
What is Computer Security Today?

•  Computing in the presence of an adversary!
–  Adversary is the security field’s defining
characteristic

•  Reliability, robustness, and fault tolerance
–  Dealing with Mother Nature (random failures)

•  Security
–  Dealing with actions of a knowledgeable attacker
dedicated to causing harm

–  Surviving malice, and not just mischance
•  Wherever there is an adversary, there is a

computer security problem!

Protection vs. Security

•  Protection: mechanisms for controlling access of
programs, processes, or users to resources

–  Page table mechanism
–  Round-robin schedule
–  Data encryption

•  Security: use of protection mech. to prevent misuse
of resources

– Misuse defined with respect to policy
» E.g.: prevent exposure of certain sensitive information
» E.g.: prevent unauthorized modification/deletion of data

– Need to consider external environment the system
operates in

» Most well-constructed system cannot protect information
if user accidentally reveals password – social engineering
challenge

Security Requirements

•  Authentication
–  Ensures that a user is who is claiming to be

•  Data integrity
–  Ensure that data is not changed from source to
destination or after being written on a storage device

•  Confidentiality
–  Ensures that data is read only by authorized users

•  Non-repudiation
–  Sender/client can’t later claim didn’t send/write data
–  Receiver/server can’t claim didn’t receive/write data

Securing Communication: Cryptography

•  Cryptography: communication in the presence of
adversaries

•  Studied for thousands of years
–  See the Simon Singh’s The Code Book for an excellent,
highly readable history

•  Central goal: confidentiality
–  How to encode information so that an adversary can’t
extract it, but a friend can

•  General premise: there is a key, possession of which
allows decoding, but without which decoding is
infeasible

–  Thus, key must be kept secret and not guessable

Using Symmetric Keys

•  Same key for encryption and decryption
•  Achieves confidentiality
•  Vulnerable to tampering and replay attacks

InternetEncrypt with
secret key

Decrypt with
secret key

Plaintext (m) m

Ciphertext

Symmetric Keys

•  Can just XOR plaintext with the key
–  Easy to implement, but easy to
break using frequency analysis

–  Unbreakable alternative: XOR with
one-time pad

» Use a different key for each
message

Block Ciphers with Symmetric Keys
•  More sophisticated (e.g., block cipher) algorithms

–  Works with a block size (e.g., 64 bits)
•  Can encrypt blocks separately:

–  Same plaintext⇒same ciphertext
•  Much better:

–  Add in counter and/or link ciphertext of previous block

Symmetric Key Ciphers - DES & AES

•  Data Encryption Standard (DES)
–  Developed by IBM in 1970s, standardized by NBS/NIST
–  56-bit key (decreased from 64 bits at NSA’s request)
–  Still fairly strong other than brute-forcing the key
space

» But custom hardware can crack a key in < 24 hours
–  Today many financial institutions use Triple DES

» DES applied 3 times, with 3 keys totaling 168 bits
•  Advanced Encryption Standard (AES)

–  Replacement for DES standardized in 2002
–  Key size: 128, 192 or 256 bits

•  How fundamentally strong are they?
– No one knows (no proofs exist)

Authentication in Distributed Systems
•  What if identity must be established across network?

– Need way to prevent exposure of information while still
proving identity to remote system

– Many of the original UNIX tools sent passwords over the
wire “in clear text”

» E.g.: telnet, ftp, yp (yellow pages, for distributed login)
» Result: Snooping programs widespread

•  What do we need? Cannot rely on physical security!
–  Encryption: Privacy, restrict receivers
–  Authentication: Remote Authenticity, restrict senders

Network PA
SS: gina

Authentication via Secret Key

•  Main idea: entity proves identity by decrypting a
secret encrypted with its own key

–  K – secret key shared only by A and B
•  A can asks B to authenticate itself by decrypting a

nonce, i.e., random value, x
–  Avoid replay attacks (attacker impersonating client or
server)

•  Vulnerable to man-in-the middle attack

E(x, K)

x

A B

Notation: E(m,k) –
encrypt message m
with key k

Secure Hash Function

•  Hash Function: Short summary of data (message)
–  For instance, h1=H(M1) is the hash of message M1

»  h1 fixed length, despite size of message M1.
» Often, h1 is called the “digest” of M1.

•  Hash function H is considered secure if
–  It is infeasible to find M2 with h1=H(M2); ie. can’t
easily find other message with same digest as given
message.

–  It is infeasible to locate two messages, m1 and m2,
which “collide”, i.e. for which H(m1) = H(m2)

–  A small change in a message changes many bits of
digest/can’t tell anything about message given its hash

DFCD3454BBEA788A
751A696C24D97009
CA992D17

The red fox
runs across
the ice

Hash
Function

Hash
Function

52ED879E70F71D92
6EB6957008E03CE4
CA6945D3

Fox

Integrity: Cryptographic Hashes

•  Basic building block for integrity: cryptographic hashing
–  Associate hash with byte-stream, receiver verifies match

» Assures data hasn’t been modified, either accidentally – or
maliciously

•  Approach:
–  Sender computes a secure digest of message m using H(x)

» H(x) is a publicly known hash function
» Digest d = HMAC (K, m) = H (K | H (K | m))
» HMAC(K, m) is a hash-based message authentication

function

–  Send digest d and message m to receiver

–  Upon receiving m and d, receiver uses shared secret key,
K, to recompute HMAC(K, m) and see whether result
agrees with d

Using Hashing for Integrity

InternetDigest
HMAC(K,m)

plaintext (m)

Encrypted Digest

Digest
HMAC(K,m)

=

digest’

NO
corrupted msg m

Unencrypted Message

Can encrypt m for confidentiality

Standard Cryptographic Hash Functions

•  MD5 (Message Digest version 5)
–  Developed in 1991 (Rivest), produces 128 bit hashes
–  Widely used (RFC 1321)
–  Broken (1996-2008): attacks that find collisions

•  SHA-1 (Secure Hash Algorithm)
–  Developed in 1995 (NSA) as MD5 successor with 160 bit

hashes
–  Widely used (SSL/TLS, SSH, PGP, IPSEC)
–  Broken in 2005, government use discontinued in 2010

•  SHA-2 (2001)
–  Family of SHA-224, SHA-256, SHA-384, SHA-512 functions

•  HMAC’s are secure even with older “insecure” hash
functions

– 

Key Distribution
•  How do you get shared secret to both places?

–  For instance: how do you send authenticated, secret mail
to someone who you have never met?

– Must negotiate key over private channel
» Exchange code book
»  Key cards/memory stick/others

•  Third Party: Authentication Server (like Kerberos)
– Notation:

»  Kxy is key for talking between x and y
»  (…)K means encrypt message (…) with the key K
» Clients: A and B, Authentication server S

–  A asks server for key:
» A→S: [Hi! I’d like a key for talking between A and B]
» Not encrypted. Others can find out if A and B are talking

–  Server returns session key encrypted using B’s key
» S→A: Message [Use Kab (This is A! Use Kab)Ksb] Ksa
» This allows A to know, “S said use this key”

– Whenever A wants to talk with B
» A→B: Ticket [This is A! Use Kab]Ksb
» Now, B knows that Kab is sanctioned by S

Authentication Server Continued [Kerberos]

•  Details
–  Both A and B use passwords (shared with key server) to
decrypt return from key servers

–  Add in timestamps to limit how long tickets will be used
to prevent attacker from replaying messages later

–  Also have to include encrypted checksums (hashed
version of message) to prevent malicious user from
inserting things into messages/changing messages

– Want to minimize # times A types in password
» A→S (Give me temporary secret)
» S→A (Use Ktemp-sa for next 8 hours)Ksa
» Can now use Ktemp-sa in place of Ksa in prototcol

Key
Server

Ticket
Secure Communication

Asymmetric Encryption (Public Key)

•  Idea: use two different keys, one to encrypt (e)
and one to decrypt (d)

–  A key pair

•  Crucial property: knowing e does not give away d

•  Therefore e can be public: everyone knows it!

•  If Alice wants to send to Bob, she fetches Bob’s
public key (say from Bob’s home page) and encrypts
with it

–  Alice can’t decrypt what she’s sending to Bob …
–  … but then, neither can anyone else (except Bob)

Public Key / Asymmetric Encryption

•  Sender uses receiver’s public key
–  Advertised to everyone

•  Receiver uses complementary private key
– Must be kept secret

Internet
Encrypt with
public key

Decrypt with
private key

Plaintext Plaintext

Ciphertext

•  Idea: Kpublic can be made public, keep Kprivate private

•  Gives message privacy (restricted receiver):
–  Public keys (secure destination points) can be acquired
by anyone/used by anyone

– Only person with private key can decrypt message
•  What about authentication?

–  Use combination of private and public key
–  Alice→Bob: [(I’m Alice)Aprivate Rest of message]Bpublic
–  Provides restricted sender and receiver

•  But: how does Alice know that it was Bob who sent
her Bpublic? And vice versa…

Bprivate
Aprivate

Public Key Encryption Details

Alice Bob

Bpublic
Apublic

Insecure Channel

Insecure Channel

Public Key Cryptography

•  Invented in the 1970s
–  Revolutionized cryptography
–  (Was actually invented earlier by British intelligence)

•  How can we construct an encryption/decryption
algorithm using a key pair with the public/private
properties?

–  Answer: Number Theory
•  Most fully developed approach: RSA

–  Rivest / Shamir / Adleman, 1977; RFC 3447
–  Based on modular multiplication of very large integers
–  Very widely used (e.g., ssh, SSL/TLS for https)

•  Also mature approach: Eliptic Curve Cryptography (ECC)
–  Based on curves in a Galois-field space
–  Shorter keys and signatures than RSA

Properties of RSA

•  Requires generating large, random prime numbers
–  Algorithms exist for quickly finding these (probabilistic!)

•  Requires exponentiating very large numbers
–  Again, fairly fast algorithms exist

•  Overall, much slower than symmetric key crypto
–  One general strategy: use public key crypto to exchange a

(short) symmetric session key
»  Use that key then with AES or such

•  How difficult is recovering d, the private key?
–  Equivalent to finding prime factors of a large number

» Many have tried - believed to be very hard
(= brute force only)

»  (Though quantum computers could do so in polynomial time!)

Simple Public Key Authentication

•  Each side need only to know the
other side’s public key

–  No secret key need be shared
•  A encrypts a nonce (random num.) x

–  Avoid replay attacks, e.g.,
attacker impersonating client or
server

•  B proves it can recover x, generates
second nonce y

•  A can authenticate itself to B in the
same way

•  A and B have shared private secrets
on which to build private key!

–  We just did secure key distribution!
•  Many more details to make this work

securely in practice!

E({x, A}, PublicB)

E({x, y, B}, PublicA)

A B

Notation: E(m,k) –
encrypt message m
with key k

E({y, A}, PublicB)

Non-Repudiation: RSA Crypto & Signatures

•  Suppose Alice has published public key KE
•  If she wishes to prove who she is, she can send a

message x encrypted with her private key KD (i.e.,
she sends E(x, KD))

–  Anyone knowing Alice’s public key KE can recover x,
verify that Alice must have sent the message

»  It provides a signature
–  Alice can’t deny it ⇒ non-repudiation

•  Could simply encrypt a hash of the data to sign a
document that you wanted to be in clear text

•  Note that either of these signature techniques work
perfectly well with any data (not just messages)

–  Could sign every datum in a database, for instance

RSA Crypto & Signatures (cont’d)

I will pay
Bob $500

I will pay
Bob $500

Digital Certificates

•  How do you know KE is Alice’s public key?

•  Trusted authority (e.g., Verisign) signs binding
between Alice and KE with its private key KVprivate

–  C = E({Alice, KE}, KVprivate)
–  C: digital certificate

•  Alice: distribute her digital certificate, C
•  Anyone: use trusted authority’s KVpublic, to extract

Alice’s public key from C
–  D(C, KVpublic) =
D(E({Alice, KE}, KVprivate), KVpublic) = {Alice, KE}

Summary of Our Crypto Toolkit

•  If we can securely distribute a key, then
–  Symmetric ciphers (e.g., AES) offer fast,
presumably strong confidentiality

•  Public key cryptography does away with
(potentially major) problem of secure key
distribution

–  But: not as computationally efficient
» Often addressed by using public key crypto to

exchange a session key

•  Digital signature binds the public key to an entity

Putting It All Together - HTTPS
•  What happens when you click on
https://www.amazon.com?

•  https = “Use HTTP over SSL/TLS”
–  SSL = Secure Socket Layer
–  TLS = Transport Layer Security

» Successor to SSL
–  Provides security layer (authentication, encryption)
on top of TCP

»  Fairly transparent to applications

HTTPS Connection (SSL/TLS) (cont’d)

•  Browser (client) connects
via TCP to Amazon’s
HTTPS server

•  Client sends over list of
crypto protocols it
supports

•  Server picks protocols to
use for this session

•  Server sends over its
certificate

•  (all of this is in the clear)

Browser Amazon

Hello. I support
(TLS+RSA+AES128+SHA2)

or
(SSL+RSA+3DES+MD5) or

…

Let’s use

TLS+RSA+AES128+SHA2

Here’s my cert

~1 KB of data

Inside the Server’s Certificate

•  Name associated with cert (e.g., Amazon)
•  Amazon’s RSA public key
•  A bunch of auxiliary info (physical address, type of

cert, expiration time)
•  Name of certificate’s signatory (who signed it)
•  A public-key signature of a hash (SHA-256) of all this

–  Constructed using the signatory’s private RSA key, i.e.,
–  Cert = E(HSHA256(KApublic, www.amazon.com, …), KSprivate))

»  KApublic: Amazon’s public key
»  KSprivate: signatory (certificate authority) private key

•  …

Validating Amazon’s Identity
•  How does the browser authenticate certificate signatory?

–  Certificates of several certificate authorities (e.g., Verisign)
are hardwired into the browser (or OS)

•  If can’t find cert, warn user that site has not been
verified

–  And may ask whether to continue
–  Note, can still proceed, just without authentication

•  Browser uses public key in signatory’s cert to decrypt
signature

–  Compares with its own SHA-256 hash of Amazon’s cert
•  Assuming signature matches, now have high confidence it’s

indeed Amazon …
–  … assuming signatory is trustworthy
–  DigiNotar CA breach (July-Sept 2011): Google, Yahoo!,

Mozilla, Tor project, Wordpress, … (531 total certificates)

Certificate Validation

E(HSHA256(KApublic, www.amazon.com, …), KSprivate)),
KApublic, www.amazon.com, …

HSHA256(KApublic, www.amazon.com, …)

E(HSHA256(…), KSpublic))
(recall, KSpublic hardwired)

=

Yes

Validation successful

Validation failed
No

HSHA256(KApublic, www.amazon.com, …)

HSHA256(KApublic, www.amazon.com, ..)

Certificate

Can also validate using peer approach: https://www.eff.org/observatory

•  Browser constructs a random
session key K used for data
communication

–  Private key for bulk crypto
•  Browser encrypts K using

Amazon’s public key
•  Browser sends E(K, KApublic)

to server
•  Browser displays
•  All subsequent comm. encrypted

w/ symmetric cipher
(e.g., AES128) using key K

–  E.g., client can authenticate using
a password

Browser Amazon

Here’s my cert

~1 KB of data

E(K, KApublic)
K

E(password …, K)

E(response …, K)

Agreed

HTTPS Connection (SSL/TLS) cont’d

K

Background of Cloud Computing

•  1980’s and 1990’s: 52% growth in performance per year!

•  2002: The thermal wall
–  Speed (frequency) peaks,
but transistors keep
shrinking

•  2000’s: Multicore revolution
–  15-20 years later than
predicted, we have hit
the performance wall

•  2010’s: Rise of Big Data

Data Deluge

•  Billions of users connected through the net
–  WWW, FB, twitter, cell phones, …
–  80% of the data on FB was produced last year

•  Storage getting cheaper
–  Store more data!
–  8TB drives common
–  10TB announced

•  Units of interest:
–  Gigabyte: 230 ≅ 109

–  Terabyte: 240 ≅ 1012
–  Petabyte: 250 ≅ 1015
–  Exabyte: 260 ≅ 1018
–  Zettabyte: 2070 ≅ 1021

–  Yottabyte: 2080 ≅ 1024

Data Grows Faster than Moore’s Law

Projected Growth

In
cr

ea
se

 o
ve

r 2
01

0

0

10

20

30

40

50

60

2010 2011 2012 2013 2014 2015

Moore's Law

Particle Accel.

DNA Sequencers

Solving the Impedance Mismatch

•  Computers not getting faster,
and we are drowning in data

–  How to resolve the dilemma?

•  Solution adopted by web-scale
companies

–  Go massively distributed
and parallel

Enter the World of Distributed Systems

•  Distributed Systems/Computing
–  Loosely coupled set of computers, communicating through
message passing, solving a common goal

–  Tools: Msg passing, Distributed shared memory, RPC

•  Distributed computing is challenging
–  Dealing with partial failures (examples?)
–  Dealing with asynchrony (examples?)
–  Dealing with scale (examples?)
–  Dealing with consistency (examples?)

•  Distributed Computing versus Parallel Computing?
–  distributed computing ⇒

 parallel computing + partial failures

The Datacenter is the new Computer

•  “The datacenter as a computer” still in its infancy
–  Special purpose clusters, e.g., Hadoop cluster
–  Built from less reliable components
–  Highly variable performance
–  Complex concepts are hard to program (low-level
primitives)

=!?

Datacenter/Cloud Computing OS

•  If the datacenter/cloud is the new computer
– What is its Operating System?
– Note that we are not talking about a host OS

•  Could be equivalent in benefit as the LAMP stack
was to the .com boom – every startup secretly
implementing the same functionality!

•  Open source stack for a Web 2.0 company:
–  Linux OS
–  Apache web server
– MySQL, MariaDB or MongoDB DBMS
–  PHP, Perl, or Python languages for dynamic web pages

Classical Operating Systems

•  Data sharing
–  Inter-Process Communication, RPC, files, pipes, …

•  Programming Abstractions
–  Libraries (libc), system calls, …

•  Multiplexing of resources
–  Scheduling, virtual memory, file allocation/protection,
…

Datacenter/Cloud Operating System

•  Data sharing
–  Google File System, key/value stores
–  Apache project: Hadoop Distributed File System

•  Programming Abstractions
–  Google MapReduce
–  Apache projects: Hadoop, Pig, Hive, Spark

•  Multiplexing of resources
–  Apache projects: Mesos, YARN (MapReduce v2),
ZooKeeper, BookKeeper, …

Google Cloud Infrastructure

•  Google File System (GFS), 2003
–  Distributed File System for entire
cluster

–  Single namespace

•  Google MapReduce (MR), 2004
–  Runs queries/jobs on data
– Manages work distribution & fault-
tolerance

–  Collocated with file system

•  Apache open source versions:
 Hadoop DFS and Hadoop MR

GFS/HDFS Insights

•  Petabyte storage
–  Files split into large blocks (128 MB) and replicated
across several nodes

–  Big blocks allow high throughput sequential reads/writes

•  Data striped on hundreds/thousands of servers
–  Scan 100 TB on 1 node @ 50 MB/s = 24 days
–  Scan on 1000-node cluster = 35 minutes

GFS/HDFS Insights (2)

•  Failures will be the norm
– Mean time between failures for 1 node = 3 years
– Mean time between failures for 1000 nodes = 1 day

•  Use commodity hardware

–  Failures are the norm anyway, buy cheaper hardware

•  No complicated consistency models
–  Single writer, append-only data

MapReduce Programming Model

•  Data type: key-value records

•  Map function:
(Kin, Vin) ! list(Kinter, Vinter)

•  Reduce function:
(Kinter, list(Vinter)) ! list(Kout, Vout)

Word Count Execution

the quick
brown fox

the fox ate
the mouse

how now
brown cow

Map

Map

Map

Reduce

Reduce

brown, 2
fox, 2
how, 1
now, 1
the, 3

ate, 1
cow, 1

mouse, 1
quick, 1

the, 1
brown, 1

fox, 1

quick, 1

the, 1
fox, 1
the, 1

how, 1
now, 1

brown, 1
ate, 1

mouse, 1

cow, 1

Input Map Shuffle & Sort Reduce Output

MapReduce Insights

•  Restricted key-value model
–  Same fine-grained operation (Map & Reduce) repeated
on big data

– Operations must be deterministic
– Operations must be idempotent/no side effects
– Only communication is through the shuffle
– Operation (Map & Reduce) output saved (on disk)

What is MapReduce Used For?

•  At Google:
– Index building for Google Search
– Article clustering for Google News
– Statistical machine translation

•  At Yahoo!:
– Index building for Yahoo! Search
– Spam detection for Yahoo! Mail

•  At Facebook:
– Data mining
– Ad optimization
– Spam detection

MapReduce Pros
•  Distribution is completely transparent

– Not a single line of distributed programming (ease,
correctness)

•  Automatic fault-tolerance
–  Determinism enables running failed tasks somewhere else
again

–  Saved intermediate data enables just re-running failed
reducers

•  Automatic scaling
–  As operations as side-effect free, they can be distributed
to any number of machines dynamically

•  Automatic load-balancing
– Move tasks and speculatively execute duplicate copies of
slow tasks (stragglers)

MapReduce Cons

•  Restricted programming model
– Not always natural to express problems in this model
–  Low-level coding necessary
–  Little support for iterative jobs (lots of disk access)
–  High-latency (batch processing)

•  Addressed by follow-up research and Apache projects
–  Pig and Hive for high-level coding
–  Spark for iterative and low-latency jobs

Future?

•  Complete location transparency
– Mobile Data, encrypted all the time
–  Computation anywhere any time
–  Cryptographic-based identities
–  Large Cloud-centers, Fog Computing

•  Internet of Things?
–  Everything connected, all the time!
–  Huge Potential
–  Very Exciting and Scary at same time

•  Better programming models need to be developed!
•  Perhaps talk about this on Monday

Truly Distributed Apps: The Swarm of Resources

Cloud/FOG Services

The Local Swarm:
Person, House, Office, Café Enterprise Services

An New Application Model

•  A Swarm Application is a
Connected graph of Components

–  Globally distributed, but locality and QoS aware
–  Avoid Stovepipe solutions through reusability

•  Many components are Shared Services written by
programmers with a variety of skill-sets and motivations

–  Service Level Agreements (SLA) with micropayments

Sensors
with

Aggregation

Distributed
Archival
Storage

Real-Time
Components

SwarmLet
(“The Application”)

Transform
and Archive

Channel

Thank you!

•  Let’s Thank the TAs!
•  Thanks for helping us with this experimental version

of the course… I think that it is going to be great!
•  Good Bye!

intro

