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The List-Based Set

a b c

Sorted with Sentinel nodes

(min & max possible keys)

-∞

+∞
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Invariants
• Sentinel nodes

– tail reachable from head 


• Sorted

• No duplicates
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Sequential List Based Set 

a c d

a b c

Add() 

Remove() 
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Sequential List Based Set 

a c d

b

a b c

Add() 

Remove() 
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Coarse Grained Locking

a b d
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Coarse Grained Locking

a b d

c
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honk!

Coarse Grained Locking

a b d

c

Simple but hotspot + bottleneck 

honk!
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Coarse-Grained Locking
• Easy, same as synchronized methods

– “One lock to rule them all …”
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Coarse-Grained Locking
• Easy, same as synchronized methods

– “One lock to rule them all …”


• Simple, clearly correct

– Deserves respect!


• Works poorly with contention

– Queue locks help

– But bottleneck still an issue



Art of Multiprocessor Programming 11

Fine-grained Locking
• Requires careful thought





• Split object into pieces

– Each piece has own lock

–Methods that work on disjoint pieces need not 

exclude each other
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Hand-over-Hand locking

a b c
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Hand-over-Hand locking

a b c
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Hand-over-Hand locking

a b c
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Hand-over-Hand locking

a b c
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Hand-over-Hand locking

a b c
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Removing a Node

a b c d

remove(b)
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Removing a Node

a b c d

remove(b)
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Removing a Node

a b c d

remove(b)
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Removing a Node

a b c d

remove(b)



Art of Multiprocessor Programming 21

Removing a Node

a b c d

remove(b)
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Removing a Node

a c d

remove(b)
Why hold 2 locks?



Art of Multiprocessor Programming 23

Concurrent Removes

a b c d

remove(c)
remove(b)
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Concurrent Removes

a b c d

remove(b)
remove(c)
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Concurrent Removes

a b c d

remove(b)
remove(c)
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Concurrent Removes

a b c d

remove(b)
remove(c)
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Concurrent Removes

a b c d

remove(b)
remove(c)
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Concurrent Removes

a b c d

remove(b)
remove(c)
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Concurrent Removes

a b c d

remove(b)
remove(c)
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Concurrent Removes

a b c d

remove(b)
remove(c)
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Concurrent Removes

a b c d

remove(b)
remove(c)
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Concurrent Removes

a b c d

remove(b)
remove(c)
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Uh, Oh

a c d

remove(b)
remove(c)
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Uh, Oh

a c d

Bad news, c not removed

remove(b)
remove(c)
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Problem
• To delete node c

– Swing node b’s next field to d





• Problem is,

– Someone deleting b concurrently could 

   direct a pointer 

   to c

ba c

ba c
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Insight
• If a node is locked

– No one can delete node’s successor


• If a thread locks

– Node to be deleted

– And its predecessor

– Then it works
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Hand-Over-Hand Again

a b c d

remove(b)
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Hand-Over-Hand Again

a b c d

remove(b)
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Hand-Over-Hand Again

a b c d

remove(b)
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Hand-Over-Hand Again

a b c d

remove(b) Found it!
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Hand-Over-Hand Again

a b c d

remove(b) Found it!
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Hand-Over-Hand Again

a c d

remove(b)
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Removing a Node

a b c d

remove(b)
remove(c)
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Removing a Node

a b c d

remove(b)
remove(c)
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Removing a Node

a b c d

remove(b)
remove(c)
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Removing a Node

a b c d

remove(b)
remove(c)
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Removing a Node

a b c d

remove(b)
remove(c)
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Removing a Node

a b c d

remove(b)
remove(c)
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Removing a Node

a b c d

remove(b)
remove(c)
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Removing a Node

a b c d

remove(b)
remove(c)
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Removing a Node

a b c d

Must acquire 

Lock of b

remove(c)
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Removing a Node

a b c d

Cannot 
acquire lock 

of b

remove(c)
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Removing a Node

a b c d

Wait!
remove(c)
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Removing a Node

a b d

Proceed to 
remove(b)
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Removing a Node

a b d

remove(b)
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Removing a Node

a b d

remove(b)
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Removing a Node

a d

remove(b)
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Removing a Node

a d


