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Producer-consumer with a bounded buffer

• Problem Definition
– Producer puts things into a shared buffer
– Consumer takes them out

• Don’t want producer and consumer to have to work in 
lockstep, so put a fixed-size buffer between them
– Need to synchronize access to this buffer
– Producer needs to wait if buffer is full
– Consumer needs to wait if buffer is empty

• Example 1: GCC compiler
– cpp | cc1 | cc2 | as | ld

Producer ConsumerBuffer
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Correctness constraints for solution
• Correctness Constraints:

– Consumer must wait for producer to fill buffers, if none full 
(scheduling constraint)

– Producer must wait for consumer to empty buffers, if all full 
(scheduling constraint)

– Only one thread can manipulate buffer queue at a time (mutual 
exclusion)

• Remember why we need mutual exclusion
– Because computers are stupid
– Imagine if in real life: the delivery person is filling the 

machine and somebody comes up and tries to stick their money 
into the machine

• General rule of thumb: 
Use a separate semaphore for each constraint
– Semaphore fullBuffers; // consumer’s constraint
– Semaphore emptyBuffers;// producer’s constraint
– Semaphore mutex;       // mutual exclusion
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Full Solution to Bounded Buffer (Coke Machine)
 Semaphore fullBuffer = 0;  // Initially, no coke
 Semaphore emptyBuffers = numBuffers;
    // Initially, num empty slots

 Semaphore mutex = 1; // No one using machine

Producer(item) {
 emptyBuffers.P(); // Wait until space
 mutex.P(); // Wait until machine free
 Enqueue(item);
 mutex.V();
 fullBuffers.V(); // Tell consumers there is
    // more coke
}

 Consumer() {
 fullBuffers.P(); // Check if there’s a coke
 mutex.P(); // Wait until machine free
 item = Dequeue();
 mutex.V();
 emptyBuffers.V(); // tell producer need more
 return item;
}
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Discussion about Solution

• Why asymmetry?
– Producer does: emptyBuffer.P(), fullBuffer.V()
– Consumer does: fullBuffer.P(), emptyBuffer.V()

• Is order of P’s important?
– Yes!  Can cause deadlock

• Is order of V’s important?
– No, except that it might affect scheduling efficiency

• What if we have 2 producers or 2 consumers?
– Do we need to change anything?
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Motivation for Monitors and Condition Variables
• Semaphores are a huge step up, but:

– They are confusing because they are dual purpose:
» Both mutual exclusion and scheduling constraints
» Example: the fact that flipping of P’s in bounded buffer 

gives deadlock is not immediately obvious
– Cleaner idea: Use locks for mutual exclusion and 
condition variables for scheduling constraints

• Definition: Monitor: a lock and zero or more condition 
variables for managing concurrent access to shared 
data
– Use of Monitors is a programming paradigm
– Some languages like Java provide monitors in the 
language

• The lock provides mutual exclusion to shared data:
– Always acquire before accessing shared data structure
– Always release after finishing with shared data
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Critical	
  Section:	
  Monitors

Basic idea:
 Restrict programming model 
 Permit access to shared variables only within a critical 

section

General program structure
 Entry section

 “Lock” before entering critical section
 Wait if already locked
 Key point: synchronization may involve wait

 Critical section code
 Exit section

 “Unlock” when leaving the critical section

Object-oriented programming style
 Associate a lock with each shared object
 Methods that access shared object are critical sections
 Acquire/release locks when entering/exiting a method that 

defines a critical section
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Simple Monitor Example (version 1)
• Here is an (infinite) synchronized queue
  Lock lock;
 Queue queue;

  AddToQueue(item) {
  lock.Acquire(); // Lock shared data
  queue.enqueue(item); // Add item
  lock.Release(); // Release Lock
 }

  RemoveFromQueue() {
  lock.Acquire(); // Lock shared data
  item = queue.dequeue();// Get next item or null
  lock.Release(); // Release Lock
  return(item); // Might return null
 }
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Mesa vs. Hoare monitors
• Need to be careful about precise definition of signal and 

wait.  Consider a piece of our dequeue code:
   while (queue.isEmpty()) {

   dataready.wait(&lock); // If nothing, sleep
  }
  item = queue.dequeue(); // Get next item

– Why didn’t we do this?
   if (queue.isEmpty()) {

   dataready.wait(&lock); // If nothing, sleep
  }
  item = queue.dequeue(); // Get next item

• Answer: depends on the type of scheduling
– Hoare-style (most textbooks):

» Signaler gives lock, CPU to waiter; waiter runs immediately
» Waiter gives up lock, processor back to signaler when it exits 

critical section or if it waits again
– Mesa-style (most real operating systems):

» Signaler keeps lock and processor
» Waiter placed on ready queue with no special priority
» Practically, need to check condition again after wait
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 Assume thread T1 is waiting on condition x
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Hoare monitor semantics:
 Assume thread T1 is waiting on condition x
 Assume thread T2 is in the monitor
 Assume thread T2 calls x.signal
 T2 gives up monitor, T2 blocks!
 T1 takes over monitor, runs
 T1 gives up monitor
 T2 takes over monitor, resumes

Example

fn1(…)
…
x.wait       // T1 blocks

// T1 resumes
Lockrelease();

fn4(…)
…
x.signal    // T2 blocks
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Hoare monitor semantics:
 Assume thread T1 is waiting on condition x
 Assume thread T2 is in the monitor
 Assume thread T2 calls x.signal
 T2 gives up monitor, T2 blocks!
 T1 takes over monitor, runs
 T1 gives up monitor
 T2 takes over monitor, resumes

Example

fn1(…)
…
x.wait       // T1 blocks

// T1 resumes
Lockrelease();

fn4(…)
…
x.signal    // T2 blocks

T2 resumes  



12

Hansen	
  (Mesa)	
  Monitors:	
  Semantics

Hansen monitor semantics:
 Assume thread T1 waiting on condition x
 Assume thread T2 is in the monitor
 Assume thread T2 calls x.signal; wake up T1 
 T2 continues, finishes
 When T1 get a chance to run,T1 takes over monitor, runs
 T1 finishes, gives up monitor

Example:



12

Hansen	
  (Mesa)	
  Monitors:	
  Semantics

Hansen monitor semantics:
 Assume thread T1 waiting on condition x
 Assume thread T2 is in the monitor
 Assume thread T2 calls x.signal; wake up T1 
 T2 continues, finishes
 When T1 get a chance to run,T1 takes over monitor, runs
 T1 finishes, gives up monitor

Example:

fn1(…)
…
x.wait       // T1 blocks



12

Hansen	
  (Mesa)	
  Monitors:	
  Semantics

Hansen monitor semantics:
 Assume thread T1 waiting on condition x
 Assume thread T2 is in the monitor
 Assume thread T2 calls x.signal; wake up T1 
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Example:
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…
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Hansen	
  (Mesa)	
  Monitors:	
  Semantics

Hansen monitor semantics:
 Assume thread T1 waiting on condition x
 Assume thread T2 is in the monitor
 Assume thread T2 calls x.signal; wake up T1 
 T2 continues, finishes
 When T1 get a chance to run,T1 takes over monitor, runs
 T1 finishes, gives up monitor

Example:

fn1(…)
…
x.wait       // T1 blocks

// T1 resumes
// T1 finishes

fn4(…)
…
x.signal    // T2 continues
// T2 finishes
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 Efficient implementation
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once you are out of while !

CokeMachine::Deposit(){
    lockacquire();
    if (count == n) {
 notFull.wait(&lock); }
    Add coke to the machine;
    count++;
    notEmpty.signal();
    lockrelease();
}

CokeMachine::Deposit(){
    lockacquire();
    while (count == n) {
 notFull.wait(&lock); }
    Add coke to the machine;
    count++;
    notEmpty.signal();
    lockrelease();
}
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What happens when one monitor calls into another?
 What happens to CokeMachine::lock if thread sleeps in 

CokeTruck::Unload?
 What happens if truck unloader wants a coke?

CokeMachine::Deposit(){
    lockacquire();
    while (count == n) {
 notFull.wait(&lock); }
    truck->unload();
    Add coke to the machine;
    count++;
    notEmpty.signal();
    lockrelease();
}

CokeTruck::Unload(){
    lockacquire();
    while (soda.atDoor() != coke) {
 cokeAvailable.wait(&lock);}
    Unload soda closest to door;
    soda.pop();
    Signal availability for soda.atDoor();
    lockrelease();
}
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More	
  Monitor	
  Headaches
The	
  priority	
  inversion	
  problem

Three processes (P1, P2, P3), and P1 & P3 
communicate using a monitor M. P3 is the highest 
priority process, followed by P2 and P1.
1. P1 enters M.
2. P1 is preempted by P2.
3. P2 is preempted by P3.
4. P3 tries to enter the monitor, and waits for the lock.
5. P2 runs again, preventing P3 from running, 
subverting the priority system.
A simple way to avoid this situation is to associate with 
each monitor the priority of the highest priority process 
which ever enters that monitor.
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Other	
  Interesting	
  Topics

Exception handling
 What if a process waiting in a monitor needs to time out?

Naked notify 
 How do we synchronize with I/O devices that do not grab 

monitor locks, but can notify condition variables.

Butler Lampson and David Redell, “Experience with 
Processes and Monitors in Mesa.”
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Condition Variables
• How do we change the RemoveFromQueue() routine to 

wait until something is on the queue?
– Could do this by keeping a count of the number of things 
on the queue (with semaphores), but error prone

• Condition Variable: a queue of threads waiting for 
something inside a critical section
– Key idea: allow sleeping inside critical section by 
atomically releasing lock at time we go to sleep

– Contrast to semaphores: Can’t wait inside critical section
• Operations:

– Wait(&lock): Atomically release lock and go to sleep. 
Re-acquire lock later, before returning. 

– Signal(): Wake up one waiter, if any
– Broadcast(): Wake up all waiters

• Rule: Must hold lock when doing condition variable ops!
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Complete Monitor Example (with condition variable)
• Here is an (infinite) synchronized queue
  Lock lock;
 Condition dataready;
 Queue queue;

  AddToQueue(item) {
  lock.Acquire(); // Get Lock
  queue.enqueue(item); // Add item
  dataready.signal(); // Signal any waiters
  lock.Release(); // Release Lock
 }

  RemoveFromQueue() {
  lock.Acquire(); // Get Lock
  while (queue.isEmpty()) {
   dataready.wait(&lock); // If nothing, sleep
  }
  item = queue.dequeue(); // Get next item
  lock.Release(); // Release Lock
  return(item);
 }
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Questions
• Can readers starve?  Consider Reader() entry code:

 while ((AW + WW) > 0) { // Is it safe to read?
  WR++; // No. Writers exist
  okToRead.wait
(&lock); // Sleep on cond var
  WR--; // No longer waiting
 }

  AR++; // Now we are active!

• What if we erase the condition check in Reader exit?
  AR--; // No longer active
 if (AR == 0 && WW > 0) // No other active readers
  okToWrite.signal();  // Wake up one writer 

• Further, what if we turn the signal() into broadcast()
  AR--; // No longer active
 okToWrite.broadcast();  // Wake up one writer 

• Finally, what if we use only one condition variable (call it 
“okToContinue”) instead of two separate ones?
– Both readers and writers sleep on this variable
– Must use broadcast() instead of signal()
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Can we construct Monitors from Semaphores?

• Locking aspect is easy: Just use a mutex
• Can we implement condition variables this way?

 Wait()   { semaphore.P(); }
 Signal() { semaphore.V(); }

– Doesn’t work: Wait() may sleep with lock held
• Does this work better?

 Wait(Lock lock) {
   lock.Release();
   semaphore.P();
   lock.Acquire();
}
Signal() { semaphore.V(); }

– No: Condition vars have no history, semaphores have 
history:

» What if thread signals and no one is waiting? NO-OP
» What if thread later waits? Thread Waits
» What if thread V’s and noone is waiting? Increment
» What if thread later does P? Decrement and continue
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Construction of Monitors from Semaphores (con’t)
• Problem with previous try:

– P and V are commutative – result is the same no matter 
what order they occur

– Condition variables are NOT commutative
• Does this fix the problem?

 Wait(Lock lock) {
   lock.Release();
   semaphore.P();
   lock.Acquire();
}
Signal() {
   if semaphore queue is not empty
      semaphore.V();
}

– Not legal to look at contents of semaphore queue
– There is a race condition – signaler can slip in after lock 
release and before waiter executes semaphore.P()

• It is actually possible to do this correctly
– Complex solution for Hoare scheduling in book
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Monitor Conclusion

• Monitors represent the logic of the program
– Wait if necessary
– Signal when change something so any waiting threads 
can proceed

• Basic structure of monitor-based program:
 lock 
while (need to wait) {
   condvar.wait();
}
unlock

do something so no need to wait

lock

 condvar.signal();

unlock

Check and/or update
state variables

Wait if necessary

Check and/or update
state variables
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Readers/Writers Problem

• Motivation: Consider a shared database
– Two classes of users:

» Readers – never modify database
» Writers – read and modify database

– Is using a single lock on the whole database sufficient?
» Like to have many readers at the same time
» Only one writer at a time

R
R

R

W
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Basic Readers/Writers Solution
• Correctness Constraints:

– Readers can access database when no writers
– Writers can access database when no readers
– Only one thread manipulates state variables at a time

• Basic structure of a solution:
– Reader()
   Wait until no writers
   Access data base
   Check out – wake up a waiting writer

– Writer()
   Wait until no active readers or writers
   Access database
   Check out – wake up waiting readers or writer

– State variables (Protected by a lock called “lock):
» int AR: Number of active readers; initially = 0
» int WR: Number of waiting readers; initially = 0
» int AW: Number of active writers; initially = 0
» int WW: Number of waiting writers; initially = 0
» Condition okToRead = NIL
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• Consider the following sequence of operators:

– R1, R2, W1, R3

• On entry, each reader checks the following:
 while ((AW + WW) > 0) { // Is it safe to read?
  WR++; // No. Writers 
exist
  okToRead.wait
(&lock); // Sleep on cond var
  WR--; // No longer 
waiting
 }

  AR++; // Now we are active!

• First, R1 comes along:
 AR = 1, WR = 0, AW = 0, WW = 0

• Next, R2 comes along:
 AR = 2, WR = 0, AW = 0, WW = 0
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• Next, W1 comes along:
 while ((AW + AR) > 0) { // Is it safe to write?
  WW++; // No. Active users exist
  okToWrite.wait(&lock); // Sleep on cond var
  WW--; // No longer waiting
 }

  AW++; 

• Can’t start because of readers, so go to sleep:
  AR = 2, WR = 0, AW = 0, WW = 1
• Finally, R3 comes along:

 AR = 2, WR = 1, AW = 0, WW = 1
• Now, say that R2 finishes before R1:

 AR = 1, WR = 1, AW = 0, WW = 1
• Finally, last of first two readers (R1) finishes and 

wakes up writer:
  if (AR == 0 && WW > 0) // No other active readers
  okToWrite.signal(); // Wake up one writer
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Simulation(3)

• When writer wakes up, get:
 AR = 0, WR = 1, AW = 1, WW = 0

• Then, when writer finishes:
  while ((AW + WW) > 0) { // Is it safe to read?
  WR++; // No. Writers exist
  okToRead.wait(&lock); // Sleep on cond var
  WR--; // No longer waiting
 }

  AR++; // Now we are active!

– Writer wakes up reader, so get:
 AR = 1, WR = 0, AW = 0, WW = 0

• When writer completes, we are finished
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C-Language Support for Synchronization

• C language: Pretty straightforward synchronization
– Just make sure you know all the code paths out of a 
critical section

 int Rtn() {
  lock.acquire();
  …
  if (exception) {
   lock.release();
   return errReturnCode;
  }
  …
  lock.release();
  return OK;
}

– Watch out for setjmp/longmp!
– Can cause a non-local jump out of procedure
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C++ Language Support for Synchronization
• Languages with exceptions like C++

– Languages that support exceptions are problematic (easy 
to make a non-local exit without releasing lock)

– Consider:
  void Rtn() {
  lock.acquire();
  …
  DoFoo();
  …
  lock.release();
 }
 void DoFoo() {
  …
  if (exception) throw errException;
  …
 }

– Notice that an exception in DoFoo() will exit without 
releasing the lock
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C++ Language Support for Synchronization (con’t)
• Must catch all exceptions in critical sections

– Must catch exceptions, release lock, then re-throw the 
exception:

 void Rtn() {
  lock.acquire();
  try {
   …
   DoFoo();
   …
  } catch (…) { // catch exception
   lock.release(); // release lock
   throw;  // re-throw the exception
  }
  lock.release();
 }

 void DoFoo() {
  …
  if (exception) throw errException;
  …
 }
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Java Language Support for Synchronization

• Java has explicit support for threads and thread 
synchronization

• Bank Account example:
 class Account {
  private int balance;
  // object constructor
  public Account (int initialBalance) {
   balance = initialBalance;
  }
  public synchronized int getBalance() {
   return balance;
  }
  public synchronized void deposit(int amount) {
   balance += amount;
  }
 }

– Every object has an associated lock which gets 
automatically acquired and released on entry and exit 
from a synchronized method.
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Java Language Support for Synchronization (con’t)

• Java also has synchronized statements:
  synchronized (object) {
   …
 }

– Since every Java object has an associated lock, this 
type of statement acquires and releases the object’s 
lock on entry and exit of the body

– Works properly even with exceptions:
  synchronized (object) {
  …
  DoFoo();
  …
 }
 void DoFoo() {
  throw errException;
 }
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Java Language Support for Synchronization (con’t 2)
• In addition to a lock, every object has a single 

condition variable associated with it
– How to wait inside a synchronization method of block:

» void wait(long timeout); // Wait for timeout
» void wait(long timeout, int nanoseconds); //variant
» void wait();

– How to signal in a synchronized method or block:
» void notify(); // wakes up oldest waiter
» void notifyAll(); // like broadcast, wakes everyone

– Condition variables can wait for a bounded length of 
time. This is useful for handling exception cases:

  t1 = time.now();
 while (!ATMRequest()) {
  wait (CHECKPERIOD);
  t2 = time.new();
  if (t2 – t1 > LONG_TIME) checkMachine();
 }

– Not all Java VMs equivalent! 
» Different scheduling policies, not necessarily preemptive!
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Summary
• Semaphores: Like integers with restricted interface

– Two operations:
» P(): Wait if zero; decrement when becomes non-zero
» V(): Increment and wake a sleeping task (if exists)
» Can initialize value to any non-negative value

– Use separate semaphore for each constraint
• Monitors: A lock plus one or more condition variables

– Always acquire lock before accessing shared data
– Use condition variables to wait inside critical section

» Three Operations: Wait(), Signal(), and Broadcast()
• Readers/Writers

– Readers can access database when no writers
– Writers can access database when no readers
– Only one thread manipulates state variables at a time

• Language support for synchronization:
– Java provides synchronized keyword and one condition-

variable per object (with wait() and notify())


