

The List-Based Set

@3—» DE

Sorted with Sentinel nodes
(min & max possible keys)

Art of Multiprocessor Programming 2

Invariants

o Sentinel nodes
— tail reachable from head

* Sorted
* No duplicates

Sequential List Based Set
Add()

[([F=—{a]l F¥——{c[F—{d]]

Remove()

[[F—{a]l =] 3=>{c]]

Sequential List Based Set
Add()

[[3—> EBv>EI3—>ED

MEAN
Remove()
R

Art of Multiprocessor Programming

Coarse Grained Locking

é

[[4—{al =] 3—>{d]]

Coarse Grained Locking

Art of Multiprocessor Programming

Coarse Grained Locking

Simple but hotspot + bottleneck

Art of Multiprocessor Programming

Coarse-Grained Locking

 Easy, same as synchronized methods
— “One lock to rule them all ...”

Art of Multiprocessor Programming

Coarse-Grained Locking

 Easy, same as synchronized methods
—“One lock to rule them all ...”

» Simple, clearly correct
— Deserves respect!

* Works poorly with contention

— Queue locks help
— But bottleneck still an issue

Art of Multiprocessor Programming 10

Fine-grained Locking

* Requires careful thought

 Split object into pieces
— Each piece has own lock

— Methods that work on disjoint pieces need not
exclude each other

Art of Multiprocessor Programming 11

Hand-over-Hand locking

[F—lF—b[F—{]]

Art of Multiprocessor Programming

Hand-over-Hand locking

o
(2] (o[F—(c]]

Art of Multiprocessor Programming

Hand-over-Hand locking

Art of Multiprocessor Programming

Hand-over-Hand locking

Art of Multiprocessor Programming

Hand-over-Hand locking

Art of Multiprocessor Programming

Removing a Node

BE g EVE g (IE g I g C1N

remove(b)
O o . a
Art of Multiprocessor Programming

Removing a Node

Removing a Node

Removing a Node

(e[(el]

remov e(b)

Art of Mu I tiprocessor Programming 20

Removing a Node

Removing a Node

i

GERSTN

Why hold 2 locks?

o o m
Art of Multiprocessor Programming

N

O

Concurrent Removes

BE g EVE g (IE g I g C1N

remove(b)
O o . a §§ :
Art of Multiprocessor Programming

Concurrent Removes

T[5>kl {c][5—{a]]

remove(b)
O o . a §§ :
Art of Multiprocessor Programming

Concurrent Removes

(T3~ G[3—EI3—E3—T]

remove(b)
O o . a §§ :
Art of Multiprocessor Programming

Concurrent Removes

(13— G[3— I3 E3—@l]

remove(b)
O o . a §§ :
Art of Multiprocessor Programming

Concurrent Removes

Concurrent Removes

Concurrent Removes

6

(T3~E[33~ E3—ET]

remove(b)
O o . a §% :
Art of Multiprocessor Programming

Concurrent Removes

6

(T3~E[33~ E3—ET]

remove(b)
O o . a §% :
Art of Multiprocessor Programming

30

Concurrent Removes

L[5 ! by elg—ll]
o

Concurrent Removes

Uh, Oh

SEagtR e[—{a]]

O o,

Art of Multiprocessor Programming

33

Uh, Oh

Bad news, ¢ hot removed

O o,

Art of Multiprocessor Programming

34

Problem

* To delete node ¢
— Swing node b’s next field to d

* Problem is, ED— bl F>c[3>

— Someone deleting b concurrently coute
direct a pointer

toC
’ al g=>bly—tc/+>

35

Insight

* |[f a node Is locked
— No one can delete node’s successor

* |f a thread locks
— Node to be deleted
— And its predecessor
— Then it works

36

Hand-Over-Hand Again

BE g EVE g (1E g I g C1N

remove(b)
O o . a
Art of Multiprocessor Programming

Hand-Over-Hand Again

Hand-Over-Hand Again

Hand-Over-Hand Again

L[+ (e[+—>(e]]
O | OQO | O
Art of Multiprocessor Programming

Hand-Over-Hand Again

Hand-Over-Hand Again

L[4 (a] i! e[F—{a]]
O o .
Art of Multiprocessor Programming

42

Removing a Node

BE g EVE g (IE g I g C1N

remove(b)
O o . a §§ :
Art of Multiprocessor Programming

Removing a Node

[F=>ll5—bl5— (]3]]

remove(b)
O o . a §§ :
Art of Multiprocessor Programming

Removing a Node

(T3 G[3—EI3—E3—T]

remove(b)
O o . a §§ :
Art of Multiprocessor Programming

Removing a Node

(T3~ G[3—EI3—E3—l]

remove(b)
O o . a §§ :
Art of Multiprocessor Programming

Removing a Node

Removing a Node

Removing a Node

Removing a Node

Removing a Node

6

(B[F+ [F~ET]

Must acquire
Lock of b
O o
gramming

Art of Multiprocessor Programmin

Removing a Node

6

(B[F+ [F~ET]

Cannot
acquire lock

of b
O o
Art of Multiprocessor Programming

Removing a Node

Removing a Node

un jan

remov e(b)

Removing a Node

remove(b) \ |
O ﬂ
o o
Art of Multiprocessor Programming

Removing a Node

Removing a Node

[I-]—%:Ii!]]
O o,

Art of Multiprocessor Programming

57

Removing a Node

L [5—(al ‘] an

