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CMPT 300
Introduction to Operating Systems 

Introduction to Concurrency & Synchronization

Acknowledgement: some slides are taken from Anthony D. Joseph’s course material at UC Berkeley



 PARALLELISM : WHY ?
 ATOMICITY ?
 MUTUAL EXCLUSION ? WHY ? SAFETY 

LIVENESS
 MILK
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CPUs consume a lot of power
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Source:  Rethinking digital design: Why design must change [IEEE Micro]

130W
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Increasing clock and core complexity
Increasing power dissipation

http://www.duke.edu/~BCL15/documents/shacham2010-micro-chipgen.pdf
http://www.duke.edu/~BCL15/documents/shacham2010-micro-chipgen.pdf


Development cycle
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Increased 
processor 

performance 

Larger, more 
feature-full 
software 

Larger 
development 

teams 

Higher-level 
languages & 
abstractions 

Slower 
programs 

X
Game Over

Next: Multicore



Multicore Revolution is here!
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Mem.
Controller

C0 C1 C2 C3

More cores on a chip

Each core ; 40%  Ghz = 0.25x Power

Overall Performance = 4 cores * 0.6x/core = 2.4x
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Example



Multithreaded Programs
 Multithreaded programs must work for all 

interleavings of threads

 Bugs can be really insidious: 
 Extremely unlikely that this would happen, but 

may strike at worse possible time

 Really hard to debug unless carefully 
designed!
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Concurrency	
  Quiz

If two threads execute this program concurrently, how 
many different final values of X are there?

Initially, X == 0.

void increment() {
   int temp = X;
   temp = temp + 1;
   X = temp;
}

void increment() {
   int temp = X;
   temp = temp + 1;
   X = temp;
}

Thread 1 Thread 2

Answer:
A.0
B.1
C.2
D.More than 2
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Schedules/Interleavings

Model of concurrent execution
Interleave statements from each thread into a single 
thread
If any interleaving yields incorrect results, some 
synchronization is needed

tmp1 = X;
tmp1 = tmp1 + 1;
X = tmp1;

tmp2 = X;
tmp2 = tmp2 + 1;
X = tmp2;   

Thread 1 Thread 2
tmp1 = X;
tmp2 = X;
tmp2 = tmp2 + 1;
tmp1 = tmp1 + 1;
X = tmp1;
X = tmp2;

If X==0 initially, X == 1 at the end. WRONG result!
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Some	
  More	
  Examples

What are the possible values of x in these cases?

Thread1: x = 1;	
 	
    	
     Thread2: x = 2;

Initially y = 10;

Thread1: x = y + 1;	
 	
    Thread2: y = y * 2;

Initially x = 0;

Thread1: x = x + 1;	
 	
    Thread2: x = x + 2;
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Critical	
  Sections

A critical section is an abstraction
 Consists of a number of consecutive program instructions
 Usually, crit sec are mutually exclusive and can wait/signal

 Later, we will talk about atomicity and isolation

Critical sections are used frequently in an OS to protect data 
structures (e.g., queues, shared variables, lists, …)
A critical section implementation must be:
 Correct: the system behaves as if only 1 thread can execute 

in the critical section at any given time
 Efficient: getting into and out of critical section must be fast. 

Critical sections should be as short as possible.
 Concurrency control: a good implementation allows 

maximum concurrency while preserving correctness
 Flexible: a good implementation must have as few 

restrictions as practically possible
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The	
  Need	
  For	
  Mutual	
  Exclusion

Running multiple processes/threads in parallel 
increases performance
Some computer resources cannot be accessed by 
multiple threads at the same time
 E.g., a printer can’t print two documents at once

Mutual exclusion is the term to indicate that some 
resource can only be used by one thread at a time
 Active thread excludes its peers

For shared memory architectures, data structures are 
often mutually exclusive
 Two threads adding to a linked list can corrupt the list
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Exclusion	
  Problems,	
  Real	
  Life	
  Example

Imagine multiple chefs in the same kitchen
 Each chef follows a different recipe

Chef 1
 Grab butter, grab salt, do other stuff

Chef 2
 Grab salt, grab butter, do other stuff

What if Chef 1 grabs the butter and Chef 2 grabs the 
salt?
 Yell at each other (not a computer science solution)
 Chef 1 grabs salt from Chef 2 (preempt resource)
 Chefs all grab ingredients in the same order

 Current best solution, but difficult as recipes get complex
 Ingredient like cheese might be sans refrigeration for a while
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The	
  Need	
  To	
  Wait

Very often, synchronization consists of one thread 
waiting for another to make a condition true
 Master tells worker a request has arrived
 Cleaning thread waits until all lanes are colored

Until condition is true, thread can sleep
 Ties synchronization to scheduling

Mutual exclusion for data structure
 Code can wait (await)
 Another thread signals (notify)



Atomic Operations
 To understand a concurrent program, we need to know 

what the underlying indivisible operations are!
 Atomic Operation: an operation that always runs to 

completion or not at all
 It is indivisible: it cannot be stopped in the middle and state 

cannot be modified by someone else in the middle
 Fundamental building block – if no atomic operations, then have 

no way for threads to work together
 On most machines, memory references and assignments 

(i.e. loads and stores) of words are atomic
 Many instructions are not atomic

 Double-precision floating point store often not atomic
 VAX and IBM 360 had an instruction to copy a whole array
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Definitions
 Synchronization: using atomic operations to coordinate 

multiple concurrent threads that are using shared state

 Mutual Exclusion: ensuring that only one thread does a 
particular thing at a time
 excludes the other while doing its work

 Critical Section: piece of code that only one thread can 
execute at once. Only one thread gets in.
 Critical section is the result of mutual exclusion
 Critical section and mutual exclusion are two ways of 

describing the same thing.
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Motivation: “Too much milk”

 Consider two roommates who need 
to coordinate to get milk if out of milk:

Arrive home, put milk away3:30
Buy milk3:25
Arrive at storeArrive home, put milk away3:20
Leave for storeBuy milk3:15

Leave for store3:05
Look in Fridge. Out of milk3:00

Look in Fridge. Out of milkArrive at store3:10

Person BPerson ATimeTOO MUCH MILK!



More Definitions
 Lock: prevents someone from doing something

 Lock before entering critical section
 Unlock when leaving, 
 Wait if locked

 Important idea: all synchronization involves waiting

 Example: Lock on the refrigerator
 Lock it and take key if you are going to go buy milk
 Too coarse-grained: refrigerator is unavailable

 Roommate gets angry if he only wants OJ
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Too Much Milk: Correctness 
Properties

 Correctness for “Too much milk” problem
 Never more than one person buys
 Someone buys if needed

 Restrict ourselves to use only atomic load 
(read) and store (write) operations

 Concurrent programs are non-deterministic 
due to many possible interleavings
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Too Much Milk: Solution #1

 Use a note to avoid buying too much milk:
 Leave a note before buying (kind of “lock”)
 Remove note after buying (kind of “unlock”)
 Donʼt buy if note (wait)

   if (noMilk) {
      if (noNote) {
         leave Note;
         buy milk;
         remove note;
      }
  }

Context-switch point
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 Result?  
 Still too much milk but only occasionally!



Too Much Milk: Solution #1½ 
 Another try:

   leave Note;
   if (noMilk) {

      if (noNote) {
         leave Note;
         buy milk;
      }
  }

   remove note;

 What happens here?
 “leave Note; buy milk;” will never run.
 No one ever buys milk!
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To Much Milk Solution #2
 How about labeled notes?  
" " Thread A" " Thread B
  leave note A; leave note B;

 if (noNote B) { if (noNoteA) {
    if (noMilk) {    if (noMilk) {
       buy Milk;       buy Milk;
    }     }
 }  }
 remove note A; remove note B;

 Does this work? Still no
 Possible for neither thread to buy milk

 Thread A leaves note A; Thread B leaves note B; each 
sees the otherʼs note, thinking “Iʼm not getting milk, 
Youʼre getting milk”

 Each one thinks that the other is getting it.

Context-switch pointContext-switch point
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Too Much Milk Solution #3
 Here is a possible two-note solution:
" " " Thread A" " Thread B
  leave note A; leave note B;

 while (note B) { //X  if (noNote A) { //Y
    do nothing;    if (noMilk) {
 }        buy milk;
 if (noMilk) {    }
    buy milk; }
 }  remove note B;
 remove note A;

 Does this work? Yes. 
 It is safe to buy, or Other will buy, ok to quit
 At X: 

 if no note B, safe for A to buy, 
 At Y: 

 if no note A, safe for B to buy
24



Solution 3.5
 Note that the solution is asymmetric!

 Quzz: does it work if Thread B also has a 
symmetric while loop?

" " " Thread A" " Thread B
  leave note A; leave note B;

 while (note B) { while (note A) {
    do nothing;    do nothing;
 }  }
 if (noMilk) { if (noMilk) {   
    buy milk;     buy milk; 
 }  }
 remove note A; remove note B;

25

Context-switch pointContext-switch point

" No. Each thread can leave a note, then go into 
infinite while loop.



Solution #3 Discussions

 Solution #3 works, but itʼs really unsatisfactory
 Really complex – even for this simple an example

 Hard to convince yourself that this really works
 Aʼs code is different from Bʼs – what if lots of threads?

 Code would have to be slightly different for each thread

 Thereʼs a better way
 Have HW provide better (higher-level) primitives

 Build even higher-level programming abstractions on 
this new hardware support
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Too Much Milk: Solution #4
 We need to protect a single “Critical-Section” piece of 

code for each thread:
   if (noMilk) { 

        buy milk; 
  } 

 Suppose we have some sort of implementation of a 
lock (more in a moment). 
 Lock.Acquire() – wait until lock is free, then grab
 Lock.Release() – Unlock, waking up anyone waiting
 These must be atomic operations – if two threads are 

waiting for the lock and both see itʼs free, only one 
succeeds to grab the lock

 Solution:
"  milklock.Acquire();
  if (nomilk)
     buy milk;
  milklock.Release(); 27
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The	
  correctness	
  conditions
Safety
 Only one thread in the critical region

Liveness
 Some thread that enters the entry section eventually enters the 

critical region 
 Even if other thread takes forever in non-critical region

Bounded waiting
 A thread that enters the entry section enters the critical section 

within some bounded number of operations.

Failure atomicity
 It is OK for a thread to die in the critical region
 Many techniques do not provide failure atomicity

while(1) {
Acquire (Lock)
   Critical section
   Exit section
Release (Lock)
}



Where are we going with 
synchronization?

 We are going to implement various higher-level 
synchronization primitives using atomic operations
 Everything is pretty painful if only atomic primitives are 

load and store
 Need to provide primitives useful at user-level

Load/Store    Disable Ints   Test&Set   Comp&Swap

Locks   Semaphores   Monitors   Send/Receive

Shared Programs

Hardware

Higher-level 
API

Programs

29



 Example: Therac-25
 Machine for radiation therapy

 Software control of electron
accelerator and electron beam/
Xray production

 Software control of dosage

 Software errors caused the 
death of several patients
 A series of race conditions on shared variables and 

poor software design

Therac-25 Example
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Space Shuttle
 Launch aborted 20 minutes before T minus 0.

 Shuttle has five computers:
 Four run the “Primary Avionics Software System” (PASS)

 Asynchronous and real-time
 Runs all of the control systems
 Results synchronized and compared every 3 to 4 ms

 The Fifth computer is the “Backup Flight System” (BFS)
 stays synchronized in case it is needed
 Written by completely different team than PASS

 Countdown aborted; BFS disagreed with PASS
 A 1/67 chance that PASS was out of sync one cycle
 Bug due to modifications in initialization code of PASS

PASS

BFS
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Summary
 Concurrent threads are a very useful abstraction

 Allow transparent overlapping of computation and I/O
 Allow use of parallel processing when available

 Shared data introduces challenges.
 Programs must be properly synchronized
 Without careful design, shared variables can become 

completely inconsistent

 Important concept: Atomic Operations
 An operation that runs to completion or not at all
 Construct various synchronization primitives
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High-Level Picture
 Implementing a concurrent program with only 

loads and stores would be tricky and error-prone
 Consider “too much milk” example
 Showed how to protect a critical section with only 

atomic load and store ⇒ pretty complex!

 Weʼll implement higher-level operations on top of 
atomic operations provided by HW 
 Develop a “synchronization toolbox”
 Explore some common programming paradigms
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How to implement Locks?
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How to implement Locks?
 Lock: prevents someone from doing something

 Lock before entering critical section 
 Unlock when leaving, after accessing shared data
 Wait if locked

 Hardware Lock instruction
 Is this a good idea?
 Complexity?

 Done in the Intel 432
 Each feature makes hardware more complex and slow

 What about putting a task to sleep?
 How do you handle the interface between the hardware and 

scheduler?
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• Only one thread can hold a “lock” at a time
• Used a provide serialized access to a data object

• If another threads tries to acquire a held lock
• Must wait until other thread performs a release

• Performance implications
• Lock contention limits parallelism
• Lock acquire/release time adds overheads

• Correctness implications
• Just one example:

• Thread #1: Holds lock A, tries to acquire B
• Thread #2: Holds lock B, tries to acquire A
• Classic deadlock!

Lock-Based Mutual Exclusion
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Read-­‐Modify-­‐Write	
  (RMW)

Implement locks using read-modify-write instructions
 As an atomic and isolated action

1. read a memory location into a register,  AND
2. write a new value to the location

 Implementing RMW is tricky in multi-processors
 Requires cache coherence hardware.  Caches snoop the memory bus.

Examples:
 Test&set instructions (most architectures)

 Reads a value from memory
 Write “1” back to memory location

 Compare & swap (68000)
 Test the value against some constant
 If the test returns true, set value in memory to different value
 Report the result of the test in a flag
 if [addr] == r1 then [addr] = r2;

 Exchange, locked increment, locked decrement (x86)
 Load linked/store conditional (PowerPC,Alpha, MIPS)



Simple Boolean Spin Locks

• Simplest lock:
• Single variable, two states: locked, unlocked
• When unlocked: atomically transition from unlocked to locked
• When locked: keep checking (spin) until the lock is unlocked

• Busy waiting versus “blocking”
• In a multicore, busy wait for other thread to release lock

• Likely to happen soon, assuming critical sections are small
• Likely nothing “better” for the processor to do anyway

• In a single processor, if trying to acquire a held lock, block
• The only sensible option is to tell the O.S. to context switch
• O.S. knows not to reschedule thread until lock is released

• Blocking has high overhead (O.S. call)
• IMHO, rarely makes sense in multicore (parallel) programs  
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 How can we build multi-instruction atomic ops?
 OS dispatcher gets control in two ways. 

 Internal: Thread does something to relinquish the CPU
 External: Interrupts cause dispatcher to take CPU

 On a uniprocessor, can avoid context-switching by:
 Avoiding internal events ; preventing external events

 Consequently, naïve Implementation of locks:
" " LockAcquire { disable Ints; }
  LockRelease { enable Ints; }

 Challenges:
 Canʼt let user do this! Consider following:

 LockAcquire();
While(TRUE) {;}

 Real-Time system—no guarantees on timing! 
 Critical Sections might be arbitrarily long

Naïve use of  Interrupt Enable/
Disable

39



Better Implementation of  Locks 
by Disabling Interrupts
 Key idea: maintain a lock variable and impose mutual 

exclusion only during operations on that variable
 Waiting thread goes to sleep

int value = FREE;
Acquire() {
 disable interrupts;
 if (value == BUSY) {
  put thread on wait queue;
  Go to sleep();
  // Enable interrupts?
 } else {
  value = BUSY;
 }
 enable interrupts;
}

Release() {
 disable interrupts;
 if (anyone on wait queue) {
  take thread off wait queue
  Place on ready queue;
 } else {
  value = FREE;
 }
 enable interrupts;
}
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New Lock Implementation: 
Discussion

 Why do we need to disable interrupts?
 Avoid interruption between checking and setting lock value
 Otherwise two threads could think that they both have lock

 Note: unlike previous solution, the critical 
section (inside Acquire()) is very short

 Acquire() {
 disable interrupts;
 if (value == BUSY) {
  put thread on wait queue;
  Go to sleep();
  // Enable interrupts?
 } else {
  value = BUSY;
 }
 enable interrupts;
}

Critical
Section

41



Interrupt re-enable in going to 
sleep

 Before Putting thread on the wait queue?
 Release can check the queue and not wake up thread

 After putting the thread on the wait queue
 Release puts the thread on the ready queue, but the thread still thinks it needs 

to go to sleep
 Misses wakeup and still holds lock (deadlock!)

Acquire() {
 disable interrupts;
 if (value == BUSY) {
  put thread on wait queue;
  Go to sleep();
 } else {
  value = BUSY;
 }
 enable interrupts;
}

Enable Position?
Enable Position?
Enable Position?
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Hardware Mechanism
 Problem with previous solution:

 Relies on programmer discipline for 
correctness

 CPUs generally have hardware 
mechanisms to support this requirement. 
 For example, on the Atmega128 

microcontroller, the sei instruction does not 
re-enable interrupts until two cycles after it is 
issued (so the instruction sequence sei 
sleep runs atomically).

43



Locks
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Atomic Instruction 
Sequences
 Problem with disabling interrupts

 Can be dangerous: interrupts should not be disabled for a 
long time, otherwise may miss important interrupts

 Doesnʼt work well on multiprocessor
 Disabling interrupts on all processors requires messages and 

would be very time consuming

 Alternative: atomic read-modify-write instruction 
sequences supported by hardware
 These instructions read a value from memory and write a 

new value atomically
 Can be used on both uniprocessors and multiprocessors

45
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Implementing	
  Locks	
  with	
  Test&set

If lock is free (lock_value == 0), then 
test&set reads 0 and sets value to 1 
 lock is set to busy and Acquire 
completes

If lock is busy, the test&set reads 1 
and sets value to 1  no change in 
lock’s status and Acquire loops

int lock_value = 0;
int* lock = &lock_value;

Lock::Acquire() {
while (test&set(lock) == 1)
   ; //spin
}

Lock::Release() {
    *lock = 0;
}

Does this lock have bounded 
waiting?
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Basic Spin-Lock

CS

Resets lock 
upon exit

spin 
lock

critical 
section

...
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Basic Spin-Lock

CS

Resets lock 
upon exit

spin 
lock

critical 
section

...

…lock introduces 
sequential bottleneck
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Basic Spin-Lock

CS

Resets lock 
upon exit

spin 
lock

critical 
section

...

…lock suffers from 
contention
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Basic Spin-Lock

CS

Resets lock 
upon exit

spin 
lock

critical 
section

...
Notice: these are distinct 
phenomena

…lock suffers from 
contention
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Basic Spin-Lock

CS

Resets lock 
upon exit

spin 
lock

critical 
section

...

…lock suffers from 
contention

Seq Bottleneck  no 
parallelism
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Basic Spin-Lock

CS

Resets lock 
upon exit

spin 
lock

critical 
section

...
Contention  ???

…lock suffers from 
contention
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Review: Test-and-Set

• Boolean value
• Test-and-set (TAS)

– Swap true with current value
– Return value tells if prior value was true 

or false

• Can reset just by writing false
• TAS aka “getAndSet”
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Review: Test-and-Set
public class AtomicBoolean {
 boolean value;
  
 public synchronized boolean getAndSet
(boolean newValue) {

   boolean prior = value;
   value = newValue;
   return prior;
 }
}

(5)



Art of Multiprocessor 
Programming© Herlihy-Shavit 

2007

55

Review: Test-and-Set
public class AtomicBoolean {
 boolean value;
  
 public synchronized boolean getAndSet
(boolean newValue) {

   boolean prior = value;
   value = newValue;
   return prior;
 }
} Package

java.util.concurrent.atomic
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Review: Test-and-Set
public class AtomicBoolean {
 boolean value;
  
 public synchronized boolean getAndSet
(boolean newValue) {

   boolean prior = value;
   value = newValue;
   return prior;
 }
}

Swap old and new 
values
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Review: Test-and-Set
AtomicBoolean lock
 = new AtomicBoolean(false)
…
boolean prior = lock.getAndSet(true)
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Review: Test-and-Set
AtomicBoolean lock
 = new AtomicBoolean(false)
…
boolean prior = lock.getAndSet(true)
 

(5)

Swapping in true is called 
“test-and-set” or TAS
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Test-and-Set Locks

• Locking
– Lock is free: value is false
– Lock is taken: value is true

• Acquire lock by calling TAS
– If result is false, you win
– If result is true, you lose 

• Release lock by writing false
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Test-and-set Lock
class TASlock {
 AtomicBoolean state =
  new AtomicBoolean(false);

 void lock() {
  while (state.getAndSet(true)) {}
 }
 
 void unlock() {
  state.set(false);
 }} 
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Test-and-set Lock
class TASlock {
 AtomicBoolean state =
  new AtomicBoolean(false);

 void lock() {
  while (state.getAndSet(true)) {}
 }
 
 void unlock() {
  state.set(false);
 }} 

Lock state is AtomicBoolean
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Test-and-set Lock
class TASlock {
 AtomicBoolean state =
  new AtomicBoolean(false);

 void lock() {
  while (state.getAndSet(true)) {}
 }
 
 void unlock() {
  state.set(false);
 }} 

Keep trying until lock acquired
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Test-and-set Lock
class TASlock {
 AtomicBoolean state =
  new AtomicBoolean(false);

 void lock() {
  while (state.getAndSet(true)) {}
 }
 
 void unlock() {
  state.set(false);
 }} 

Release lock by resetting 
state to false
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Space Complexity

• TAS spin-lock has small “footprint” 
• N thread spin-lock uses O(1) space
• As opposed to O(n) Peterson/Bakery 
• How did we overcome the Ω(n) lower 

bound? 
• We used a RMW operation… 
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Performance

• Experiment
– n threads
– Increment shared counter 1 million times

• How long should it take?
• How long does it take?
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Graph

ideal

ti
m

e

threads

no speedup 
because of 
sequential 
bottleneck
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Mystery #1
ti

m
e

threads

TAS lock

Ideal

(1)

What is 
going 
on? 
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Test-and-Test-and-Set Locks

• Lurking stage
– Wait until lock “looks” free
– Spin while read returns true (lock taken)

• Pouncing state
– As soon as lock “looks” available
– Read returns false (lock free)
– Call TAS to acquire lock
– If TAS loses, back to lurking
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Test-and-test-and-set Lock
class TTASlock {
 AtomicBoolean state =
  new AtomicBoolean(false);

 void lock() {
  while (true) {
   while (state.get()) {}
   if (!state.getAndSet(true))
    return;
 }
} 
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Test-and-test-and-set Lock
class TTASlock {
 AtomicBoolean state =
  new AtomicBoolean(false);

 void lock() {
  while (true) {
   while (state.get()) {}
   if (!state.getAndSet(true))
    return;
 }
} 

Wait until lock looks free
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Test-and-test-and-set Lock
class TTASlock {
 AtomicBoolean state =
  new AtomicBoolean(false);

 void lock() {
  while (true) {
   while (state.get()) {}
   if (!state.getAndSet(true))
    return;
 }
} 

Then try to 
acquire it
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Mystery #2
TAS lock

TTAS lock

Ideal

ti
m

e

threads
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Mystery

• Both
– TAS and TTAS
– Do the same thing (in our model)

• Except that 
– TTAS performs much better than TAS
– Neither approaches ideal
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Opinion

• Our memory abstraction is broken
• TAS & TTAS methods

– Are provably the same (in our model)

– Except they aren’t (in field tests)

• Need a more detailed model …
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Bus-Based Architectures

Bus

cache

memory

cachecache
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Bus-Based Architectures

Bus

cache

memory

cachecache

Random access memory 
(10s of cycles)
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Bus-Based Architectures

cache

memory

cachecache

Shared Bus
•broadcast medium
•One broadcaster at a time
•Processors and memory all 
“snoop”

Bus
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Bus-Based Architectures

Bus

cache

memory

cachecache

Per-Processor Caches
•Small
•Fast: 1 or 2 cycles
•Address & state information
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Jargon Watch

• Cache hit
– “I found what I wanted in my cache”
– Good Thing™
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Jargon Watch

• Cache hit
– “I found what I wanted in my cache”
– Good Thing™

• Cache miss
– “I had to shlep all the way to memory for 

that data”
– Bad Thing™
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Cave Canem

• This model is still a simplification
– But not in any essential way
– Illustrates basic principles

• Will discuss complexities later
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Bus

Processor Issues Load Request

cache

memory

cachecache

data
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Bus

Processor Issues Load Request

Bus

cache

memory

cachecache

data

Gimme
data
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cache

Bus

Memory Responds

Bus

memory

cachecache

data

Got your 
data right 

here data
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Bus

Processor Issues Load Request

memory

cachecachedata

data

Gimme
data
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Bus

Processor Issues Load Request

Bus

memory

cachecachedata

data

Gimme
data
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Bus

Processor Issues Load Request

Bus

memory

cachecachedata

data

I got 
data
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Bus

Other Processor Responds

memory

cachecache

data

I got 
data

datadata
Bus
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Bus

Other Processor Responds

memory

cachecache

data

datadata
Bus
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Modify Cached Data

Bus

data

memory

cachedata

data

(1)
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Modify Cached Data

Bus

data

memory

cachedata

data

data

(1)
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memory

Bus

data

Modify Cached Data

cachedata

data



Art of Multiprocessor 
Programming© Herlihy-Shavit 

2007

93

memory

Bus

data

Modify Cached Data

cache

What’s up with the 
other copies?

data

data
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Cache Coherence

• We have lots of copies of data
– Original copy in memory 
– Cached copies at processors

• Some processor modifies its own copy
– What do we do with the others?
– How to avoid confusion?
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Write-Back Caches

• Accumulate changes in cache
• Write back when needed

– Need the cache for something else
– Another processor wants it

• On first modification
– Invalidate other entries
– Requires non-trivial protocol … 
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Write-Back Caches

• Cache entry has three states
– Invalid: contains raw seething bits
– Valid: I can read but I can’t write
– Dirty: Data has been modified

• Intercept other load requests
• Write back to memory before using cache
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Bus

Invalidate

memory

cachedatadata

data
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Bus

Invalidate

Bus

memory

cachedatadata

data

Mine, all 
mine!
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Bus

Invalidate

Bus

memory

cachedatadata

data

cache

Uh,oh
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cache
Bus

Invalidate

memory

cachedata

data

Other caches lose read permission
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cache
Bus

Invalidate

memory

cachedata

data

Other caches lose read permission

This cache acquires write permission



Art of Multiprocessor 
Programming© Herlihy-Shavit 

2007

102

cache
Bus

Invalidate

memory

cachedata

data

Memory provides data only if not 
present in any cache, so no need to 

change it now (expensive)

(2)
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cache
Bus

Another Processor Asks for 
Data

memory

cachedata

data

(2)

Bus
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cache data
Bus

Owner Responds

memory

cachedata

data

(2)

Bus

Here it is!
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Bus

End of the Day …

memory

cachedata

data

(1)
Reading OK, no writing

data data
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Mutual Exclusion

• What do we want to optimize?
– Bus bandwidth used by spinning threads
– Release/Acquire latency
– Acquire latency for idle lock
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Simple TASLock 

• TAS invalidates cache lines
• Spinners

– Miss in cache
– Go to bus

• Thread wants to release lock
– delayed behind spinners
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Test-and-test-and-set

• Wait until lock “looks” free
– Spin on local cache
– No bus use while lock busy

• Problem: when lock is released
– Invalidation storm …
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Local Spinning while Lock is 
Busy

Bus

memory

busybusybusy

busy
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Bus

On Release

memory

freeinvalidinvalid

free
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On Release

Bus

memory

freeinvalidinvalid

free

miss miss

Everyone misses, 
rereads

(1)
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On Release

Bus

memory

freeinvalidinvalid

free

TAS(…) TAS(…)

Everyone tries TAS

(1)
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Problems

• Everyone misses
– Reads satisfied sequentially

• Everyone does TAS
– Invalidates others’ caches

• Eventually quiesces after lock 
acquired
– How long does this take?  
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Measuring Quiescence Time

P1

P2

Pn

  
  

  

X = time of ops that don’t 
       use the bus
Y = time of ops that cause 
        intensive bus traffic

In critical section, run ops X then ops Y. As long as 
Quiescence time is less than X, no drop in performance. 

By gradually varying X, can determine the exact time 
to quiesce.
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Quiescence Time

Increses 
linearly with 
the number of 
processors for 
bus architectureti

m
e

threads
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Mystery Explained
TAS lock

TTAS lock

Ideal

ti
m

e

threads
Better than 
TAS but still 
not as good as 

ideal
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Solution: Introduce Delay

spin locktime
dr1dr2d

• If the lock looks free
• But I fail to get it

• There must be lots of contention
• Better to back off than to collide again
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Dynamic Example: 
Exponential Backoff

time
d2d4d spin lock

 If I fail to get lock
– wait random duration before retry
– Each subsequent failure doubles 
expected wait
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Exponential Backoff Lock

public class Backoff implements lock { 
 public void lock() {
  int delay = MIN_DELAY;
  while (true) {
   while (state.get()) {}
   if (!lock.getAndSet(true))
    return;
   sleep(random() % delay);
   if (delay < MAX_DELAY)
    delay = 2 * delay;
 }}}  
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Exponential Backoff Lock

public class Backoff implements lock { 
 public void lock() {
  int delay = MIN_DELAY;
  while (true) {
   while (state.get()) {}
   if (!lock.getAndSet(true))
    return;
   sleep(random() % delay);
   if (delay < MAX_DELAY)
    delay = 2 * delay;
 }}}  

Fix minimum delay
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Exponential Backoff Lock

public class Backoff implements lock { 
 public void lock() {
  int delay = MIN_DELAY;
  while (true) {
   while (state.get()) {}
   if (!lock.getAndSet(true))
    return;
   sleep(random() % delay);
   if (delay < MAX_DELAY)
    delay = 2 * delay;
 }}}  

Wait until lock looks free
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Exponential Backoff Lock

public class Backoff implements lock { 
 public void lock() {
  int delay = MIN_DELAY;
  while (true) {
   while (state.get()) {}
   if (!lock.getAndSet(true))
    return;
   sleep(random() % delay);
   if (delay < MAX_DELAY)
    delay = 2 * delay;
 }}}  

If we win, return
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Exponential Backoff Lock

public class Backoff implements lock { 
 public void lock() {
  int delay = MIN_DELAY;
  while (true) {
   while (state.get()) {}
   if (!lock.getAndSet(true))
    return;
   sleep(random() % delay);
   if (delay < MAX_DELAY)
    delay = 2 * delay;
 }}}  

Back off for random duration
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Exponential Backoff Lock

public class Backoff implements lock { 
 public void lock() {
  int delay = MIN_DELAY;
  while (true) {
   while (state.get()) {}
   if (!lock.getAndSet(true))
    return;
   sleep(random() % delay);
   if (delay < MAX_DELAY)
    delay = 2 * delay;
 }}}  

Double max delay, within reason
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Spin-Waiting Overhead

TTAS Lock

Backoff lockti
m

e

threads
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Locks	
  and	
  Busy	
  Waiting

Busy-waiting: 
 Threads consume CPU cycles while waiting
 Low latency to acquire

Limitations
 Occupies a CPU core
 What happens if threads have different priorities?

 Busy-waiting thread remains runnable
 If the thread waiting for a lock has higher priority than the 

thread occupying the lock, then ?
 Ugh, I just wanted to lock a data structure, but now I’m involved 

with the scheduler!
 What if programmer forgets to unlock?

Lock::Acquire() {
   while (test&set(lock) == 1)
       ; // spin
}
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Cheaper	
  Locks	
  with	
  Cheaper	
  busy	
  waiting
	
  	
  	
  	
  Using	
  Test&Set

Lock::Acquire() {
while (test&set(lock) == 1);
}

Lock::Release() {
    *lock = 0;
}

With busy-waiting

Lock::Acquire() {
while(1) {
  if (test&set(lock) == 0)  break;
  else sleep(1);
}

With voluntary yield of CPU

Lock::Release() {
*lock = 0;
}

What is the problem with this?
 A. CPU usage  B. Memory usage C. Lock::Acquire() latency
 D. Memory bus usage E. Messes up interrupt handling
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Cheap	
  Locks	
  with	
  Cheap	
  busy	
  waiting
	
  	
  	
  	
  Using	
  Test&Test&Set

Lock::Acquire() {
while (test&set(lock) == 1);
}

Lock::Release() {
    *lock = 0;
}

Busy-wait on in-memory copy

Lock::Acquire() {
while(1) {
  while (*lock == 1) ; // spin just reading
  if (test&set(lock) == 0)  break;
}

Busy-wait on cached copy

Lock::Release() {
*lock = 0;
}

What is the problem with this?
 A. CPU usage  B. Memory usage C. Lock::Acquire() latency
 D. Memory bus usage E. Does not work
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Implementing	
  Locks:	
  Summary

Locks are higher-level programming abstraction
 Mutual exclusion can be implemented using locks

Lock implementation generally requires some level of 
hardware support
 Details of hardware support affects efficiency of locking

Locks can busy-wait, and busy-waiting cheaply is 
important
 Soon come primitives that block rather than busy-wait



Hardware-Supported Atomic 
Read-Modify-Write Instructions

 test&set:set content of “address” to 1, and return its original content
 test&set (&address) 

 result = M[address];
 M[address] = 1;
 return result;
}

 compare&swap:compare content of “address” 
to reg1; if same, set it to reg2
compare&swap (&address, reg1, reg2) { /* 

68000 */
 if (reg1 == M[address]) {
  M[address] = reg2;
  return success;
 } else {
  return failure;
 }

130



Implementing Locks with 
test&set

 A simple solution:
" " int value = 0; // Free
  Acquire() {

  while (test&set(value)); // while busy
 }

  Release() {
  value = 0;
 }

 Explanation:
 If lock is free, test&set reads 0 and sets value=1, so lock is 

now busy.  It returns 0 so while exits.
 If lock is busy, test&set reads 1 and sets value=1 (no 

change). It returns 1, so while loop continues
 When we set value = 0, someone else can get lock

 Busy-Waiting: thread consumes cycles while waiting
131



Problem: Busy-Waiting for 
Lock
 Positives for this solution

 Interrupts are not disabled
 User code can use this lock
 Works on a multiprocessor

 Negatives
 Inefficient, because the busy-waiting thread will 

consume cycles waiting idly
 Waiting thread may take cycles away from 

thread holding lock
 Priority Inversion: For priority-based scheduling, if 

busy-waiting thread has higher priority than thread 
holding lock ⇒ no progress!

 Round-robin scheduling is OK 132



Higher-Level Primitives than 
Locks

 Good primitives and practices important!
 UNIX is pretty stable now, but up until about 

mid-80s (10 years after started), systems running 
UNIX would crash every week or so – 
concurrency bugs

 Semaphores and Monitors next

133



Summary Cont’
 Semaphores: Like integers with restricted interface

 Two operations:
 P(): Wait if zero; decrement when becomes non-zero
 V(): Increment and wake a sleeping task (if exists)
 Can initialize value to any non-negative value

 Use separate semaphore for each constraint
 Monitors: A lock plus one or more condition variables

 Always acquire lock before accessing shared data
 Use condition variables to wait inside critical section

 Three Operations: Wait(), Signal(), and Broadcast()
 Readers/Writers

 Readers can access database when no writers
 Writers can access database when no readers
 Only one thread manipulates state variables at a time

 Language support for synchronization:
 Java provides synchronized keyword and one condition-
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