
1

CMPT 300
Introduction to Operating Systems

Operating Systems
Processes & Threads

2

Review: Instruction Execution

➡ Execution sequence:
- Fetch Instruction at PC
- Decode
- Execute (possibly using registers)
- Write results to registers/mem
- PC = Next Instruction(PC)
- Repeat

Fetch
Exec

R0
…

R31
F0
…

F30
PC

…
Data1
Data0

Inst237
Inst236

…
Inst5
Inst4
Inst3
Inst2
Inst1
Inst0

Addr 0

Addr 232-1

PC
PC
PC
PC

3

Concurrency
➡ A “thread” of execution is an independent

Fetch/Decode/Execute loop
- a sequential instruction stream

➡ Uni-programming: one thread at a time
- MS/DOS, early Macintosh, Batch processing
- Easier for operating system builder
- Get rid concurrency by defining it away

➡ Multi-programming: more than one thread
- Multics, UNIX/Linux, OS/2, Windows NT/2000/XP,

Mac OS X
4

Concurrency vs. Parallelism
➡ Concurrency is from the application

perspective
- The application software consists of multiple

threads of execution
➡ Parallelism is from the hardware perspective

- The hardware platform consists of multiple CPUs
➡ A concurrent application can be executed on a

single or multi-CPU hardware platform

5

The Basic Problem of
Concurrency
➡ Must provide illusion to each application

thread that it has exclusive access to the CPU

➡ Each thread is unaware of existence of other
threads

➡ OS has to coordinate multiple threads

6

Multithreading

➡ How to provide the illusion of multiple CPUs with a single
physical CPU?
- Multiplex in time!

➡ Each thread has a data structure (TCB) to hold:
- Program Counter (PC), Stack Pointer (SP), Register values (Integer,

Floating point…)
➡ How switch from one thread to the next?

- Save PC, SP, and registers in current TCB
- Load PC, SP, and registers from new TCB

➡ What triggers switch?
- Timer, voluntary yield, I/O…

Th1 Th2 Th3 Th4 Th5

Time

7

Two Types of Resources
➡ CPU is an active resource that can be

used by only one runtime entity
-Can be multiplexed in time (scheduled)

➡ Memory is a passive resource that can be
shared among multiple runtime entities
- Can be multiplexed in space (allocated)

8

How to Protect Tasks, from
each other?
➡ Protection of memory

➡ Each task does not have access to all memory

➡ Protection of I/O devices
➡ Each task does not have access to every device

➡ Protection of CPU
➡ Timer interrupts to enforce periodic preemption
➡ user code cannot disable timer

➡ “Task” here refers to a runtime entity, can
be either a thread or a process

9

Program
 A

ddress Space

Review: Address Space
➡ Address space ⇒ set of

accessible addresses +
state associated with
them (contents of the
memory addresses):
- For a 32-bit processor there

are 232 = 4 billion addresses

10

Review: a Process in Memory

11

int global = 0;
int main (int arg)
{

float local;
char *ptr;

ptr = malloc(100);
local = 0;
local += 10*5;
…..
….
foo();
…. /* return addr */
….
return 0;

}

Dynamically
allocated

Global variables

Program code

Local variables
Return address

(“text” is also called “code”, referring to the
binary executable code)

Review: Execution Stack

➡ Stack holds temporary data and return
address; Permits recursive execution

➡ A, B, C are procedure names, but also refer to
memory address for procedure code when
computing return address

A(1);

A(int tmp) {

 if (tmp<2)

 B();

 printf(tmp);

}

B() {

 C();

}

C() {

 A(2);

}

12

A: tmp=2
 ret=C+1Stack

Pointer

Stack Growth

A: tmp=1
 ret=exit

B: ret=A+2

C: ret=B+1

Virtual Memory Provides Separate
Address Space for Each Process

Proc 1
Virtual

Address
Space 1

Proc 2
Virtual

Address
Space 2

Stack
Heap
Data
Code

Stack
Heap
Data
Code

Heap 2

Code1

Data 1

OS heap &
Stacks

Stack 1

Code 2

Heap 1

Data 2

Stack 2

OS code

OS dataTranslation Map 1
(Page Table)

Translation Map 2
(Page Table)

Physical Address Space
13

12

Processes vs. Threads

➡ Different procs. see separate addr. spaces
- good for protection, bad for sharing

➡ All threads in the same process share
- Address space: each thread can access the

data of other thread (good for sharing, bad for
protection)

- I/O state (i.e. file descriptors)

14

Single and Multithreaded
Processes

➡ Threads encapsulate concurrency: “active” component

➡ Processes (address spaces) encapsulate memory protection:

➡ Each process should have at least one thread (at least one main() as
the entry point of thread execution)

15

Address Space of a 2-
Threaded Process

➡ It has two stacks
➡ Must make sure that the stacks

and heap do not grow into each
other, causing stack overflow

Code

Global Data

Heap

Stack 1

Stack 2

A
ddress Space

16

Classification

Mach, OS/2, Linux
Win NT,XP,7, Solaris, HP-

UX, OS X

Embedded systems (QNX,
VxWorks,etc)

Traditional UNIX
iOS 3

MS/DOS, early Macintosh

Many

One

threads
Per process:

ManyOne

of

 p
ro

ce
ss

es
:

17

Traditional UNIX Process
➡ Each process has a single thread

- Called a “heavy-weight process”

➡ Process Control Block (PCB) holds the
process-related context.

18

CPU Switch

➡ Process context-switch has relatively large overhead
- manipulating the page table ; copying memory

➡ Thread context-switch is similar
19

Process State Machine

➡ As a process executes, it changes state
- new: The process is being created
- ready: The process is waiting to run
- running: Instructions are being executed
- waiting: Process waiting for some event to occur
- terminated: The process has finished execution!

➡ See animation
➡ (This state machine also applies to threads) 20

http://www.netrl.ucy.ac.cy/courses/EPL222/Flash/ANIMATIO/PROCESS_/PROCESS.SWF
http://www.netrl.ucy.ac.cy/courses/EPL222/Flash/ANIMATIO/PROCESS_/PROCESS.SWF

Process Scheduling

➡ Processes (in actual implementation, their PCBs)
move from queue to queue as they change state
- Many scheduling algorithms possible

➡ (also applies to threads, with TCBs instead of PCBs)

21

Motivation for Multi-Threading

➡ Why have multiple threads per
process?
- May need concurrency for a single

application, and processes are very
expensive – to start, switch between, and
to communicate between

- Communication between processes is
not as convenient as between threads in
the same process

22

What Does it Take to Create a
Process?
➡ Must construct new PCB

- Inexpensive
➡ Must set up new page tables for address space

- More expensive

➡ Copy data from parent process (Unix fork())
- Unix fork() : Child process gets a complete copy of

the parent memory and I/O state

- “Copy-On-Write” : initially shared; make a separate copy
only when an some location changes.

➡ Copy I/O state (file handles, etc)
23

Multiple Processes
Collaborate on a Task

➡ Creation/memory Overhead
➡ Context-Switch Overhead

➡ Need Communication mechanism:
- Separate Address Spaces Isolates Processes
- Shared-Memory Mapping

 Mapping virtual addresses to common physical address
 Read and Write through memory

- Message Passing
 send() and receive() messages
 Works either locally or across a network

Proc 1 Proc 2 Proc 3

24

Shared Memory
Communication

➡ Communication occurs by reading/writing to shared address page
➡ Establishing shared memory involves manipulating the translation

map, hence can be expensive

Proc 1
Virtual

Address
Space 1

Proc 2
Virtual

Address
Space 2

Data 2
Code1
Data1

Stack 1
Stack 2
Heap1
Heap 2
Code 2
Shared

Shared

Stack
Heap
Data
Code

Code
Data
Heap
Stack

Shared

25

Message-Based Inter-Process
Communication (IPC)
➡ Mechanism for processes to communicate

with each other without shared memory
➡ IPC facility provides two operations:

- send(message) – message size fixed or variable
- receive(message)

➡ If P and Q wish to communicate, they need to:
- establish a communication link between them
- exchange messages via send/receive

26

Modern UNIX Process
➡ Multithreading: a single process consists of

multiple concurrent threads
➡ A thread is sometimes called a “Lightweight

process”
- Thread creation and context-switch are much

more efficient than process creation and context-
switch

- Inter-thread communication is via shared
memory, since threads in the same process
share the same address space

27

28

Why	 Use	 Processes?

Consider a Web server
 get network message (URL) from client
 create child process, send it URL
 Child
 fetch URL data from disk
 compose response
 send response

If server has configuration file open for writing
Prevent child from overwriting configuration

How does server know child serviced request?
Need return code from child process

29

The	 Genius	 of	 Separating	 Fork/Exec

Life with CreateProcess(filename);
 But I want to close a file in the child. CreateProcess
(filename, list of files);

 And I want to change the child’s environment.
CreateProcess(filename, CLOSE_FD, new_envp);

 Etc. (and a very ugly etc.)

fork() = split this process into 2 (new PID)
 Returns 0 in child
 Returns pid of child in parent

exec() = overlay this process with new program
 (PID does not change)

30

The	 Genius	 of	 Separating	 Fork/Exec

Decoupling fork and exec lets you do anything to the
child’s process environment without adding it to the
CreateProcess API.
int ppid = getpid(); // Remember parent’s pid
fork(); // create a child
if(getpid() != ppid) { // child continues here
 // Do anything (unmap memory, close net connections…)
 exec(“program”, argc, argv0, argv1, …);
}
fork() creates a child process that inherits:
 identical copy of all parent’s variables & memory, registers

Parent and child execute at the same point after fork() returns:
 by convention, for the child, fork() returns 0
 by convention, for the parent, fork() returns the process # of child
 fork() return code a convenience, could always use getpid()

31

Program	 Loading:	 exec()

The exec() call allows a process to “load” a different
program and start execution at main (actually _start).

It allows a process to specify the number of
arguments (argc) and the string argument array
(argv).

If the call is successful
 it is the same process …
 but it runs a different program !!

Code, stack & heap is overwritten
 Sometimes memory mapped files are preserved.

32

What	 creates	 a	 process?

1. Fork
2. Exec
3. Both

33

General	 Purpose	 Process	 Creation

In the parent process:
main()
…
int ppid = getpid(); // Remember parent’s pid
fork(); // create a child
if(getpid() != ppid) { // child continues here
 exec_status = exec(“calc”, argc, argv0, argv1, …);
 printf(“Why would I execute?”);
}
else { // parent continues here
 printf(“Who’s your daddy?”);
 …
 child_status = wait(pid);
}

34

pid = 127
open files = “.history”
last_cpu = 0

pid = 128
open files = “.history”
last_cpu = 0

A	 shell	 forks	 and	 then	 execs	 a	 calculator

int pid = fork();
if(pid == 0) {
 close(“.history”);
 exec(“/bin/calc”);
} else {
 wait(pid);

int pid = fork();
if(pid == 0) {
 close(“.history”);
 exec(“/bin/calc”);
} else {
 wait(pid);

Process Control
Blocks (PCBs)

OS
USER

int pid = fork();
if(pid == 0) {
 close(“.history”);
 exec(“/bin/calc”);
} else {
 wait(pid);

int calc_main(){
 int q = 7;
 do_init();
 ln = get_input();
 exec_in(ln);

pid = 128
open files =
last_cpu = 0

int pid = fork();
if(pid == 0) {
 close(“.history”);
 exec(“/bin/calc”);
} else {
 wait(pid);

35

pid = 127
open files = “.history”
last_cpu = 0

pid = 128
open files = “.history”
last_cpu = 0

A	 shell	 forks	 and	 then	 execs	 a	 calculator

int shell_main() {
 int a = 2;
 … Code

main; a = 2

Heap

Stack

0xFC0933CA

int shell_main() {
 int a = 2;
 … Code

main; a = 2

Heap

Stack

0xFC0933CA

int calc_main() {
 int q = 7;
 … Code

Heap

Stack

0x43178050

pid = 128
open files =
last_cpu = 0

Process Control
Blocks (PCBs)

OS
USER

36

At	 what	 cost,	 fork()?

Simple implementation of fork():
 allocate memory for the child process
 copy parent’s memory and CPU registers to child’s
 Expensive !!

In 99% of the time, we call exec() after calling fork()
 the memory copying during fork() operation is useless
 the child process will likely close the open files & connections
 overhead is therefore high

vfork()
 a system call that creates a process “without” creating an identical

memory image
 child process should call exec() almost immediately
 Unfortunate example of implementation influence on interface

 Current Linux & BSD 4.4 have it for backwards compatibility
 Copy-on-write to implement fork avoids need for vfork

37

Orderly	 Termination:	 exit()

After the program finishes execution, it calls exit()
This system call:
 takes the “result” of the program as an argument
 closes all open files, connections, etc.
 deallocates memory
 deallocates most of the OS structures supporting the process
 checks if parent is alive:

 If so, it holds the result value until parent requests it; in this case,
process does not really die, but it enters the zombie/defunct state

 If not, it deallocates all data structures, the process is dead

 cleans up all waiting zombies
Process termination is the ultimate garbage collection (resource
reclamation).

38

The	 wait()	 System	 Call

A child program returns a value to the parent, so the parent
must arrange to receive that value

The wait() system call serves this purpose
 it puts the parent to sleep waiting for a child’s result
 when a child calls exit(), the OS unblocks the parent and returns

the value passed by exit() as a result of the wait call (along with the
pid of the child)

 if there are no children alive, wait() returns immediately
 also, if there are zombies waiting for their parents, wait() returns

one of the values immediately (and deallocates the zombie)

39

Tying	 it	 All	 Together:	 The	 Unix	 Shell

while(! EOF) {
read input
handle regular expressions
int pid = fork(); // create a child
if(pid == 0) { // child continues here
 exec(“program”, argc, argv0, argv1, …);
}
else { // parent continues here
…
}

 Translates <CTRL-C> to the kill() system call with SIGKILL

 Translates <CTRL-Z> to the kill() system call with SIGSTOP

 Allows input-output redirections, pipes, and a lot of other stuff that
we will see later

Use of Threads
➡ Version of program with Threads:

 main() {
 CreateThread(ComputePI(“pi.txt”));
 CreateThread(PrintClassList(“clist.text”));
 }

➡ “CreateThread” starts independent threads
running given procedure name

40

Example: a Multi-Threaded
Text Editor

➡ One thread for handling keyboard input; one for
handling graphical user interface; one for handling
disk IO

➡ 3 threads must collaborate closely and share data
41

Example: a Multi-Threaded
Database Server

42

Database Server
Implementation

➡ A single dispatcher thread hands off work to a fixed-size pool of worker
threads.

➡ The alternative of spawning a new thread for each request may result in an
unbounded number of threads; it also incurs thread creation overhead for
each request.

➡ By creating a fixed-size pool of threads at system initialization time, these
problems are avoided.

43

POSIX Thread API

44

POSIX (Portable Operating System Interface for Unix) is a family of related standards
specified by the IEEE to define the API for software compatible with variants of the
Unix operating system,

A Multithreaded POSIX
Program

➡ What is the
output of this
program?
- Depends on

the OS
scheduling
algorithm

- Likely prints
out thread IDs
in sequence

45

Summary
➡ Processes have two aspects

- Threads (Concurrency)
- Address Spaces (Protection)

➡ Concurrency accomplished by multiplexing CPU:
- Such context switching may be voluntary (yield(), I/O

operations) or involuntary (timer, other interrupts)
- Save and restore of either PCB or TCP

➡ Protection accomplished restricting access:
- Virtual Memory isolates processes from each other

46

47

CMPT 300
Introduction to Operating Systems

Scheduling

CPU/IO Bursts

➡ A typical process alternates
between bursts of CPU and
I/O
- It uses the CPU for some

period of time, then does I/O,
then uses CPU again

48

CPU-Bound vs. IO-Bound
Processes

49

Terminology
➡ By convention, we use the term “process”

in this section, assuming that each process
is single-threaded
 The scheduling algorithms can be applied to

threads as well
➡ The term “job” is often used to refer to a

CPU burst, or a compute-only process

50

CPU Scheduling

➡ When multiple processes are ready, the
scheduling algorithm decides which one is
given access to the CPU

51

Preemptive vs. Non-
Preemptive Scheduling
➡ With non-preemptive scheduling, once the CPU has been

allocated to a process, it keeps the CPU yield() or I/O.

➡ With preemptive scheduling, the OS can forcibly remove

52

Scheduling Criteria
CPU utilization – percent of time when CPU is

busy

Throughput – # of processes that complete their
execution per time unit

Response time – amount of time to finish a
particular process

Waiting time – amount of time a process waits in
the ready queue before it starts execution

53

Scheduling Goals
➡ Different systems may have different

requirements
- Maximize CPU utilization
- Maximize Throughput
- Minimize Average Response time
- Minimize Average Waiting time

➡ Typically, these goals cannot be achieved
simultaneously by a single scheduling
algorithm

54

Scheduling Algorithms
Considered
➡ First-Come-First-Served (FCFS)

Scheduling
➡ Round-Robin (RR) Scheduling
➡ Shortest-Job-First (SJF) Scheduling
➡ Priority-Based Scheduling
➡ Multilevel Queue Scheduling
➡ Multilevel Feedback-Queue Scheduling
➡ Lottery Scheduling

55

First-Come, First-Served (FCFS)
Scheduling

➡ First-Come, First-Served (FCFS)
- Also called “First In, First Out” (FIFO)
- Run each job to completion in order of arrival

➡ Example: P1: 24 P2: 3 P3: 3
The Gantt Chart for the schedule is:

- Waiting time for P1 = 0; P2 = 24; P3 = 27
- Average waiting time: (0 + 24 + 27)/3 = 17
- Average response time: (24 + 27 + 30)/3 = 27

➡ Convoy effect: short jobs queue up behind long job

P1 P2 P3

24 27 300

56

FCFS Scheduling (Cont.)
➡ Example continued:

- Suppose that jobs arrive in the order: P2 , P3 , P1:

- Waiting time for P1 = 6; P2 = 0; P3 = 3
- Avg. waiting time: (6 + 0 + 3)/3 = 3
- Avg. response time: (3 + 6 + 30)/3 = 13

➡ In second case:
- Average waiting time is much better (before it was 17)
- Average response time is better (before it was 27)

➡ FCFS Pros and Cons:
- Simple (+) Convoy effect (-); perf. depends on arrival order

P1P3P2

63 300

57

Round Robin (RR)
➡ Each process gets a quanta of CPU time 10ms
➡ When quantum expires,process is preempted

➡ If the current CPU burst finishes before quantum
expires, the process blocks for IO

➡ n processes ; quantum is q ⇒
- Each process gets (roughly) 1/n of CPU time
- In chunks of at most q time units
- No process waits more than (n-1)q time units

58

RR with Time Quantum 20

➡ RR Pros and Cons:
- Better for short jobs, Fair (+)
- Context-switch time adds up for long jobs (-)

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 28 48 68 88 108 112 125 145 153

59

 P1: 53 P2: 8 P3: 68 P4: 24

- Waiting time for !P1= (68-20)+(112-88)=72!; P2 = 20! ! ! ! P2=(20-0)=20
P3= (28-0)+(88-48)+(125-108)=85 ; P4=(48-0)+(108-68)=88

- Avg. waiting time = (72+20+85+88)/4=66¼
- Avg. response time = (125+28+153+112)/4 = 104½

Choice of Time Slice
➡ How to choose time slice?

- Too big?
 Performance of short jobs suffers

- Infinite (∞)?
 Same as FCFS

- Too small?
 Performance of long jobs suffers due to excessive context-

switch overhead
➡ Actual choices of time slice:

- Early UNIX time slice is one second:
 Worked ok when UNIX was used by one or two people.
 What if three users running? 3 seconds to echo each

keystroke!
- In practice:

 Typical time slice today is between 10ms – 100ms
 Typical context-switching overhead is 0.1ms – 1ms

60

FCFS vs. RR
➡ Assuming zero-cost context-switching time, is

RR always better than FCFS? No.
➡ Example: 10 jobs, each take 100s of CPU time

! RR scheduler quantum of 1s

➡ Response times:

- Both RR and FCFS finish at the same time
- Average response time is much worse under RR!
- All Jobs take 1000s. Avg: 1000.
- Under FCFS 1st job : 100s 2nd Job : 200s …

61

Job # FCFS RR

1 100 991
2 200 992
… … …
9 900 999
10 1000 1000

Uneven Jobs

➡ When jobs have uneven length, it seems to be
a good idea to run short jobs first!

62

P2 P4 P1 P3

0 8 32 85 153

Best FCFS:

P2P4P1P3

0 153

Worst FCFS:
68 121 145

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 28 48 68 88 108 112 125 145 153

RR Q=20:

 P1: 53 P2: 8 P3: 68 P4: 24

Quantum

Response
Time

Wait
Time

AverageP4P3P2P1

Eg. with Different Quanta

6257852284Q = 1

104½11215328125Q = 20

100½8115330137Q = 1

66¼ 88852072Q = 20

31¼885032Best FCFS

121¾14568153121Worst FCFS

69½32153885Best FCFS
83½121014568Worst FCFS

95½8015316133Q = 8

57¼5685880Q = 8

99½9215318135Q = 10

99½8215328135Q = 5

61¼68851082Q = 10

61¼58852082Q = 5

63

Shortest-Job First (SJF)
Scheduling
➡ This algorithm associates with each

process the length of its next CPU burst
- shortest next CPU burst is chosen
- Big effect on short jobs, small effect on long;
- Better avg. response time

➡ Problem: is length of a job known at its
arrival time?
- Generally no; possible to predict

64

Two Versions
 Non-preemptive – once a job starts

executing, it runs to completion

Shortest-Remaining-Time-First (SRTF)

 Preemptive – if a new job arrives with
remaining time less than remaining time of
currently job, preempt!

65

Short job first scheduling-
Non-preemptive

66

Short job first scheduling-
Preemptive

67

Example to Illustrate Benefits
of SRTF

➡ Three processes:!
- A,B: both CPU bound, each runs for a week

C: I/O bound, loop 1ms CPU, 9ms disk I/O
- If only one at a time, C uses 90% of the disk, A or

B use 100% of the CPU
➡ With FCFS:

- Once A or B get in, keep CPU for two weeks

C

C’s
I/O

C’s
I/O

C’s
I/O

A or B

68

Example continued:

C’s
I/O

CABAB… C

C’s
I/O

RR 1ms quantum

C’s
I/O

C’s
I/O

CA BC

RR 100ms quantum

C’s
I/O

AC

C’s
I/O

AA

SRTF: C gets CPU whenever it needs

Disk Utilization:
~90% but lots of

wakeups!

Disk Utilization:
90%

Disk Utilization:
9/201 ~ 4.5%

69

Discussions
➡ SJF/SRTF are provably-optimal algorithms

- SRTF is always at least as good as SJF

➡ Comparison of SRTF with FCFS and RR
- What if all jobs have the same length?

 SRTF becomes the same as FCFS

- What if CPU bursts have varying length?
 SRTF (and RR): short jobs not stuck behind long ones

70

SRTF Discussions Cont’
➡ Starvation

- Long jobs never get to run if many short jobs
➡ Need to predict the future

- Some systems ask the user to provide the info

➡ In reality, canʼt really know how long job will take
- However, can use SRTF as a yardstick

Optimal, so canʼt do any better
➡ SRTF Pros & Cons

- Optimal (average response time) (+)
- Hard to predict future (-)
- Unfair (-)

71

Predict execution time

72

1 2 3 4 5 6 7 8 9 10

20%

40%

60%

80%

100%

Cumulative request execution (in millisec)

M
ea

n
pr

ed
ict

io
n

er
ro

r o
ve

r a
ll r

eq
ue

st
s TPC−H serial execution

1 2 3 4 5 6 7 8 9 10

20%

40%

60%

80%

100%

Cumulative request execution (in millisec)

M
ea

n
pr

ed
ict

io
n

er
ro

r o
ve

r a
ll r

eq
ue

st
s TPC−H concurrent execution

1 2 3 4 5 6 7 8 9 10

20%

40%

60%

80%

100%

Cumulative request execution (in millisec)

M
ea

n
pr

ed
ict

io
n

er
ro

r o
ve

r a
ll r

eq
ue

st
s TPC−H concurrent execution w. hyper−threading

1 2 3 4 5 6 7 8 9 10

20%

40%

60%

80%

100%

Cumulative request execution (in millisec)

M
ea

n
pr

ed
ict

io
n

er
ro

r o
ve

r a
ll r

eq
ue

st
s TPC−C concurrent execution

1 2 3 4 5 6 7 8 9 10

20%

40%

60%

80%

100%

Cumulative request execution (in millisec)

M
ea

n
pr

ed
ict

io
n

er
ro

r o
ve

r a
ll r

eq
ue

st
s RUBiS concurrent execution

1 2 3 4 5 6 7 8 9 10

20%

40%

60%

80%

100%

Cumulative request execution (in millisec)

M
ea

n
pr

ed
ict

io
n

er
ro

r o
ve

r a
ll r

eq
ue

st
s Index search concurrent execution

Online running avg.
Counter inference

Online running avg.
Counter inference

Online running avg.
Counter inference

Online running avg.
Counter inference

Online running avg.
Counter inference

Online running avg.
Counter inference

Figure 7. The accuracy of predicting request CPU usage (I/O size for the data-intensive index search) using our hardware counter driven
inference and using an online running average. For our hardware counter driven method, we show the prediction accuracy using up to 10ms
of execution statistics for each request. The mean full request execution time (mean CPU time for each request to complete) is 600.8ms,
25.9ms, 29.3ms, and 16.3ms for TPC-H, TPC-C, RUBiS, and index search respectively. The prediction error for a particular request is
defined as |prediction−actual|

actual . Note that this definition of error may exceed 100% and we count it as 100% in such cases.

ing no application instrumentation or assistance). Fundamentally,
without on-the-fly information about an incoming request, there is
little other choice but to use recent past workloads as the basis to
predict incoming workloads [11, 22, 9]. Specifically, we employ a
transparent workload property prediction method— online running
average — as our comparison basis. In this method, the property of
the next runtime request is estimated as the average of N recent
past requests. We find that the prediction accuracy is not very sen-
sitive to the parameter N and our reported results were produced
using N = 10.
Figure 7 illustrates the inference accuracy for our four server ap-

plications (we also show the serial execution and hyper-threading-
enabled results for TPC-H).With 10ms execution statistics for each
request, the prediction errors for TPC-C, TPC-H, RUBiS, and index
search are 7%, 3%, 20%, and 41% respectively. They are all sub-
stantially lower than the online running average-based prediction
(73–82% errors).
Comparing across the four applications, the prediction accuracy

of TPC-C and TPC-H is much better than that of RUBiS and index
search. Further, TPC-C and TPC-H requests can reach high predic-
tion accuracy with no more than 3ms request execution statistics.
Both RUBiS and index search require more statistics. Our appli-
cation studies suggest the following explanation. For TPC-C and
TPC-H, different requests exhibit clearly differentiated execution
behaviors early in their executions. In contrast, all index search re-
quests follow similar code paths, which makes them very difficult
to differentiate. Finally, RUBiS requests start with almost identical
code paths due to common processing for Enterprise Java Beans,
but they deviate later with processing behaviors unique to the re-
spective request functions.

5.3 Request Identification Timing
Determining the time at which request identification is performed
is critical since the need to achieve reasonable prediction accu-
racy must be balanced by the need to ensure that the identification
is early enough to guide request-granularity system adaptation. In
Section 4.3, we described two approaches to determining this time:
fixed-point request identification and confidence-driven incremen-
tal identification. Results in Figure 7 can directly guide the choice
of the fixed inference time point (e.g., 2ms for TPC-H requests and
9ms for RUBiS requests).
In the confidence-driven incremental approach, request identi-

fications are performed incrementally (e.g., every millisecond) and
only those with high confidence are finalized at each stage. We eval-
uate this approach using our simple confidence measure described
in Section 4.3. Here, we focus on RUBiS and index search since
their request identification accuracy is more dependent on the iden-
tification timing. Figure 8 shows that by making request property
predictions only when the confidence is high, higher prediction ac-
curacy can be achieved for the requests identified (compared to the
prediction error when using a fixed cumulative window, as speci-
fied on the X-axis, for all requests). However, this comes at the cost
of incomplete request identifications, as shown in Figure 9.

6. Operating System Adaptations
Our hardware counter driven request signature supports on-the-fly
request identification and inference of high-level request proper-
ties. This makes it possible to adapt system management on a per-
request basis using the request identification or inferred properties.
This section explores several such adaptations: resource-aware re-

Priority-Based Scheduling
➡ A priority number (integer) is associated with

each process;
- (Convention: smallest integer ≡ highest priority)

➡ Can be preemptive or non-preemptive

➡ SJF/SRTF are special cases of priority-based
scheduling

➡ Starvation – low priority processes may never
execute
- Sometimes this is the desired behavior!

73

Multi-Level Queue Scheduling
➡ Ready queue is partitioned into multiple queues
➡ Each queue has its own scheduling algorithm

- e.g., foreground queue (interactive processes) with
RR scheduling, and background queue (batch
processes) with FCFS scheduling

➡ Scheduling between the queues
- Fixed priority, e.g., serve all from foreground queue,

then from background queue

74

Multilevel Queue Scheduling

75

Multi-Level Feedback Queue
Scheduling

➡ Dynamically adjust each processʼ priority
- It starts in highest-priority queue
- If quantum expires, drop one level
- If it blocks for IO before quantum expires, push up one

level

Long-Running Compute
Jobs Demoted to

Low Priority

76

Scheduling Details
➡ Result approximates SRTF:

- CPU-bound processes are punished
- Short-running I/O-bound processes are rewarded
- No need for prediction of job runtime; rely on past

➡ User action can foil intent of the OS designer
- e.g., put in a bunch of meaningless I/O like printf()
- If everyone did this, this trick wouldnʼt work!

77

Lottery Scheduling
➡ Unlike previous algorithms that are

deterministic, this is a probabilistic
- Give each process some number of lottery tickets
- On each time slice, randomly pick a winning ticket
- On average, CPU time is proportional to number

of tickets given to each process

➡ How to assign tickets?
- To approximate SRTF, short running processes

get more, long running jobs get fewer
- To avoid starvation, every process gets at least a

min number of tickets
78

Lottery Scheduling Example
➡ Assume each short process get 10 tickets;

each long process get 1 ticket

short procs/
long procs

% of CPU each
short proc gets

% of CPU each
long proc gets1/1 91% 9%

0/2 N/A 50%

2/0 50% N/A

10/1 9.9% 0.99%

1/10 50% 5%

79

Summary
➡ Scheduling: selecting a waiting process

from the ready queue and allocating the
CPU to it

➡ FCFS Scheduling:
- Pros: Simple
- Cons: Short jobs can get stuck behind long ones

➡ Round-Robin Scheduling:
- Pros: Better for short jobs
- Cons: Poor performance when jobs have same

length

80

Summary Cont’
➡ Shortest Job First (SJF) and Shortest Remaining Time First

(SRTF)
- Run the job with least amount of computation
- Pros: Optimal (average response time)
- Cons: Hard to predict future, Unfair

➡ Priority-Based Scheduling
- Each process is assigned a fixed priority

➡ Multi-Level Queue Scheduling
- Multiple queues of different priorities

➡ Multi-Level Feedback Queue Scheduling:
- Automatic promotion/demotion of process between queues

➡ Lottery Scheduling:
- Give each process a number of tickets (short tasks ⇒ more tickets)
- Reserve a minimum number of tickets for every process to ensure

forward progress
81

