlock is not immediately obvious
– Cleaner idea: Use locks for mutual exclusion and
condition variables for scheduling constraints

• Definition: Monitor: a lock and zero or more condition
variables for managing concurrent access to shared
data
– Use of Monitors is a programming paradigm
– Some languages like Java provide monitors in the
language

Motivation for Monitors and Condition Variables
• Semaphores are a huge step up, but:

– They are confusing because they are dual purpose:
» Both mutual exclusion and scheduling constraints
» Example: the fact that flipping of P’s in bounded buffer

gives deadlock is not immediately obvious
– Cleaner idea: Use locks for mutual exclusion and
condition variables for scheduling constraints

• Definition: Monitor: a lock and zero or more condition
variables for managing concurrent access to shared
data
– Use of Monitors is a programming paradigm
– Some languages like Java provide monitors in the
language

• The lock provides mutual exclusion to shared data:
– Always acquire before accessing shared data structure
– Always release after finishing with shared data

8

Critical	
 Section:	
 Monitors

Basic idea:
 Restrict programming model
 Permit access to shared variables only within a critical

section

General program structure
 Entry section

 “Lock” before entering critical section
 Wait if already locked
 Key point: synchronization may involve wait

 Critical section code
 Exit section

 “Unlock” when leaving the critical section

Object-oriented programming style
 Associate a lock with each shared object
 Methods that access shared object are critical sections
 Acquire/release locks when entering/exiting a method that

defines a critical section

Simple Monitor Example (version 1)

Simple Monitor Example (version 1)
• Here is an (infinite) synchronized queue

Simple Monitor Example (version 1)
• Here is an (infinite) synchronized queue
 Lock lock;
 Queue queue;

Simple Monitor Example (version 1)
• Here is an (infinite) synchronized queue
 Lock lock;
 Queue queue;

Simple Monitor Example (version 1)
• Here is an (infinite) synchronized queue
 Lock lock;
 Queue queue;

 AddToQueue(item) {
 lock.Acquire(); // Lock shared data
 queue.enqueue(item); // Add item
 lock.Release(); // Release Lock
 }

Simple Monitor Example (version 1)
• Here is an (infinite) synchronized queue
 Lock lock;
 Queue queue;

 AddToQueue(item) {
 lock.Acquire(); // Lock shared data
 queue.enqueue(item); // Add item
 lock.Release(); // Release Lock
 }

 RemoveFromQueue() {
 lock.Acquire(); // Lock shared data
 item = queue.dequeue();// Get next item or null
 lock.Release(); // Release Lock
 return(item); // Might return null
 }

Mesa vs. Hoare monitors

Mesa vs. Hoare monitors
• Need to be careful about precise definition of signal and

wait. Consider a piece of our dequeue code:
 while (queue.isEmpty()) {

 dataready.wait(&lock); // If nothing, sleep
 }
 item = queue.dequeue(); // Get next item

Mesa vs. Hoare monitors
• Need to be careful about precise definition of signal and

wait. Consider a piece of our dequeue code:
 while (queue.isEmpty()) {

 dataready.wait(&lock); // If nothing, sleep
 }
 item = queue.dequeue(); // Get next item

– Why didn’t we do this?
 if (queue.isEmpty()) {

 dataready.wait(&lock); // If nothing, sleep
 }
 item = queue.dequeue(); // Get next item

Mesa vs. Hoare monitors
• Need to be careful about precise definition of signal and

wait. Consider a piece of our dequeue code:
 while (queue.isEmpty()) {

 dataready.wait(&lock); // If nothing, sleep
 }
 item = queue.dequeue(); // Get next item

– Why didn’t we do this?
 if (queue.isEmpty()) {

 dataready.wait(&lock); // If nothing, sleep
 }
 item = queue.dequeue(); // Get next item

• Answer: depends on the type of scheduling

Mesa vs. Hoare monitors
• Need to be careful about precise definition of signal and

wait. Consider a piece of our dequeue code:
 while (queue.isEmpty()) {

 dataready.wait(&lock); // If nothing, sleep
 }
 item = queue.dequeue(); // Get next item

– Why didn’t we do this?
 if (queue.isEmpty()) {

 dataready.wait(&lock); // If nothing, sleep
 }
 item = queue.dequeue(); // Get next item

• Answer: depends on the type of scheduling
– Hoare-style (most textbooks):

» Signaler gives lock, CPU to waiter; waiter runs immediately
» Waiter gives up lock, processor back to signaler when it exits

critical section or if it waits again

Mesa vs. Hoare monitors
• Need to be careful about precise definition of signal and

wait. Consider a piece of our dequeue code:
 while (queue.isEmpty()) {

 dataready.wait(&lock); // If nothing, sleep
 }
 item = queue.dequeue(); // Get next item

– Why didn’t we do this?
 if (queue.isEmpty()) {

 dataready.wait(&lock); // If nothing, sleep
 }
 item = queue.dequeue(); // Get next item

• Answer: depends on the type of scheduling
– Hoare-style (most textbooks):

» Signaler gives lock, CPU to waiter; waiter runs immediately
» Waiter gives up lock, processor back to signaler when it exits

critical section or if it waits again
– Mesa-style (most real operating systems):

» Signaler keeps lock and processor
» Waiter placed on ready queue with no special priority

Mesa vs. Hoare monitors
• Need to be careful about precise definition of signal and

wait. Consider a piece of our dequeue code:
 while (queue.isEmpty()) {

 dataready.wait(&lock); // If nothing, sleep
 }
 item = queue.dequeue(); // Get next item

– Why didn’t we do this?
 if (queue.isEmpty()) {

 dataready.wait(&lock); // If nothing, sleep
 }
 item = queue.dequeue(); // Get next item

• Answer: depends on the type of scheduling
– Hoare-style (most textbooks):

» Signaler gives lock, CPU to waiter; waiter runs immediately
» Waiter gives up lock, processor back to signaler when it exits

critical section or if it waits again
– Mesa-style (most real operating systems):

» Signaler keeps lock and processor
» Waiter placed on ready queue with no special priority
» Practically, need to check condition again after wait

11

Hoare	
 Monitors:	
 Semantics

Hoare monitor semantics:
 Assume thread T1 is waiting on condition x
 Assume thread T2 is in the monitor
 Assume thread T2 calls x.signal
 T2 gives up monitor, T2 blocks!
 T1 takes over monitor, runs
 T1 gives up monitor
 T2 takes over monitor, resumes

Example

11

Hoare	
 Monitors:	
 Semantics

Hoare monitor semantics:
 Assume thread T1 is waiting on condition x
 Assume thread T2 is in the monitor
 Assume thread T2 calls x.signal
 T2 gives up monitor, T2 blocks!
 T1 takes over monitor, runs
 T1 gives up monitor
 T2 takes over monitor, resumes

Example

fn1(…)
…
x.wait // T1 blocks

11

Hoare	
 Monitors:	
 Semantics

Hoare monitor semantics:
 Assume thread T1 is waiting on condition x
 Assume thread T2 is in the monitor
 Assume thread T2 calls x.signal
 T2 gives up monitor, T2 blocks!
 T1 takes over monitor, runs
 T1 gives up monitor
 T2 takes over monitor, resumes

Example

fn1(…)
…
x.wait // T1 blocks fn4(…)

…
x.signal // T2 blocks

11

Hoare	
 Monitors:	
 Semantics

Hoare monitor semantics:
 Assume thread T1 is waiting on condition x
 Assume thread T2 is in the monitor
 Assume thread T2 calls x.signal
 T2 gives up monitor, T2 blocks!
 T1 takes over monitor, runs
 T1 gives up monitor
 T2 takes over monitor, resumes

Example

fn1(…)
…
x.wait // T1 blocks

// T1 resumes
Lockrelease();

fn4(…)
…
x.signal // T2 blocks

11

Hoare	
 Monitors:	
 Semantics

Hoare monitor semantics:
 Assume thread T1 is waiting on condition x
 Assume thread T2 is in the monitor
 Assume thread T2 calls x.signal
 T2 gives up monitor, T2 blocks!
 T1 takes over monitor, runs
 T1 gives up monitor
 T2 takes over monitor, resumes

Example

fn1(…)
…
x.wait // T1 blocks

// T1 resumes
Lockrelease();

fn4(…)
…
x.signal // T2 blocks

T2 resumes

12

Hansen	
 (Mesa)	
 Monitors:	
 Semantics

Hansen monitor semantics:
 Assume thread T1 waiting on condition x
 Assume thread T2 is in the monitor
 Assume thread T2 calls x.signal; wake up T1
 T2 continues, finishes
 When T1 get a chance to run,T1 takes over monitor, runs
 T1 finishes, gives up monitor

Example:

12

Hansen	
 (Mesa)	
 Monitors:	
 Semantics

Hansen monitor semantics:
 Assume thread T1 waiting on condition x
 Assume thread T2 is in the monitor
 Assume thread T2 calls x.signal; wake up T1
 T2 continues, finishes
 When T1 get a chance to run,T1 takes over monitor, runs
 T1 finishes, gives up monitor

Example:

fn1(…)
…
x.wait // T1 blocks

12

Hansen	
 (Mesa)	
 Monitors:	
 Semantics

Hansen monitor semantics:
 Assume thread T1 waiting on condition x
 Assume thread T2 is in the monitor
 Assume thread T2 calls x.signal; wake up T1
 T2 continues, finishes
 When T1 get a chance to run,T1 takes over monitor, runs
 T1 finishes, gives up monitor

Example:

fn1(…)
…
x.wait // T1 blocks fn4(…)

…
x.signal // T2 continues
// T2 finishes

12

Hansen	
 (Mesa)	
 Monitors:	
 Semantics

Hansen monitor semantics:
 Assume thread T1 waiting on condition x
 Assume thread T2 is in the monitor
 Assume thread T2 calls x.signal; wake up T1
 T2 continues, finishes
 When T1 get a chance to run,T1 takes over monitor, runs
 T1 finishes, gives up monitor

Example:

fn1(…)
…
x.wait // T1 blocks

// T1 resumes
// T1 finishes

fn4(…)
…
x.signal // T2 continues
// T2 finishes

13

Tradeoff

13

Tradeoff

Hoare

Claims:
 Cleaner, good for proofs
 When a condition variable is

signaled, it does not change
 Used in most textbooks

…but
 Inefficient implementation
 Not modular – correctness

depends on correct use and
implementation of signal

13

Tradeoff

Hoare

Claims:
 Cleaner, good for proofs
 When a condition variable is

signaled, it does not change
 Used in most textbooks

…but
 Inefficient implementation
 Not modular – correctness

depends on correct use and
implementation of signal

CokeMachine::Deposit(){
 lockacquire();
 if (count == n) {
 notFull.wait(&lock); }
 Add coke to the machine;
 count++;
 notEmpty.signal();
 lockrelease();
}

13

Tradeoff

Hoare

Claims:
 Cleaner, good for proofs
 When a condition variable is

signaled, it does not change
 Used in most textbooks

…but
 Inefficient implementation
 Not modular – correctness

depends on correct use and
implementation of signal

Hansen

Signal is only a hint that the
condition may be true
 Need to check condition again

before proceeding
 Can lead to synchronization bugs

Used by most systems (e.g., Java)

Benefits:
 Efficient implementation
 Condition guaranteed to be true

once you are out of while !

CokeMachine::Deposit(){
 lockacquire();
 if (count == n) {
 notFull.wait(&lock); }
 Add coke to the machine;
 count++;
 notEmpty.signal();
 lockrelease();
}

13

Tradeoff

Hoare

Claims:
 Cleaner, good for proofs
 When a condition variable is

signaled, it does not change
 Used in most textbooks

…but
 Inefficient implementation
 Not modular – correctness

depends on correct use and
implementation of signal

Hansen

Signal is only a hint that the
condition may be true
 Need to check condition again

before proceeding
 Can lead to synchronization bugs

Used by most systems (e.g., Java)

Benefits:
 Efficient implementation
 Condition guaranteed to be true

once you are out of while !

CokeMachine::Deposit(){
 lockacquire();
 if (count == n) {
 notFull.wait(&lock); }
 Add coke to the machine;
 count++;
 notEmpty.signal();
 lockrelease();
}

CokeMachine::Deposit(){
 lockacquire();
 while (count == n) {
 notFull.wait(&lock); }
 Add coke to the machine;
 count++;
 notEmpty.signal();
 lockrelease();
}

14

Problems	
 with	
 Monitors
Nested	
 Monitor	
 Calls

14

Problems	
 with	
 Monitors
Nested	
 Monitor	
 Calls

CokeMachine::Deposit(){
 lockacquire();
 while (count == n) {
 notFull.wait(&lock); }
 truck->unload();
 Add coke to the machine;
 count++;
 notEmpty.signal();
 lockrelease();
}

14

Problems	
 with	
 Monitors
Nested	
 Monitor	
 Calls

CokeMachine::Deposit(){
 lockacquire();
 while (count == n) {
 notFull.wait(&lock); }
 truck->unload();
 Add coke to the machine;
 count++;
 notEmpty.signal();
 lockrelease();
}

CokeTruck::Unload(){
 lockacquire();
 while (soda.atDoor() != coke) {
 cokeAvailable.wait(&lock);}
 Unload soda closest to door;
 soda.pop();
 Signal availability for soda.atDoor();
 lockrelease();
}

14

Problems	
 with	
 Monitors
Nested	
 Monitor	
 Calls

What happens when one monitor calls into another?

CokeMachine::Deposit(){
 lockacquire();
 while (count == n) {
 notFull.wait(&lock); }
 truck->unload();
 Add coke to the machine;
 count++;
 notEmpty.signal();
 lockrelease();
}

CokeTruck::Unload(){
 lockacquire();
 while (soda.atDoor() != coke) {
 cokeAvailable.wait(&lock);}
 Unload soda closest to door;
 soda.pop();
 Signal availability for soda.atDoor();
 lockrelease();
}

14

Problems	
 with	
 Monitors
Nested	
 Monitor	
 Calls

What happens when one monitor calls into another?
 What happens to CokeMachine::lock if thread sleeps in

CokeTruck::Unload?

CokeMachine::Deposit(){
 lockacquire();
 while (count == n) {
 notFull.wait(&lock); }
 truck->unload();
 Add coke to the machine;
 count++;
 notEmpty.signal();
 lockrelease();
}

CokeTruck::Unload(){
 lockacquire();
 while (soda.atDoor() != coke) {
 cokeAvailable.wait(&lock);}
 Unload soda closest to door;
 soda.pop();
 Signal availability for soda.atDoor();
 lockrelease();
}

14

Problems	
 with	
 Monitors
Nested	
 Monitor	
 Calls

What happens when one monitor calls into another?
 What happens to CokeMachine::lock if thread sleeps in

CokeTruck::Unload?
 What happens if truck unloader wants a coke?

CokeMachine::Deposit(){
 lockacquire();
 while (count == n) {
 notFull.wait(&lock); }
 truck->unload();
 Add coke to the machine;
 count++;
 notEmpty.signal();
 lockrelease();
}

CokeTruck::Unload(){
 lockacquire();
 while (soda.atDoor() != coke) {
 cokeAvailable.wait(&lock);}
 Unload soda closest to door;
 soda.pop();
 Signal availability for soda.atDoor();
 lockrelease();
}

15

More	
 Monitor	
 Headaches
The	
 priority	
 inversion	
 problem

15

More	
 Monitor	
 Headaches
The	
 priority	
 inversion	
 problem

Three processes (P1, P2, P3), and P1 & P3
communicate using a monitor M. P3 is the highest
priority process, followed by P2 and P1.

15

More	
 Monitor	
 Headaches
The	
 priority	
 inversion	
 problem

Three processes (P1, P2, P3), and P1 & P3
communicate using a monitor M. P3 is the highest
priority process, followed by P2 and P1.
1. P1 enters M.

15

More	
 Monitor	
 Headaches
The	
 priority	
 inversion	
 problem

Three processes (P1, P2, P3), and P1 & P3
communicate using a monitor M. P3 is the highest
priority process, followed by P2 and P1.
1. P1 enters M.
2. P1 is preempted by P2.

15

More	
 Monitor	
 Headaches
The	
 priority	
 inversion	
 problem

Three processes (P1, P2, P3), and P1 & P3
communicate using a monitor M. P3 is the highest
priority process, followed by P2 and P1.
1. P1 enters M.
2. P1 is preempted by P2.
3. P2 is preempted by P3.

15

More	
 Monitor	
 Headaches
The	
 priority	
 inversion	
 problem

Three processes (P1, P2, P3), and P1 & P3
communicate using a monitor M. P3 is the highest
priority process, followed by P2 and P1.
1. P1 enters M.
2. P1 is preempted by P2.
3. P2 is preempted by P3.
4. P3 tries to enter the monitor, and waits for the lock.

15

More	
 Monitor	
 Headaches
The	
 priority	
 inversion	
 problem

Three processes (P1, P2, P3), and P1 & P3
communicate using a monitor M. P3 is the highest
priority process, followed by P2 and P1.
1. P1 enters M.
2. P1 is preempted by P2.
3. P2 is preempted by P3.
4. P3 tries to enter the monitor, and waits for the lock.
5. P2 runs again, preventing P3 from running,
subverting the priority system.

15

More	
 Monitor	
 Headaches
The	
 priority	
 inversion	
 problem

Three processes (P1, P2, P3), and P1 & P3
communicate using a monitor M. P3 is the highest
priority process, followed by P2 and P1.
1. P1 enters M.
2. P1 is preempted by P2.
3. P2 is preempted by P3.
4. P3 tries to enter the monitor, and waits for the lock.
5. P2 runs again, preventing P3 from running,
subverting the priority system.
A simple way to avoid this situation is to associate with
each monitor the priority of the highest priority process
which ever enters that monitor.

16

Other	
 Interesting	
 Topics

Exception handling
 What if a process waiting in a monitor needs to time out?

Naked notify
 How do we synchronize with I/O devices that do not grab

monitor locks, but can notify condition variables.

Butler Lampson and David Redell, “Experience with
Processes and Monitors in Mesa.”

Condition Variables

Condition Variables
• How do we change the RemoveFromQueue() routine to

wait until something is on the queue?
– Could do this by keeping a count of the number of things
on the queue (with semaphores), but error prone

Condition Variables
• How do we change the RemoveFromQueue() routine to

wait until something is on the queue?
– Could do this by keeping a count of the number of things
on the queue (with semaphores), but error prone

• Condition Variable: a queue of threads waiting for
something inside a critical section
– Key idea: allow sleeping inside critical section by
atomically releasing lock at time we go to sleep

– Contrast to semaphores: Can’t wait inside critical section

Condition Variables
• How do we change the RemoveFromQueue() routine to

wait until something is on the queue?
– Could do this by keeping a count of the number of things
on the queue (with semaphores), but error prone

• Condition Variable: a queue of threads waiting for
something inside a critical section
– Key idea: allow sleeping inside critical section by
atomically releasing lock at time we go to sleep

– Contrast to semaphores: Can’t wait inside critical section
• Operations:

– Wait(&lock): Atomically release lock and go to sleep.
Re-acquire lock later, before returning.

– Signal(): Wake up one waiter, if any
– Broadcast(): Wake up all waiters

Condition Variables
• How do we change the RemoveFromQueue() routine to

wait until something is on the queue?
– Could do this by keeping a count of the number of things
on the queue (with semaphores), but error prone

• Condition Variable: a queue of threads waiting for
something inside a critical section
– Key idea: allow sleeping inside critical section by
atomically releasing lock at time we go to sleep

– Contrast to semaphores: Can’t wait inside critical section
• Operations:

– Wait(&lock): Atomically release lock and go to sleep.
Re-acquire lock later, before returning.

– Signal(): Wake up one waiter, if any
– Broadcast(): Wake up all waiters

• Rule: Must hold lock when doing condition variable ops!

Complete Monitor Example (with condition variable)

Complete Monitor Example (with condition variable)
• Here is an (infinite) synchronized queue

Complete Monitor Example (with condition variable)
• Here is an (infinite) synchronized queue
 Lock lock;
 Condition dataready;
 Queue queue;

Complete Monitor Example (with condition variable)
• Here is an (infinite) synchronized queue
 Lock lock;
 Condition dataready;
 Queue queue;

Complete Monitor Example (with condition variable)
• Here is an (infinite) synchronized queue
 Lock lock;
 Condition dataready;
 Queue queue;

 AddToQueue(item) {
 lock.Acquire(); // Get Lock
 queue.enqueue(item); // Add item
 dataready.signal(); // Signal any waiters
 lock.Release(); // Release Lock
 }

Complete Monitor Example (with condition variable)
• Here is an (infinite) synchronized queue
 Lock lock;
 Condition dataready;
 Queue queue;

 AddToQueue(item) {
 lock.Acquire(); // Get Lock
 queue.enqueue(item); // Add item
 dataready.signal(); // Signal any waiters
 lock.Release(); // Release Lock
 }

 RemoveFromQueue() {
 lock.Acquire(); // Get Lock
 while (queue.isEmpty()) {
 dataready.wait(&lock); // If nothing, sleep
 }
 item = queue.dequeue(); // Get next item
 lock.Release(); // Release Lock
 return(item);
 }

Questions

Questions
• Can readers starve? Consider Reader() entry code:

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 okToRead.wait
(&lock); // Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!

Questions
• Can readers starve? Consider Reader() entry code:

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 okToRead.wait
(&lock); // Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!

• What if we erase the condition check in Reader exit?
 AR--; // No longer active
 if (AR == 0 && WW > 0) // No other active readers
 okToWrite.signal(); // Wake up one writer

Questions
• Can readers starve? Consider Reader() entry code:

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 okToRead.wait
(&lock); // Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!

• What if we erase the condition check in Reader exit?
 AR--; // No longer active
 if (AR == 0 && WW > 0) // No other active readers
 okToWrite.signal(); // Wake up one writer

Questions
• Can readers starve? Consider Reader() entry code:

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 okToRead.wait
(&lock); // Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!

• What if we erase the condition check in Reader exit?
 AR--; // No longer active
 if (AR == 0 && WW > 0) // No other active readers
 okToWrite.signal(); // Wake up one writer

• Further, what if we turn the signal() into broadcast()
 AR--; // No longer active
 okToWrite.broadcast(); // Wake up one writer

Questions
• Can readers starve? Consider Reader() entry code:

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 okToRead.wait
(&lock); // Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!

• What if we erase the condition check in Reader exit?
 AR--; // No longer active
 if (AR == 0 && WW > 0) // No other active readers
 okToWrite.signal(); // Wake up one writer

• Further, what if we turn the signal() into broadcast()
 AR--; // No longer active
 okToWrite.broadcast(); // Wake up one writer

• Finally, what if we use only one condition variable (call it
“okToContinue”) instead of two separate ones?
– Both readers and writers sleep on this variable
– Must use broadcast() instead of signal()

Can we construct Monitors from Semaphores?

Can we construct Monitors from Semaphores?

• Locking aspect is easy: Just use a mutex

Can we construct Monitors from Semaphores?

• Locking aspect is easy: Just use a mutex
• Can we implement condition variables this way?

 Wait() { semaphore.P(); }
 Signal() { semaphore.V(); }

Can we construct Monitors from Semaphores?

• Locking aspect is easy: Just use a mutex
• Can we implement condition variables this way?

 Wait() { semaphore.P(); }
 Signal() { semaphore.V(); }

– Doesn’t work: Wait() may sleep with lock held

Can we construct Monitors from Semaphores?

• Locking aspect is easy: Just use a mutex
• Can we implement condition variables this way?

 Wait() { semaphore.P(); }
 Signal() { semaphore.V(); }

– Doesn’t work: Wait() may sleep with lock held
• Does this work better?

 Wait(Lock lock) {
 lock.Release();
 semaphore.P();
 lock.Acquire();
}
Signal() { semaphore.V(); }

Can we construct Monitors from Semaphores?

• Locking aspect is easy: Just use a mutex
• Can we implement condition variables this way?

 Wait() { semaphore.P(); }
 Signal() { semaphore.V(); }

– Doesn’t work: Wait() may sleep with lock held
• Does this work better?

 Wait(Lock lock) {
 lock.Release();
 semaphore.P();
 lock.Acquire();
}
Signal() { semaphore.V(); }

– No: Condition vars have no history, semaphores have
history:

Can we construct Monitors from Semaphores?

• Locking aspect is easy: Just use a mutex
• Can we implement condition variables this way?

 Wait() { semaphore.P(); }
 Signal() { semaphore.V(); }

– Doesn’t work: Wait() may sleep with lock held
• Does this work better?

 Wait(Lock lock) {
 lock.Release();
 semaphore.P();
 lock.Acquire();
}
Signal() { semaphore.V(); }

– No: Condition vars have no history, semaphores have
history:

» What if thread signals and no one is waiting? NO-OP

Can we construct Monitors from Semaphores?

• Locking aspect is easy: Just use a mutex
• Can we implement condition variables this way?

 Wait() { semaphore.P(); }
 Signal() { semaphore.V(); }

– Doesn’t work: Wait() may sleep with lock held
• Does this work better?

 Wait(Lock lock) {
 lock.Release();
 semaphore.P();
 lock.Acquire();
}
Signal() { semaphore.V(); }

– No: Condition vars have no history, semaphores have
history:

» What if thread signals and no one is waiting? NO-OP
» What if thread later waits? Thread Waits

Can we construct Monitors from Semaphores?

• Locking aspect is easy: Just use a mutex
• Can we implement condition variables this way?

 Wait() { semaphore.P(); }
 Signal() { semaphore.V(); }

– Doesn’t work: Wait() may sleep with lock held
• Does this work better?

 Wait(Lock lock) {
 lock.Release();
 semaphore.P();
 lock.Acquire();
}
Signal() { semaphore.V(); }

– No: Condition vars have no history, semaphores have
history:

» What if thread signals and no one is waiting? NO-OP
» What if thread later waits? Thread Waits
» What if thread V’s and noone is waiting? Increment

Can we construct Monitors from Semaphores?

• Locking aspect is easy: Just use a mutex
• Can we implement condition variables this way?

 Wait() { semaphore.P(); }
 Signal() { semaphore.V(); }

– Doesn’t work: Wait() may sleep with lock held
• Does this work better?

 Wait(Lock lock) {
 lock.Release();
 semaphore.P();
 lock.Acquire();
}
Signal() { semaphore.V(); }

– No: Condition vars have no history, semaphores have
history:

» What if thread signals and no one is waiting? NO-OP
» What if thread later waits? Thread Waits
» What if thread V’s and noone is waiting? Increment
» What if thread later does P? Decrement and continue

Construction of Monitors from Semaphores (con’t)

Construction of Monitors from Semaphores (con’t)
• Problem with previous try:

– P and V are commutative – result is the same no matter
what order they occur

– Condition variables are NOT commutative

Construction of Monitors from Semaphores (con’t)
• Problem with previous try:

– P and V are commutative – result is the same no matter
what order they occur

– Condition variables are NOT commutative
• Does this fix the problem?

 Wait(Lock lock) {
 lock.Release();
 semaphore.P();
 lock.Acquire();
}
Signal() {
 if semaphore queue is not empty
 semaphore.V();
}

Construction of Monitors from Semaphores (con’t)
• Problem with previous try:

– P and V are commutative – result is the same no matter
what order they occur

– Condition variables are NOT commutative
• Does this fix the problem?

 Wait(Lock lock) {
 lock.Release();
 semaphore.P();
 lock.Acquire();
}
Signal() {
 if semaphore queue is not empty
 semaphore.V();
}

– Not legal to look at contents of semaphore queue

Construction of Monitors from Semaphores (con’t)
• Problem with previous try:

– P and V are commutative – result is the same no matter
what order they occur

– Condition variables are NOT commutative
• Does this fix the problem?

 Wait(Lock lock) {
 lock.Release();
 semaphore.P();
 lock.Acquire();
}
Signal() {
 if semaphore queue is not empty
 semaphore.V();
}

– Not legal to look at contents of semaphore queue
– There is a race condition – signaler can slip in after lock
release and before waiter executes semaphore.P()

Construction of Monitors from Semaphores (con’t)
• Problem with previous try:

– P and V are commutative – result is the same no matter
what order they occur

– Condition variables are NOT commutative
• Does this fix the problem?

 Wait(Lock lock) {
 lock.Release();
 semaphore.P();
 lock.Acquire();
}
Signal() {
 if semaphore queue is not empty
 semaphore.V();
}

– Not legal to look at contents of semaphore queue
– There is a race condition – signaler can slip in after lock
release and before waiter executes semaphore.P()

• It is actually possible to do this correctly
– Complex solution for Hoare scheduling in book

Monitor Conclusion

Monitor Conclusion

• Monitors represent the logic of the program
– Wait if necessary
– Signal when change something so any waiting threads
can proceed

Monitor Conclusion

• Monitors represent the logic of the program
– Wait if necessary
– Signal when change something so any waiting threads
can proceed

• Basic structure of monitor-based program:
 lock
while (need to wait) {
 condvar.wait();
}
unlock

do something so no need to wait

lock

 condvar.signal();

unlock

Check and/or update
state variables

Wait if necessary

Check and/or update
state variables

Readers/Writers Problem

R
R

R

W

Readers/Writers Problem

• Motivation: Consider a shared database

R
R

R

W

Readers/Writers Problem

• Motivation: Consider a shared database
– Two classes of users:

» Readers – never modify database
» Writers – read and modify database

R
R

R

W

Readers/Writers Problem

• Motivation: Consider a shared database
– Two classes of users:

» Readers – never modify database
» Writers – read and modify database

– Is using a single lock on the whole database sufficient?
» Like to have many readers at the same time
» Only one writer at a time

R
R

R

W

Basic Readers/Writers Solution

Basic Readers/Writers Solution
• Correctness Constraints:

– Readers can access database when no writers
– Writers can access database when no readers
– Only one thread manipulates state variables at a time

Basic Readers/Writers Solution
• Correctness Constraints:

– Readers can access database when no writers
– Writers can access database when no readers
– Only one thread manipulates state variables at a time

• Basic structure of a solution:

Basic Readers/Writers Solution
• Correctness Constraints:

– Readers can access database when no writers
– Writers can access database when no readers
– Only one thread manipulates state variables at a time

• Basic structure of a solution:
– Reader()
 Wait until no writers
 Access data base
 Check out – wake up a waiting writer

Basic Readers/Writers Solution
• Correctness Constraints:

– Readers can access database when no writers
– Writers can access database when no readers
– Only one thread manipulates state variables at a time

• Basic structure of a solution:
– Reader()
 Wait until no writers
 Access data base
 Check out – wake up a waiting writer

– Writer()
 Wait until no active readers or writers
 Access database
 Check out – wake up waiting readers or writer

Basic Readers/Writers Solution
• Correctness Constraints:

– Readers can access database when no writers
– Writers can access database when no readers
– Only one thread manipulates state variables at a time

• Basic structure of a solution:
– Reader()
 Wait until no writers
 Access data base
 Check out – wake up a waiting writer

– Writer()
 Wait until no active readers or writers
 Access database
 Check out – wake up waiting readers or writer

– State variables (Protected by a lock called “lock):
» int AR: Number of active readers; initially = 0
» int WR: Number of waiting readers; initially = 0
» int AW: Number of active writers; initially = 0
» int WW: Number of waiting writers; initially = 0
» Condition okToRead = NIL

Code for a Reader

Why Release the
Lock here?

Code for a Reader
 Reader() {
 // First check self into system
 lock.Acquire();

Why Release the
Lock here?

Code for a Reader
 Reader() {
 // First check self into system
 lock.Acquire();

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 okToRead.wait(&lock); // Sleep on cond var
 WR--; // No longer waiting
 }

Why Release the
Lock here?

Code for a Reader
 Reader() {
 // First check self into system
 lock.Acquire();

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 okToRead.wait(&lock); // Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 lock.release();

Why Release the
Lock here?

Code for a Reader
 Reader() {
 // First check self into system
 lock.Acquire();

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 okToRead.wait(&lock); // Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 lock.release();

 // Perform actual read-only access
 AccessDatabase(ReadOnly);

Why Release the
Lock here?

Code for a Reader
 Reader() {
 // First check self into system
 lock.Acquire();

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 okToRead.wait(&lock); // Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 lock.release();

 // Perform actual read-only access
 AccessDatabase(ReadOnly);

 // Now, check out of system
 lock.Acquire();
 AR--; // No longer active
 if (AR == 0 && WW > 0) // No other active readers
 okToWrite.signal(); // Wake up one writer
 lock.Release();
}

Why Release the
Lock here?

Code for a Reader
 Reader() {
 // First check self into system
 lock.Acquire();

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 okToRead.wait(&lock); // Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 lock.release();

 // Perform actual read-only access
 AccessDatabase(ReadOnly);

 // Now, check out of system
 lock.Acquire();
 AR--; // No longer active
 if (AR == 0 && WW > 0) // No other active readers
 okToWrite.signal(); // Wake up one writer
 lock.Release();
}

Why Release the
Lock here?

Why Give priority
to writers?

Code for a Writer

Why broadcast()
here instead of

signal()?

 Writer() {
 // First check self into system
 lock.Acquire();

Why Give priority
to writers?

Code for a Writer

Why broadcast()
here instead of

signal()?

 Writer() {
 // First check self into system
 lock.Acquire();

 while ((AW + AR) > 0) { // Is it safe to write?
 WW++; // No. Active users exist
 okToWrite.wait(&lock); // Sleep on cond var
 WW--; // No longer waiting
 }

Why Give priority
to writers?

Code for a Writer

Why broadcast()
here instead of

signal()?

 Writer() {
 // First check self into system
 lock.Acquire();

 while ((AW + AR) > 0) { // Is it safe to write?
 WW++; // No. Active users exist
 okToWrite.wait(&lock); // Sleep on cond var
 WW--; // No longer waiting
 }

 AW++; // Now we are active!
 lock.release();

Why Give priority
to writers?

Code for a Writer

Why broadcast()
here instead of

signal()?

 Writer() {
 // First check self into system
 lock.Acquire();

 while ((AW + AR) > 0) { // Is it safe to write?
 WW++; // No. Active users exist
 okToWrite.wait(&lock); // Sleep on cond var
 WW--; // No longer waiting
 }

 AW++; // Now we are active!
 lock.release();

 // Perform actual read/write access
 AccessDatabase(ReadWrite);

Why Give priority
to writers?

Code for a Writer

Why broadcast()
here instead of

signal()?

 Writer() {
 // First check self into system
 lock.Acquire();

 while ((AW + AR) > 0) { // Is it safe to write?
 WW++; // No. Active users exist
 okToWrite.wait(&lock); // Sleep on cond var
 WW--; // No longer waiting
 }

 AW++; // Now we are active!
 lock.release();

 // Perform actual read/write access
 AccessDatabase(ReadWrite);

 // Now, check out of system
 lock.Acquire();
 AW--; // No longer active
 if (WW > 0){ // Give priority to writers
 okToWrite.signal(); // Wake up one writer
 } else if (WR > 0) { // Otherwise, wake reader
 okToRead.broadcast(); // Wake all readers
 }
 lock.Release();
}

Why Give priority
to writers?

Code for a Writer

Why broadcast()
here instead of

signal()?

 Writer() {
 // First check self into system
 lock.Acquire();

 while ((AW + AR) > 0) { // Is it safe to write?
 WW++; // No. Active users exist
 okToWrite.wait(&lock); // Sleep on cond var
 WW--; // No longer waiting
 }

 AW++; // Now we are active!
 lock.release();

 // Perform actual read/write access
 AccessDatabase(ReadWrite);

 // Now, check out of system
 lock.Acquire();
 AW--; // No longer active
 if (WW > 0){ // Give priority to writers
 okToWrite.signal(); // Wake up one writer
 } else if (WR > 0) { // Otherwise, wake reader
 okToRead.broadcast(); // Wake all readers
 }
 lock.Release();
}

Why Give priority
to writers?

Code for a Writer

Why broadcast()
here instead of

signal()?

 Writer() {
 // First check self into system
 lock.Acquire();

 while ((AW + AR) > 0) { // Is it safe to write?
 WW++; // No. Active users exist
 okToWrite.wait(&lock); // Sleep on cond var
 WW--; // No longer waiting
 }

 AW++; // Now we are active!
 lock.release();

 // Perform actual read/write access
 AccessDatabase(ReadWrite);

 // Now, check out of system
 lock.Acquire();
 AW--; // No longer active
 if (WW > 0){ // Give priority to writers
 okToWrite.signal(); // Wake up one writer
 } else if (WR > 0) { // Otherwise, wake reader
 okToRead.broadcast(); // Wake all readers
 }
 lock.Release();
}

Why Give priority
to writers?

Code for a Writer

Why broadcast()
here instead of

signal()?

Simulation of Readers/Writers solution

Simulation of Readers/Writers solution
• Consider the following sequence of operators:

– R1, R2, W1, R3

Simulation of Readers/Writers solution
• Consider the following sequence of operators:

– R1, R2, W1, R3

• On entry, each reader checks the following:
 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers
exist
 okToRead.wait
(&lock); // Sleep on cond var
 WR--; // No longer
waiting
 }

 AR++; // Now we are active!

Simulation of Readers/Writers solution
• Consider the following sequence of operators:

– R1, R2, W1, R3

• On entry, each reader checks the following:
 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers
exist
 okToRead.wait
(&lock); // Sleep on cond var
 WR--; // No longer
waiting
 }

 AR++; // Now we are active!

• First, R1 comes along:
 AR = 1, WR = 0, AW = 0, WW = 0

Simulation of Readers/Writers solution
• Consider the following sequence of operators:

– R1, R2, W1, R3

• On entry, each reader checks the following:
 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers
exist
 okToRead.wait
(&lock); // Sleep on cond var
 WR--; // No longer
waiting
 }

 AR++; // Now we are active!

• First, R1 comes along:
 AR = 1, WR = 0, AW = 0, WW = 0

• Next, R2 comes along:
 AR = 2, WR = 0, AW = 0, WW = 0

Simulation(2)

Simulation(2)

• Next, W1 comes along:
 while ((AW + AR) > 0) { // Is it safe to write?
 WW++; // No. Active users exist
 okToWrite.wait(&lock); // Sleep on cond var
 WW--; // No longer waiting
 }

 AW++;

Simulation(2)

• Next, W1 comes along:
 while ((AW + AR) > 0) { // Is it safe to write?
 WW++; // No. Active users exist
 okToWrite.wait(&lock); // Sleep on cond var
 WW--; // No longer waiting
 }

 AW++;

• Can’t start because of readers, so go to sleep:
 AR = 2, WR = 0, AW = 0, WW = 1

Simulation(2)

• Next, W1 comes along:
 while ((AW + AR) > 0) { // Is it safe to write?
 WW++; // No. Active users exist
 okToWrite.wait(&lock); // Sleep on cond var
 WW--; // No longer waiting
 }

 AW++;

• Can’t start because of readers, so go to sleep:
 AR = 2, WR = 0, AW = 0, WW = 1
• Finally, R3 comes along:

 AR = 2, WR = 1, AW = 0, WW = 1

Simulation(2)

• Next, W1 comes along:
 while ((AW + AR) > 0) { // Is it safe to write?
 WW++; // No. Active users exist
 okToWrite.wait(&lock); // Sleep on cond var
 WW--; // No longer waiting
 }

 AW++;

• Can’t start because of readers, so go to sleep:
 AR = 2, WR = 0, AW = 0, WW = 1
• Finally, R3 comes along:

 AR = 2, WR = 1, AW = 0, WW = 1
• Now, say that R2 finishes before R1:

 AR = 1, WR = 1, AW = 0, WW = 1

Simulation(2)

• Next, W1 comes along:
 while ((AW + AR) > 0) { // Is it safe to write?
 WW++; // No. Active users exist
 okToWrite.wait(&lock); // Sleep on cond var
 WW--; // No longer waiting
 }

 AW++;

• Can’t start because of readers, so go to sleep:
 AR = 2, WR = 0, AW = 0, WW = 1
• Finally, R3 comes along:

 AR = 2, WR = 1, AW = 0, WW = 1
• Now, say that R2 finishes before R1:

 AR = 1, WR = 1, AW = 0, WW = 1
• Finally, last of first two readers (R1) finishes and

wakes up writer:

Simulation(2)

• Next, W1 comes along:
 while ((AW + AR) > 0) { // Is it safe to write?
 WW++; // No. Active users exist
 okToWrite.wait(&lock); // Sleep on cond var
 WW--; // No longer waiting
 }

 AW++;

• Can’t start because of readers, so go to sleep:
 AR = 2, WR = 0, AW = 0, WW = 1
• Finally, R3 comes along:

 AR = 2, WR = 1, AW = 0, WW = 1
• Now, say that R2 finishes before R1:

 AR = 1, WR = 1, AW = 0, WW = 1
• Finally, last of first two readers (R1) finishes and

wakes up writer:
 if (AR == 0 && WW > 0) // No other active readers
 okToWrite.signal(); // Wake up one writer

Simulation(3)

Simulation(3)

• When writer wakes up, get:
 AR = 0, WR = 1, AW = 1, WW = 0

Simulation(3)

• When writer wakes up, get:
 AR = 0, WR = 1, AW = 1, WW = 0

• Then, when writer finishes:

Simulation(3)

• When writer wakes up, get:
 AR = 0, WR = 1, AW = 1, WW = 0

• Then, when writer finishes:
 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 okToRead.wait(&lock); // Sleep on cond var
 WR--; // No longer waiting
 }

Simulation(3)

• When writer wakes up, get:
 AR = 0, WR = 1, AW = 1, WW = 0

• Then, when writer finishes:
 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 okToRead.wait(&lock); // Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!

– Writer wakes up reader, so get:
 AR = 1, WR = 0, AW = 0, WW = 0

Simulation(3)

• When writer wakes up, get:
 AR = 0, WR = 1, AW = 1, WW = 0

• Then, when writer finishes:
 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 okToRead.wait(&lock); // Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!

– Writer wakes up reader, so get:
 AR = 1, WR = 0, AW = 0, WW = 0

• When writer completes, we are finished

C-Language Support for Synchronization

C-Language Support for Synchronization

• C language: Pretty straightforward synchronization
– Just make sure you know all the code paths out of a
critical section

 int Rtn() {
 lock.acquire();
 …
 if (exception) {
 lock.release();
 return errReturnCode;
 }
 …
 lock.release();
 return OK;
}

C-Language Support for Synchronization

• C language: Pretty straightforward synchronization
– Just make sure you know all the code paths out of a
critical section

 int Rtn() {
 lock.acquire();
 …
 if (exception) {
 lock.release();
 return errReturnCode;
 }
 …
 lock.release();
 return OK;
}

– Watch out for setjmp/longmp!

C-Language Support for Synchronization

• C language: Pretty straightforward synchronization
– Just make sure you know all the code paths out of a
critical section

 int Rtn() {
 lock.acquire();
 …
 if (exception) {
 lock.release();
 return errReturnCode;
 }
 …
 lock.release();
 return OK;
}

– Watch out for setjmp/longmp!
– Can cause a non-local jump out of procedure

C++ Language Support for Synchronization

C++ Language Support for Synchronization
• Languages with exceptions like C++

– Languages that support exceptions are problematic (easy
to make a non-local exit without releasing lock)

C++ Language Support for Synchronization
• Languages with exceptions like C++

– Languages that support exceptions are problematic (easy
to make a non-local exit without releasing lock)

– Consider:
 void Rtn() {
 lock.acquire();
 …
 DoFoo();
 …
 lock.release();
 }
 void DoFoo() {
 …
 if (exception) throw errException;
 …
 }

C++ Language Support for Synchronization
• Languages with exceptions like C++

– Languages that support exceptions are problematic (easy
to make a non-local exit without releasing lock)

– Consider:
 void Rtn() {
 lock.acquire();
 …
 DoFoo();
 …
 lock.release();
 }
 void DoFoo() {
 …
 if (exception) throw errException;
 …
 }

– Notice that an exception in DoFoo() will exit without
releasing the lock

C++ Language Support for Synchronization (con’t)

C++ Language Support for Synchronization (con’t)
• Must catch all exceptions in critical sections

– Must catch exceptions, release lock, then re-throw the
exception:

 void Rtn() {
 lock.acquire();
 try {
 …
 DoFoo();
 …
 } catch (…) { // catch exception
 lock.release(); // release lock
 throw; // re-throw the exception
 }
 lock.release();
 }

 void DoFoo() {
 …
 if (exception) throw errException;
 …
 }

Java Language Support for Synchronization

Java Language Support for Synchronization

• Java has explicit support for threads and thread
synchronization

Java Language Support for Synchronization

• Java has explicit support for threads and thread
synchronization

• Bank Account example:
 class Account {
 private int balance;
 // object constructor
 public Account (int initialBalance) {
 balance = initialBalance;
 }
 public synchronized int getBalance() {
 return balance;
 }
 public synchronized void deposit(int amount) {
 balance += amount;
 }
 }

– Every object has an associated lock which gets
automatically acquired and released on entry and exit
from a synchronized method.

Java Language Support for Synchronization (con’t)

Java Language Support for Synchronization (con’t)

• Java also has synchronized statements:

Java Language Support for Synchronization (con’t)

• Java also has synchronized statements:
 synchronized (object) {
 …
 }

– Since every Java object has an associated lock, this
type of statement acquires and releases the object’s
lock on entry and exit of the body

– Works properly even with exceptions:
 synchronized (object) {
 …
 DoFoo();
 …
 }
 void DoFoo() {
 throw errException;
 }

Java Language Support for Synchronization (con’t 2)

Java Language Support for Synchronization (con’t 2)
• In addition to a lock, every object has a single

condition variable associated with it

Java Language Support for Synchronization (con’t 2)
• In addition to a lock, every object has a single

condition variable associated with it
– How to wait inside a synchronization method of block:

» void wait(long timeout); // Wait for timeout
» void wait(long timeout, int nanoseconds); //variant
» void wait();

Java Language Support for Synchronization (con’t 2)
• In addition to a lock, every object has a single

condition variable associated with it
– How to wait inside a synchronization method of block:

» void wait(long timeout); // Wait for timeout
» void wait(long timeout, int nanoseconds); //variant
» void wait();

– How to signal in a synchronized method or block:
» void notify(); // wakes up oldest waiter
» void notifyAll(); // like broadcast, wakes everyone

Java Language Support for Synchronization (con’t 2)
• In addition to a lock, every object has a single

condition variable associated with it
– How to wait inside a synchronization method of block:

» void wait(long timeout); // Wait for timeout
» void wait(long timeout, int nanoseconds); //variant
» void wait();

– How to signal in a synchronized method or block:
» void notify(); // wakes up oldest waiter
» void notifyAll(); // like broadcast, wakes everyone

– Condition variables can wait for a bounded length of
time. This is useful for handling exception cases:

 t1 = time.now();
 while (!ATMRequest()) {
 wait (CHECKPERIOD);
 t2 = time.new();
 if (t2 – t1 > LONG_TIME) checkMachine();
 }

Java Language Support for Synchronization (con’t 2)
• In addition to a lock, every object has a single

condition variable associated with it
– How to wait inside a synchronization method of block:

» void wait(long timeout); // Wait for timeout
» void wait(long timeout, int nanoseconds); //variant
» void wait();

– How to signal in a synchronized method or block:
» void notify(); // wakes up oldest waiter
» void notifyAll(); // like broadcast, wakes everyone

– Condition variables can wait for a bounded length of
time. This is useful for handling exception cases:

 t1 = time.now();
 while (!ATMRequest()) {
 wait (CHECKPERIOD);
 t2 = time.new();
 if (t2 – t1 > LONG_TIME) checkMachine();
 }

– Not all Java VMs equivalent!
» Different scheduling policies, not necessarily preemptive!

Summary

Summary
• Semaphores: Like integers with restricted interface

– Two operations:
» P(): Wait if zero; decrement when becomes non-zero
» V(): Increment and wake a sleeping task (if exists)
» Can initialize value to any non-negative value

– Use separate semaphore for each constraint

Summary
• Semaphores: Like integers with restricted interface

– Two operations:
» P(): Wait if zero; decrement when becomes non-zero
» V(): Increment and wake a sleeping task (if exists)
» Can initialize value to any non-negative value

– Use separate semaphore for each constraint
• Monitors: A lock plus one or more condition variables

– Always acquire lock before accessing shared data
– Use condition variables to wait inside critical section

» Three Operations: Wait(), Signal(), and Broadcast()

Summary
• Semaphores: Like integers with restricted interface

– Two operations:
» P(): Wait if zero; decrement when becomes non-zero
» V(): Increment and wake a sleeping task (if exists)
» Can initialize value to any non-negative value

– Use separate semaphore for each constraint
• Monitors: A lock plus one or more condition variables

– Always acquire lock before accessing shared data
– Use condition variables to wait inside critical section

» Three Operations: Wait(), Signal(), and Broadcast()
• Readers/Writers

– Readers can access database when no writers
– Writers can access database when no readers
– Only one thread manipulates state variables at a time

Summary
• Semaphores: Like integers with restricted interface

– Two operations:
» P(): Wait if zero; decrement when becomes non-zero
» V(): Increment and wake a sleeping task (if exists)
» Can initialize value to any non-negative value

– Use separate semaphore for each constraint
• Monitors: A lock plus one or more condition variables

– Always acquire lock before accessing shared data
– Use condition variables to wait inside critical section

» Three Operations: Wait(), Signal(), and Broadcast()
• Readers/Writers

– Readers can access database when no writers
– Writers can access database when no readers
– Only one thread manipulates state variables at a time

• Language support for synchronization:
– Java provides synchronized keyword and one condition-

variable per object (with wait() and notify())

