
1

CMPT 300
Introduction to Operating Systems

Introduction to Concurrency & Synchronization

Acknowledgement: some slides are taken from Anthony D. Joseph’s course material at UC Berkeley

 PARALLELISM : WHY ?
 ATOMICITY ?
 MUTUAL EXCLUSION ? WHY ? SAFETY

LIVENESS
 MILK

2

Clock Frequency

3
10

Why Power Increased

Clock Frequency (MHz)

10

100

1000

10000

85 87 89 91 93 95 97 99 01 03 05 07 09

CPUs consume a lot of power

4

P
ow

er

Year

Source: Rethinking digital design: Why design must change [IEEE Micro]

130W

125W

4-13W

Increasing clock and core complexity
Increasing power dissipation

http://www.duke.edu/~BCL15/documents/shacham2010-micro-chipgen.pdf
http://www.duke.edu/~BCL15/documents/shacham2010-micro-chipgen.pdf

Development cycle

5

Increased
processor

performance

Larger, more
feature-full
software

Larger
development

teams

Higher-level
languages &
abstractions

Slower
programs

X
Game Over

Next: Multicore

Multicore Revolution is here!

6

L1$

Shared L2$

L1$ L1$ L1$

Mem.
Controller

C0 C1 C2 C3

More cores on a chip

Each core ; 40% Ghz = 0.25x Power

Overall Performance = 4 cores * 0.6x/core = 2.4x

7

Example

Multithreaded Programs
 Multithreaded programs must work for all

interleavings of threads

 Bugs can be really insidious:
 Extremely unlikely that this would happen, but

may strike at worse possible time

 Really hard to debug unless carefully
designed!

8

9

Concurrency	
 Quiz

If two threads execute this program concurrently, how
many different final values of X are there?

Initially, X == 0.

void increment() {
 int temp = X;
 temp = temp + 1;
 X = temp;
}

void increment() {
 int temp = X;
 temp = temp + 1;
 X = temp;
}

Thread 1 Thread 2

Answer:
A.0
B.1
C.2
D.More than 2

10

Schedules/Interleavings

Model of concurrent execution
Interleave statements from each thread into a single
thread
If any interleaving yields incorrect results, some
synchronization is needed

tmp1 = X;
tmp1 = tmp1 + 1;
X = tmp1;

tmp2 = X;
tmp2 = tmp2 + 1;
X = tmp2;

Thread 1 Thread 2
tmp1 = X;
tmp2 = X;
tmp2 = tmp2 + 1;
tmp1 = tmp1 + 1;
X = tmp1;
X = tmp2;

If X==0 initially, X == 1 at the end. WRONG result!

11

Some	
 More	
 Examples

What are the possible values of x in these cases?

Thread1: x = 1;	
 	
 	
 Thread2: x = 2;

Initially y = 10;

Thread1: x = y + 1;	
 	
 Thread2: y = y * 2;

Initially x = 0;

Thread1: x = x + 1;	
 	
 Thread2: x = x + 2;

12

Critical	
 Sections

A critical section is an abstraction
 Consists of a number of consecutive program instructions
 Usually, crit sec are mutually exclusive and can wait/signal

 Later, we will talk about atomicity and isolation

Critical sections are used frequently in an OS to protect data
structures (e.g., queues, shared variables, lists, …)
A critical section implementation must be:
 Correct: the system behaves as if only 1 thread can execute

in the critical section at any given time
 Efficient: getting into and out of critical section must be fast.

Critical sections should be as short as possible.
 Concurrency control: a good implementation allows

maximum concurrency while preserving correctness
 Flexible: a good implementation must have as few

restrictions as practically possible

13

The	
 Need	
 For	
 Mutual	
 Exclusion

Running multiple processes/threads in parallel
increases performance
Some computer resources cannot be accessed by
multiple threads at the same time
 E.g., a printer can’t print two documents at once

Mutual exclusion is the term to indicate that some
resource can only be used by one thread at a time
 Active thread excludes its peers

For shared memory architectures, data structures are
often mutually exclusive
 Two threads adding to a linked list can corrupt the list

14

Exclusion	
 Problems,	
 Real	
 Life	
 Example

Imagine multiple chefs in the same kitchen
 Each chef follows a different recipe

Chef 1
 Grab butter, grab salt, do other stuff

Chef 2
 Grab salt, grab butter, do other stuff

What if Chef 1 grabs the butter and Chef 2 grabs the
salt?
 Yell at each other (not a computer science solution)
 Chef 1 grabs salt from Chef 2 (preempt resource)
 Chefs all grab ingredients in the same order

 Current best solution, but difficult as recipes get complex
 Ingredient like cheese might be sans refrigeration for a while

15

The	
 Need	
 To	
 Wait

Very often, synchronization consists of one thread
waiting for another to make a condition true
 Master tells worker a request has arrived
 Cleaning thread waits until all lanes are colored

Until condition is true, thread can sleep
 Ties synchronization to scheduling

Mutual exclusion for data structure
 Code can wait (await)
 Another thread signals (notify)

Atomic Operations
 To understand a concurrent program, we need to know

what the underlying indivisible operations are!
 Atomic Operation: an operation that always runs to

completion or not at all
 It is indivisible: it cannot be stopped in the middle and state

cannot be modified by someone else in the middle
 Fundamental building block – if no atomic operations, then have

no way for threads to work together
 On most machines, memory references and assignments

(i.e. loads and stores) of words are atomic
 Many instructions are not atomic

 Double-precision floating point store often not atomic
 VAX and IBM 360 had an instruction to copy a whole array

16

Definitions
 Synchronization: using atomic operations to coordinate

multiple concurrent threads that are using shared state

 Mutual Exclusion: ensuring that only one thread does a
particular thing at a time
 excludes the other while doing its work

 Critical Section: piece of code that only one thread can
execute at once. Only one thread gets in.
 Critical section is the result of mutual exclusion
 Critical section and mutual exclusion are two ways of

describing the same thing.

17

Motivation: “Too much milk”

 Consider two roommates who need
to coordinate to get milk if out of milk:

Arrive home, put milk away3:30
Buy milk3:25
Arrive at storeArrive home, put milk away3:20
Leave for storeBuy milk3:15

Leave for store3:05
Look in Fridge. Out of milk3:00

Look in Fridge. Out of milkArrive at store3:10

Person BPerson ATimeTOO MUCH MILK!

More Definitions
 Lock: prevents someone from doing something

 Lock before entering critical section
 Unlock when leaving,
 Wait if locked

 Important idea: all synchronization involves waiting

 Example: Lock on the refrigerator
 Lock it and take key if you are going to go buy milk
 Too coarse-grained: refrigerator is unavailable

 Roommate gets angry if he only wants OJ

19

Too Much Milk: Correctness
Properties

 Correctness for “Too much milk” problem
 Never more than one person buys
 Someone buys if needed

 Restrict ourselves to use only atomic load
(read) and store (write) operations

 Concurrent programs are non-deterministic
due to many possible interleavings

20

Too Much Milk: Solution #1

 Use a note to avoid buying too much milk:
 Leave a note before buying (kind of “lock”)
 Remove note after buying (kind of “unlock”)
 Donʼt buy if note (wait)

 if (noMilk) {
 if (noNote) {
 leave Note;
 buy milk;
 remove note;
 }
 }

Context-switch point

21

 Result?
 Still too much milk but only occasionally!

Too Much Milk: Solution #1½
 Another try:

 leave Note;
 if (noMilk) {

 if (noNote) {
 leave Note;
 buy milk;
 }
 }

 remove note;

 What happens here?
 “leave Note; buy milk;” will never run.
 No one ever buys milk!

22

To Much Milk Solution #2
 How about labeled notes?
" " Thread A" " Thread B
 leave note A; leave note B;

 if (noNote B) { if (noNoteA) {
 if (noMilk) { if (noMilk) {
 buy Milk; buy Milk;
 } }
 } }
 remove note A; remove note B;

 Does this work? Still no
 Possible for neither thread to buy milk

 Thread A leaves note A; Thread B leaves note B; each
sees the otherʼs note, thinking “Iʼm not getting milk,
Youʼre getting milk”

 Each one thinks that the other is getting it.

Context-switch pointContext-switch point

23

Too Much Milk Solution #3
 Here is a possible two-note solution:
" " " Thread A" " Thread B
 leave note A; leave note B;

 while (note B) { //X if (noNote A) { //Y
 do nothing; if (noMilk) {
 } buy milk;
 if (noMilk) { }
 buy milk; }
 } remove note B;
 remove note A;

 Does this work? Yes.
 It is safe to buy, or Other will buy, ok to quit
 At X:

 if no note B, safe for A to buy,
 At Y:

 if no note A, safe for B to buy
24

Solution 3.5
 Note that the solution is asymmetric!

 Quzz: does it work if Thread B also has a
symmetric while loop?

" " " Thread A" " Thread B
 leave note A; leave note B;

 while (note B) { while (note A) {
 do nothing; do nothing;
 } }
 if (noMilk) { if (noMilk) {
 buy milk; buy milk;
 } }
 remove note A; remove note B;

25

Context-switch pointContext-switch point

" No. Each thread can leave a note, then go into
infinite while loop.

Solution #3 Discussions

 Solution #3 works, but itʼs really unsatisfactory
 Really complex – even for this simple an example

 Hard to convince yourself that this really works
 Aʼs code is different from Bʼs – what if lots of threads?

 Code would have to be slightly different for each thread

 Thereʼs a better way
 Have HW provide better (higher-level) primitives

 Build even higher-level programming abstractions on
this new hardware support

26

Too Much Milk: Solution #4
 We need to protect a single “Critical-Section” piece of

code for each thread:
 if (noMilk) {

 buy milk;
 }

 Suppose we have some sort of implementation of a
lock (more in a moment).
 Lock.Acquire() – wait until lock is free, then grab
 Lock.Release() – Unlock, waking up anyone waiting
 These must be atomic operations – if two threads are

waiting for the lock and both see itʼs free, only one
succeeds to grab the lock

 Solution:
" milklock.Acquire();
 if (nomilk)
 buy milk;
 milklock.Release(); 27

28

The	
 correctness	
 conditions
Safety
 Only one thread in the critical region

Liveness
 Some thread that enters the entry section eventually enters the

critical region
 Even if other thread takes forever in non-critical region

Bounded waiting
 A thread that enters the entry section enters the critical section

within some bounded number of operations.

Failure atomicity
 It is OK for a thread to die in the critical region
 Many techniques do not provide failure atomicity

while(1) {
Acquire (Lock)
 Critical section
 Exit section
Release (Lock)
}

Where are we going with
synchronization?

 We are going to implement various higher-level
synchronization primitives using atomic operations
 Everything is pretty painful if only atomic primitives are

load and store
 Need to provide primitives useful at user-level

Load/Store Disable Ints Test&Set Comp&Swap

Locks Semaphores Monitors Send/Receive

Shared Programs

Hardware

Higher-level
API

Programs

29

 Example: Therac-25
 Machine for radiation therapy

 Software control of electron
accelerator and electron beam/
Xray production

 Software control of dosage

 Software errors caused the
death of several patients
 A series of race conditions on shared variables and

poor software design

Therac-25 Example

30

Space Shuttle
 Launch aborted 20 minutes before T minus 0.

 Shuttle has five computers:
 Four run the “Primary Avionics Software System” (PASS)

 Asynchronous and real-time
 Runs all of the control systems
 Results synchronized and compared every 3 to 4 ms

 The Fifth computer is the “Backup Flight System” (BFS)
 stays synchronized in case it is needed
 Written by completely different team than PASS

 Countdown aborted; BFS disagreed with PASS
 A 1/67 chance that PASS was out of sync one cycle
 Bug due to modifications in initialization code of PASS

PASS

BFS

31

Summary
 Concurrent threads are a very useful abstraction

 Allow transparent overlapping of computation and I/O
 Allow use of parallel processing when available

 Shared data introduces challenges.
 Programs must be properly synchronized
 Without careful design, shared variables can become

completely inconsistent

 Important concept: Atomic Operations
 An operation that runs to completion or not at all
 Construct various synchronization primitives

32

High-Level Picture
 Implementing a concurrent program with only

loads and stores would be tricky and error-prone
 Consider “too much milk” example
 Showed how to protect a critical section with only

atomic load and store ⇒ pretty complex!

 Weʼll implement higher-level operations on top of
atomic operations provided by HW
 Develop a “synchronization toolbox”
 Explore some common programming paradigms

33

How to implement Locks?

34

How to implement Locks?
 Lock: prevents someone from doing something

 Lock before entering critical section
 Unlock when leaving, after accessing shared data
 Wait if locked

 Hardware Lock instruction
 Is this a good idea?
 Complexity?

 Done in the Intel 432
 Each feature makes hardware more complex and slow

 What about putting a task to sleep?
 How do you handle the interface between the hardware and

scheduler?

35

• Only one thread can hold a “lock” at a time
• Used a provide serialized access to a data object

• If another threads tries to acquire a held lock
• Must wait until other thread performs a release

• Performance implications
• Lock contention limits parallelism
• Lock acquire/release time adds overheads

• Correctness implications
• Just one example:

• Thread #1: Holds lock A, tries to acquire B
• Thread #2: Holds lock B, tries to acquire A
• Classic deadlock!

Lock-Based Mutual Exclusion

L
O
C
K

W
A
I
T

L
O
C
K

L
O
C
K

L
O
C
K

W
A
I
T

W
A
I
T

t0 t1 t2 t3

37

Read-­‐Modify-­‐Write	
 (RMW)

Implement locks using read-modify-write instructions
 As an atomic and isolated action

1. read a memory location into a register, AND
2. write a new value to the location

 Implementing RMW is tricky in multi-processors
 Requires cache coherence hardware. Caches snoop the memory bus.

Examples:
 Test&set instructions (most architectures)

 Reads a value from memory
 Write “1” back to memory location

 Compare & swap (68000)
 Test the value against some constant
 If the test returns true, set value in memory to different value
 Report the result of the test in a flag
 if [addr] == r1 then [addr] = r2;

 Exchange, locked increment, locked decrement (x86)
 Load linked/store conditional (PowerPC,Alpha, MIPS)

Simple Boolean Spin Locks

• Simplest lock:
• Single variable, two states: locked, unlocked
• When unlocked: atomically transition from unlocked to locked
• When locked: keep checking (spin) until the lock is unlocked

• Busy waiting versus “blocking”
• In a multicore, busy wait for other thread to release lock

• Likely to happen soon, assuming critical sections are small
• Likely nothing “better” for the processor to do anyway

• In a single processor, if trying to acquire a held lock, block
• The only sensible option is to tell the O.S. to context switch
• O.S. knows not to reschedule thread until lock is released

• Blocking has high overhead (O.S. call)
• IMHO, rarely makes sense in multicore (parallel) programs

38

 How can we build multi-instruction atomic ops?
 OS dispatcher gets control in two ways.

 Internal: Thread does something to relinquish the CPU
 External: Interrupts cause dispatcher to take CPU

 On a uniprocessor, can avoid context-switching by:
 Avoiding internal events ; preventing external events

 Consequently, naïve Implementation of locks:
" " LockAcquire { disable Ints; }
 LockRelease { enable Ints; }

 Challenges:
 Canʼt let user do this! Consider following:

 LockAcquire();
While(TRUE) {;}

 Real-Time system—no guarantees on timing!
 Critical Sections might be arbitrarily long

Naïve use of Interrupt Enable/
Disable

39

Better Implementation of Locks
by Disabling Interrupts
 Key idea: maintain a lock variable and impose mutual

exclusion only during operations on that variable
 Waiting thread goes to sleep

int value = FREE;
Acquire() {
 disable interrupts;
 if (value == BUSY) {
 put thread on wait queue;
 Go to sleep();
 // Enable interrupts?
 } else {
 value = BUSY;
 }
 enable interrupts;
}

Release() {
 disable interrupts;
 if (anyone on wait queue) {
 take thread off wait queue
 Place on ready queue;
 } else {
 value = FREE;
 }
 enable interrupts;
}

40

New Lock Implementation:
Discussion

 Why do we need to disable interrupts?
 Avoid interruption between checking and setting lock value
 Otherwise two threads could think that they both have lock

 Note: unlike previous solution, the critical
section (inside Acquire()) is very short

 Acquire() {
 disable interrupts;
 if (value == BUSY) {
 put thread on wait queue;
 Go to sleep();
 // Enable interrupts?
 } else {
 value = BUSY;
 }
 enable interrupts;
}

Critical
Section

41

Interrupt re-enable in going to
sleep

 Before Putting thread on the wait queue?
 Release can check the queue and not wake up thread

 After putting the thread on the wait queue
 Release puts the thread on the ready queue, but the thread still thinks it needs

to go to sleep
 Misses wakeup and still holds lock (deadlock!)

Acquire() {
 disable interrupts;
 if (value == BUSY) {
 put thread on wait queue;
 Go to sleep();
 } else {
 value = BUSY;
 }
 enable interrupts;
}

Enable Position?
Enable Position?
Enable Position?

42

Hardware Mechanism
 Problem with previous solution:

 Relies on programmer discipline for
correctness

 CPUs generally have hardware
mechanisms to support this requirement.
 For example, on the Atmega128

microcontroller, the sei instruction does not
re-enable interrupts until two cycles after it is
issued (so the instruction sequence sei
sleep runs atomically).

43

Locks

44

Atomic Instruction
Sequences
 Problem with disabling interrupts

 Can be dangerous: interrupts should not be disabled for a
long time, otherwise may miss important interrupts

 Doesnʼt work well on multiprocessor
 Disabling interrupts on all processors requires messages and

would be very time consuming

 Alternative: atomic read-modify-write instruction
sequences supported by hardware
 These instructions read a value from memory and write a

new value atomically
 Can be used on both uniprocessors and multiprocessors

45

46

Implementing	
 Locks	
 with	
 Test&set

If lock is free (lock_value == 0), then
test&set reads 0 and sets value to 1
 lock is set to busy and Acquire
completes

If lock is busy, the test&set reads 1
and sets value to 1  no change in
lock’s status and Acquire loops

int lock_value = 0;
int* lock = &lock_value;

Lock::Acquire() {
while (test&set(lock) == 1)
 ; //spin
}

Lock::Release() {
 *lock = 0;
}

Does this lock have bounded
waiting?

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

47

Basic Spin-Lock

CS

Resets lock
upon exit

spin
lock

critical
section

...

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

48

Basic Spin-Lock

CS

Resets lock
upon exit

spin
lock

critical
section

...

…lock introduces
sequential bottleneck

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

49

Basic Spin-Lock

CS

Resets lock
upon exit

spin
lock

critical
section

...

…lock suffers from
contention

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

50

Basic Spin-Lock

CS

Resets lock
upon exit

spin
lock

critical
section

...
Notice: these are distinct
phenomena

…lock suffers from
contention

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

51

Basic Spin-Lock

CS

Resets lock
upon exit

spin
lock

critical
section

...

…lock suffers from
contention

Seq Bottleneck  no
parallelism

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

52

Basic Spin-Lock

CS

Resets lock
upon exit

spin
lock

critical
section

...
Contention  ???

…lock suffers from
contention

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

53

Review: Test-and-Set

• Boolean value
• Test-and-set (TAS)

– Swap true with current value
– Return value tells if prior value was true

or false

• Can reset just by writing false
• TAS aka “getAndSet”

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

54

Review: Test-and-Set
public class AtomicBoolean {
 boolean value;

 public synchronized boolean getAndSet
(boolean newValue) {

 boolean prior = value;
 value = newValue;
 return prior;
 }
}

(5)

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

55

Review: Test-and-Set
public class AtomicBoolean {
 boolean value;

 public synchronized boolean getAndSet
(boolean newValue) {

 boolean prior = value;
 value = newValue;
 return prior;
 }
} Package

java.util.concurrent.atomic

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

56

Review: Test-and-Set
public class AtomicBoolean {
 boolean value;

 public synchronized boolean getAndSet
(boolean newValue) {

 boolean prior = value;
 value = newValue;
 return prior;
 }
}

Swap old and new
values

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

57

Review: Test-and-Set
AtomicBoolean lock
 = new AtomicBoolean(false)
…
boolean prior = lock.getAndSet(true)

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

58

Review: Test-and-Set
AtomicBoolean lock
 = new AtomicBoolean(false)
…
boolean prior = lock.getAndSet(true)

(5)

Swapping in true is called
“test-and-set” or TAS

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

59

Test-and-Set Locks

• Locking
– Lock is free: value is false
– Lock is taken: value is true

• Acquire lock by calling TAS
– If result is false, you win
– If result is true, you lose

• Release lock by writing false

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

60

Test-and-set Lock
class TASlock {
 AtomicBoolean state =
 new AtomicBoolean(false);

 void lock() {
 while (state.getAndSet(true)) {}
 }

 void unlock() {
 state.set(false);
 }}

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

61

Test-and-set Lock
class TASlock {
 AtomicBoolean state =
 new AtomicBoolean(false);

 void lock() {
 while (state.getAndSet(true)) {}
 }

 void unlock() {
 state.set(false);
 }}

Lock state is AtomicBoolean

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

62

Test-and-set Lock
class TASlock {
 AtomicBoolean state =
 new AtomicBoolean(false);

 void lock() {
 while (state.getAndSet(true)) {}
 }

 void unlock() {
 state.set(false);
 }}

Keep trying until lock acquired

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

63

Test-and-set Lock
class TASlock {
 AtomicBoolean state =
 new AtomicBoolean(false);

 void lock() {
 while (state.getAndSet(true)) {}
 }

 void unlock() {
 state.set(false);
 }}

Release lock by resetting
state to false

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

64

Space Complexity

• TAS spin-lock has small “footprint”
• N thread spin-lock uses O(1) space
• As opposed to O(n) Peterson/Bakery
• How did we overcome the Ω(n) lower

bound?
• We used a RMW operation…

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

65

Performance

• Experiment
– n threads
– Increment shared counter 1 million times

• How long should it take?
• How long does it take?

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

66

Graph

ideal

ti
m

e

threads

no speedup
because of
sequential
bottleneck

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

67

Mystery #1
ti

m
e

threads

TAS lock

Ideal

(1)

What is
going
on?

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

68

Test-and-Test-and-Set Locks

• Lurking stage
– Wait until lock “looks” free
– Spin while read returns true (lock taken)

• Pouncing state
– As soon as lock “looks” available
– Read returns false (lock free)
– Call TAS to acquire lock
– If TAS loses, back to lurking

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

69

Test-and-test-and-set Lock
class TTASlock {
 AtomicBoolean state =
 new AtomicBoolean(false);

 void lock() {
 while (true) {
 while (state.get()) {}
 if (!state.getAndSet(true))
 return;
 }
}

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

70

Test-and-test-and-set Lock
class TTASlock {
 AtomicBoolean state =
 new AtomicBoolean(false);

 void lock() {
 while (true) {
 while (state.get()) {}
 if (!state.getAndSet(true))
 return;
 }
}

Wait until lock looks free

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

71

Test-and-test-and-set Lock
class TTASlock {
 AtomicBoolean state =
 new AtomicBoolean(false);

 void lock() {
 while (true) {
 while (state.get()) {}
 if (!state.getAndSet(true))
 return;
 }
}

Then try to
acquire it

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

72

Mystery #2
TAS lock

TTAS lock

Ideal

ti
m

e

threads

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

73

Mystery

• Both
– TAS and TTAS
– Do the same thing (in our model)

• Except that
– TTAS performs much better than TAS
– Neither approaches ideal

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

74

Opinion

• Our memory abstraction is broken
• TAS & TTAS methods

– Are provably the same (in our model)

– Except they aren’t (in field tests)

• Need a more detailed model …

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

75

Bus-Based Architectures

Bus

cache

memory

cachecache

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

76

Bus-Based Architectures

Bus

cache

memory

cachecache

Random access memory
(10s of cycles)

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

77

Bus-Based Architectures

cache

memory

cachecache

Shared Bus
•broadcast medium
•One broadcaster at a time
•Processors and memory all
“snoop”

Bus

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

78

Bus-Based Architectures

Bus

cache

memory

cachecache

Per-Processor Caches
•Small
•Fast: 1 or 2 cycles
•Address & state information

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

79

Jargon Watch

• Cache hit
– “I found what I wanted in my cache”
– Good Thing™

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

80

Jargon Watch

• Cache hit
– “I found what I wanted in my cache”
– Good Thing™

• Cache miss
– “I had to shlep all the way to memory for

that data”
– Bad Thing™

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

81

Cave Canem

• This model is still a simplification
– But not in any essential way
– Illustrates basic principles

• Will discuss complexities later

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

82

Bus

Processor Issues Load Request

cache

memory

cachecache

data

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

83

Bus

Processor Issues Load Request

Bus

cache

memory

cachecache

data

Gimme
data

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

84

cache

Bus

Memory Responds

Bus

memory

cachecache

data

Got your
data right

here data

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

85

Bus

Processor Issues Load Request

memory

cachecachedata

data

Gimme
data

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

86

Bus

Processor Issues Load Request

Bus

memory

cachecachedata

data

Gimme
data

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

87

Bus

Processor Issues Load Request

Bus

memory

cachecachedata

data

I got
data

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

88

Bus

Other Processor Responds

memory

cachecache

data

I got
data

datadata
Bus

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

89

Bus

Other Processor Responds

memory

cachecache

data

datadata
Bus

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

90

Modify Cached Data

Bus

data

memory

cachedata

data

(1)

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

91

Modify Cached Data

Bus

data

memory

cachedata

data

data

(1)

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

92

memory

Bus

data

Modify Cached Data

cachedata

data

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

93

memory

Bus

data

Modify Cached Data

cache

What’s up with the
other copies?

data

data

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

94

Cache Coherence

• We have lots of copies of data
– Original copy in memory
– Cached copies at processors

• Some processor modifies its own copy
– What do we do with the others?
– How to avoid confusion?

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

95

Write-Back Caches

• Accumulate changes in cache
• Write back when needed

– Need the cache for something else
– Another processor wants it

• On first modification
– Invalidate other entries
– Requires non-trivial protocol …

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

96

Write-Back Caches

• Cache entry has three states
– Invalid: contains raw seething bits
– Valid: I can read but I can’t write
– Dirty: Data has been modified

• Intercept other load requests
• Write back to memory before using cache

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

97

Bus

Invalidate

memory

cachedatadata

data

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

98

Bus

Invalidate

Bus

memory

cachedatadata

data

Mine, all
mine!

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

99

Bus

Invalidate

Bus

memory

cachedatadata

data

cache

Uh,oh

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

100

cache
Bus

Invalidate

memory

cachedata

data

Other caches lose read permission

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

101

cache
Bus

Invalidate

memory

cachedata

data

Other caches lose read permission

This cache acquires write permission

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

102

cache
Bus

Invalidate

memory

cachedata

data

Memory provides data only if not
present in any cache, so no need to

change it now (expensive)

(2)

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

103

cache
Bus

Another Processor Asks for
Data

memory

cachedata

data

(2)

Bus

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

104

cache data
Bus

Owner Responds

memory

cachedata

data

(2)

Bus

Here it is!

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

105

Bus

End of the Day …

memory

cachedata

data

(1)
Reading OK, no writing

data data

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

106

Mutual Exclusion

• What do we want to optimize?
– Bus bandwidth used by spinning threads
– Release/Acquire latency
– Acquire latency for idle lock

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

107

Simple TASLock

• TAS invalidates cache lines
• Spinners

– Miss in cache
– Go to bus

• Thread wants to release lock
– delayed behind spinners

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

108

Test-and-test-and-set

• Wait until lock “looks” free
– Spin on local cache
– No bus use while lock busy

• Problem: when lock is released
– Invalidation storm …

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

109

Local Spinning while Lock is
Busy

Bus

memory

busybusybusy

busy

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

110

Bus

On Release

memory

freeinvalidinvalid

free

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

111

On Release

Bus

memory

freeinvalidinvalid

free

miss miss

Everyone misses,
rereads

(1)

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

112

On Release

Bus

memory

freeinvalidinvalid

free

TAS(…) TAS(…)

Everyone tries TAS

(1)

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

113

Problems

• Everyone misses
– Reads satisfied sequentially

• Everyone does TAS
– Invalidates others’ caches

• Eventually quiesces after lock
acquired
– How long does this take?

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

114

Measuring Quiescence Time

P1

P2

Pn

X = time of ops that don’t
 use the bus
Y = time of ops that cause
 intensive bus traffic

In critical section, run ops X then ops Y. As long as
Quiescence time is less than X, no drop in performance.

By gradually varying X, can determine the exact time
to quiesce.

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

115

Quiescence Time

Increses
linearly with
the number of
processors for
bus architectureti

m
e

threads

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

116

Mystery Explained
TAS lock

TTAS lock

Ideal

ti
m

e

threads
Better than
TAS but still
not as good as

ideal

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

117

Solution: Introduce Delay

spin locktime
dr1dr2d

• If the lock looks free
• But I fail to get it

• There must be lots of contention
• Better to back off than to collide again

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

118

Dynamic Example:
Exponential Backoff

time
d2d4d spin lock

 If I fail to get lock
– wait random duration before retry
– Each subsequent failure doubles
expected wait

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

119

Exponential Backoff Lock

public class Backoff implements lock {
 public void lock() {
 int delay = MIN_DELAY;
 while (true) {
 while (state.get()) {}
 if (!lock.getAndSet(true))
 return;
 sleep(random() % delay);
 if (delay < MAX_DELAY)
 delay = 2 * delay;
 }}}

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

120

Exponential Backoff Lock

public class Backoff implements lock {
 public void lock() {
 int delay = MIN_DELAY;
 while (true) {
 while (state.get()) {}
 if (!lock.getAndSet(true))
 return;
 sleep(random() % delay);
 if (delay < MAX_DELAY)
 delay = 2 * delay;
 }}}

Fix minimum delay

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

121

Exponential Backoff Lock

public class Backoff implements lock {
 public void lock() {
 int delay = MIN_DELAY;
 while (true) {
 while (state.get()) {}
 if (!lock.getAndSet(true))
 return;
 sleep(random() % delay);
 if (delay < MAX_DELAY)
 delay = 2 * delay;
 }}}

Wait until lock looks free

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

122

Exponential Backoff Lock

public class Backoff implements lock {
 public void lock() {
 int delay = MIN_DELAY;
 while (true) {
 while (state.get()) {}
 if (!lock.getAndSet(true))
 return;
 sleep(random() % delay);
 if (delay < MAX_DELAY)
 delay = 2 * delay;
 }}}

If we win, return

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

123

Exponential Backoff Lock

public class Backoff implements lock {
 public void lock() {
 int delay = MIN_DELAY;
 while (true) {
 while (state.get()) {}
 if (!lock.getAndSet(true))
 return;
 sleep(random() % delay);
 if (delay < MAX_DELAY)
 delay = 2 * delay;
 }}}

Back off for random duration

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

124

Exponential Backoff Lock

public class Backoff implements lock {
 public void lock() {
 int delay = MIN_DELAY;
 while (true) {
 while (state.get()) {}
 if (!lock.getAndSet(true))
 return;
 sleep(random() % delay);
 if (delay < MAX_DELAY)
 delay = 2 * delay;
 }}}

Double max delay, within reason

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

125

Spin-Waiting Overhead

TTAS Lock

Backoff lockti
m

e

threads

126

Locks	
 and	
 Busy	
 Waiting

Busy-waiting:
 Threads consume CPU cycles while waiting
 Low latency to acquire

Limitations
 Occupies a CPU core
 What happens if threads have different priorities?

 Busy-waiting thread remains runnable
 If the thread waiting for a lock has higher priority than the

thread occupying the lock, then ?
 Ugh, I just wanted to lock a data structure, but now I’m involved

with the scheduler!
 What if programmer forgets to unlock?

Lock::Acquire() {
 while (test&set(lock) == 1)
 ; // spin
}

127

Cheaper	
 Locks	
 with	
 Cheaper	
 busy	
 waiting
	
 	
 	
 	
 Using	
 Test&Set

Lock::Acquire() {
while (test&set(lock) == 1);
}

Lock::Release() {
 *lock = 0;
}

With busy-waiting

Lock::Acquire() {
while(1) {
 if (test&set(lock) == 0) break;
 else sleep(1);
}

With voluntary yield of CPU

Lock::Release() {
*lock = 0;
}

What is the problem with this?
 A. CPU usage B. Memory usage C. Lock::Acquire() latency
 D. Memory bus usage E. Messes up interrupt handling

128

Cheap	
 Locks	
 with	
 Cheap	
 busy	
 waiting
	
 	
 	
 	
 Using	
 Test&Test&Set

Lock::Acquire() {
while (test&set(lock) == 1);
}

Lock::Release() {
 *lock = 0;
}

Busy-wait on in-memory copy

Lock::Acquire() {
while(1) {
 while (*lock == 1) ; // spin just reading
 if (test&set(lock) == 0) break;
}

Busy-wait on cached copy

Lock::Release() {
*lock = 0;
}

What is the problem with this?
 A. CPU usage B. Memory usage C. Lock::Acquire() latency
 D. Memory bus usage E. Does not work

129

Implementing	
 Locks:	
 Summary

Locks are higher-level programming abstraction
 Mutual exclusion can be implemented using locks

Lock implementation generally requires some level of
hardware support
 Details of hardware support affects efficiency of locking

Locks can busy-wait, and busy-waiting cheaply is
important
 Soon come primitives that block rather than busy-wait

Hardware-Supported Atomic
Read-Modify-Write Instructions

 test&set:set content of “address” to 1, and return its original content
 test&set (&address)

 result = M[address];
 M[address] = 1;
 return result;
}

 compare&swap:compare content of “address”
to reg1; if same, set it to reg2
compare&swap (&address, reg1, reg2) { /*

68000 */
 if (reg1 == M[address]) {
 M[address] = reg2;
 return success;
 } else {
 return failure;
 }

130

Implementing Locks with
test&set

 A simple solution:
" " int value = 0; // Free
 Acquire() {

 while (test&set(value)); // while busy
 }

 Release() {
 value = 0;
 }

 Explanation:
 If lock is free, test&set reads 0 and sets value=1, so lock is

now busy. It returns 0 so while exits.
 If lock is busy, test&set reads 1 and sets value=1 (no

change). It returns 1, so while loop continues
 When we set value = 0, someone else can get lock

 Busy-Waiting: thread consumes cycles while waiting
131

Problem: Busy-Waiting for
Lock
 Positives for this solution

 Interrupts are not disabled
 User code can use this lock
 Works on a multiprocessor

 Negatives
 Inefficient, because the busy-waiting thread will

consume cycles waiting idly
 Waiting thread may take cycles away from

thread holding lock
 Priority Inversion: For priority-based scheduling, if

busy-waiting thread has higher priority than thread
holding lock ⇒ no progress!

 Round-robin scheduling is OK 132

Higher-Level Primitives than
Locks

 Good primitives and practices important!
 UNIX is pretty stable now, but up until about

mid-80s (10 years after started), systems running
UNIX would crash every week or so –
concurrency bugs

 Semaphores and Monitors next

133

Summary Cont’
 Semaphores: Like integers with restricted interface

 Two operations:
 P(): Wait if zero; decrement when becomes non-zero
 V(): Increment and wake a sleeping task (if exists)
 Can initialize value to any non-negative value

 Use separate semaphore for each constraint
 Monitors: A lock plus one or more condition variables

 Always acquire lock before accessing shared data
 Use condition variables to wait inside critical section

 Three Operations: Wait(), Signal(), and Broadcast()
 Readers/Writers

 Readers can access database when no writers
 Writers can access database when no readers
 Only one thread manipulates state variables at a time

 Language support for synchronization:
 Java provides synchronized keyword and one condition-

134

