

Art of Multiprocessor Programming 2

The List-Based Set

a b c

Sorted with Sentinel nodes

(min & max possible keys)

-∞

+∞

Art of Multiprocessor Programming 3

Invariants
• Sentinel nodes

– tail reachable from head

• Sorted

• No duplicates

Art of Multiprocessor Programming 4

Sequential List Based Set

a c d

a b c

Add()

Remove()

Art of Multiprocessor Programming 5

Sequential List Based Set

a c d

b

a b c

Add()

Remove()

Art of Multiprocessor Programming 6

Coarse Grained Locking

a b d

Art of Multiprocessor Programming 7

Coarse Grained Locking

a b d

c

Art of Multiprocessor Programming 8

honk!

Coarse Grained Locking

a b d

c

Simple but hotspot + bottleneck

honk!

Art of Multiprocessor Programming 9

Coarse-Grained Locking
• Easy, same as synchronized methods

– “One lock to rule them all …”

Art of Multiprocessor Programming 10

Coarse-Grained Locking
• Easy, same as synchronized methods

– “One lock to rule them all …”

• Simple, clearly correct

– Deserves respect!

• Works poorly with contention

– Queue locks help

– But bottleneck still an issue

Art of Multiprocessor Programming 11

Fine-grained Locking
• Requires careful thought

• Split object into pieces

– Each piece has own lock

–Methods that work on disjoint pieces need not

exclude each other

Art of Multiprocessor Programming 12

Hand-over-Hand locking

a b c

Art of Multiprocessor Programming 13

Hand-over-Hand locking

a b c

Art of Multiprocessor Programming 14

Hand-over-Hand locking

a b c

Art of Multiprocessor Programming 15

Hand-over-Hand locking

a b c

Art of Multiprocessor Programming 16

Hand-over-Hand locking

a b c

Art of Multiprocessor Programming 17

Removing a Node

a b c d

remove(b)

Art of Multiprocessor Programming 18

Removing a Node

a b c d

remove(b)

Art of Multiprocessor Programming 19

Removing a Node

a b c d

remove(b)

Art of Multiprocessor Programming 20

Removing a Node

a b c d

remove(b)

Art of Multiprocessor Programming 21

Removing a Node

a b c d

remove(b)

Art of Multiprocessor Programming 22

Removing a Node

a c d

remove(b)
Why hold 2 locks?

Art of Multiprocessor Programming 23

Concurrent Removes

a b c d

remove(c)
remove(b)

Art of Multiprocessor Programming 24

Concurrent Removes

a b c d

remove(b)
remove(c)

Art of Multiprocessor Programming 25

Concurrent Removes

a b c d

remove(b)
remove(c)

Art of Multiprocessor Programming 26

Concurrent Removes

a b c d

remove(b)
remove(c)

Art of Multiprocessor Programming 27

Concurrent Removes

a b c d

remove(b)
remove(c)

Art of Multiprocessor Programming 28

Concurrent Removes

a b c d

remove(b)
remove(c)

Art of Multiprocessor Programming 29

Concurrent Removes

a b c d

remove(b)
remove(c)

Art of Multiprocessor Programming 30

Concurrent Removes

a b c d

remove(b)
remove(c)

Art of Multiprocessor Programming 31

Concurrent Removes

a b c d

remove(b)
remove(c)

Art of Multiprocessor Programming 32

Concurrent Removes

a b c d

remove(b)
remove(c)

Art of Multiprocessor Programming 33

Uh, Oh

a c d

remove(b)
remove(c)

Art of Multiprocessor Programming 34

Uh, Oh

a c d

Bad news, c not removed

remove(b)
remove(c)

Art of Multiprocessor Programming 35

Problem
• To delete node c

– Swing node b’s next field to d

• Problem is,

– Someone deleting b concurrently could

 direct a pointer

 to c

ba c

ba c

Art of Multiprocessor Programming 36

Insight
• If a node is locked

– No one can delete node’s successor

• If a thread locks

– Node to be deleted

– And its predecessor

– Then it works

Art of Multiprocessor Programming 37

Hand-Over-Hand Again

a b c d

remove(b)

Art of Multiprocessor Programming 38

Hand-Over-Hand Again

a b c d

remove(b)

Art of Multiprocessor Programming 39

Hand-Over-Hand Again

a b c d

remove(b)

Art of Multiprocessor Programming 40

Hand-Over-Hand Again

a b c d

remove(b) Found it!

Art of Multiprocessor Programming 41

Hand-Over-Hand Again

a b c d

remove(b) Found it!

Art of Multiprocessor Programming 42

Hand-Over-Hand Again

a c d

remove(b)

Art of Multiprocessor Programming 43

Removing a Node

a b c d

remove(b)
remove(c)

Art of Multiprocessor Programming 44

Removing a Node

a b c d

remove(b)
remove(c)

Art of Multiprocessor Programming 45

Removing a Node

a b c d

remove(b)
remove(c)

Art of Multiprocessor Programming 46

Removing a Node

a b c d

remove(b)
remove(c)

Art of Multiprocessor Programming 47

Removing a Node

a b c d

remove(b)
remove(c)

Art of Multiprocessor Programming 48

Removing a Node

a b c d

remove(b)
remove(c)

Art of Multiprocessor Programming 49

Removing a Node

a b c d

remove(b)
remove(c)

Art of Multiprocessor Programming 50

Removing a Node

a b c d

remove(b)
remove(c)

Art of Multiprocessor Programming 51

Removing a Node

a b c d

Must acquire

Lock of b

remove(c)

Art of Multiprocessor Programming 52

Removing a Node

a b c d

Cannot
acquire lock

of b

remove(c)

Art of Multiprocessor Programming 53

Removing a Node

a b c d

Wait!
remove(c)

Art of Multiprocessor Programming 54

Removing a Node

a b d

Proceed to
remove(b)

Art of Multiprocessor Programming 55

Removing a Node

a b d

remove(b)

Art of Multiprocessor Programming 56

Removing a Node

a b d

remove(b)

Art of Multiprocessor Programming 57

Removing a Node

a d

remove(b)

Art of Multiprocessor Programming 58

Removing a Node

a d

