
1

CMPT 300
Introduction to Operating Systems

Contact Information

๏ Instructor: Arrvindh Shriraman

๏ Office: Surrey: Room 4172
Hours: Tue/Thu 3:00-4:00 pm (or drop email)
l Email: ashriram@cs.sfu.ca

๏ TA: Arun Bharadwaj
l (Email: arun_bharadwaj@sfu.ca)
l Hours: Tue/Thu 3:00-4:00 pm

2

mailto:ashriram@cs.sfu.ca
mailto:ashriram@cs.sfu.ca
mailto:arun_bharadwaj@sfu.ca
mailto:arun_bharadwaj@sfu.ca

Meet your instructor

๏ Joined SFU Faculty in January 2011

๏ Areas of research
Software for Multicore processors
Energy-Smart OSs/Apps for SmartPhones
Energy-Smart Datacentric Systems

๏ Interactive! Ask lot of questions
๏ Learn by hacking the real linux kernel.

3

4

Web-site
๏ All the information discussed today and more

can always be found on the class web-site

๏ Class web site go to http://www.cs.sfu.ca/
~ashriram/courses/CS300/

๏ Google groups :
cs300@googlegroups.com

http://www.cs.sfu.ca/CourseCentral
http://www.cs.sfu.ca/CourseCentral
http://www.cs.sfu.ca/CourseCentral
http://www.cs.sfu.ca/CourseCentral
mailto:cs300@googlegroups.com
mailto:cs300@googlegroups.com

Topics
๏ History, Evolution, and Philosophies
๏ The User's View of Operating System
๏ Tasking and Processes
๏ Inter-process Communication, Concurrency

Control and Resource Allocation
๏ Scheduling and Dispatch
๏ Physical and Virtual Memory Organization
๏ File Systems and I/O
๏ Security and Protection

5

Many thanks to Berkeley’s CS162 and UT Austin’s CS 372

What is an OS ?

6

7

Hardware and Software
๏ A computer is a machine designed to perform

operations specified with a set of instructions
called a program.

๏ Hardware refers to the computer equipment.
keyboard, mouse, terminal, hard disk, printer, CPU

๏ Software refers to the programs that describe
the steps we want the computer to perform.

๏ Operating system : software that
manages the hardware
shares the hardware between applications

Computer Hardware
๏ Computer-system operation

One or more CPUs, device controllers connected by bus
Concurrent execution of CPUs and devices
Shared Memory

8

Technology Trends

9

2X transistors/Chip Every 1.5 years
Called “Moore’s Law”

Moore’s Law

Microprocessors have
become smaller, denser,
and more powerful.

Gordon Moore (co-founder of
Intel) predicted in 1965 that the
transistor density of
semiconductor chips would
double roughly every 18
months.

10

• The world is a parallel system
– Microprocessors in everything

Scalable, Reliable,
Secure Services

MEMS for
Sensor Nets

Clusters

Massive Cluster

Gigabit Ethernet

Databases
Information Collection
Remote Storage
Online Games
Commerce
 …

Societal Scale Information

People to Computer Ratio

11

From David Culler

The World is parallel

• “ManyCore” refers to many processors/chip
– 64? 128? Hard to say exact boundary

• How to program these?
– Use 2 CPUs for video/audio
– Use 1 for word processor, 1 for browser, 76 for virus

checking???
•

12

• Intel 80-core multicore chip (Feb 2007)
– 80 simple cores
– 100 million transistors
– 65nm feature size

• Intel Cloud Chip
Computer (August 2010)
– 24 “tiles” with two cores/tile
– 4 DDR3 memory controllers
–

Power Challenge

13

Computers are Complex

14

Proc

Caches
Busses

Memory

I/O Devices:

Controllers

adapters

Disks
Displays
Keyboards

Networks

Pentium IV Chipset

Sample of Computer
Architecture

L2 Cache
Coherence,
Bandwidth,

Latency

DRAM
Emerging Technologies

Interleaving
Bus protocols

Disks, WORM, Tape RAID

Instruction Set Architecture

L1 Cache
VLSI

Input/Output and Storage

Memory
Hierarchy

Addressing,
Protection,

Exception Handling

Pipelining and Instruction
Level Parallelism

Network
Communication

O
th

er
 P

ro
ce

ss
or

s

15

Increasing Software Complexity

From MITʼs 6.033 course

16

17

• Pathfinder hardware limitations/complexity:
– 20Mhz processor, 128MB of DRAM, VxWorks OS
– cameras, scientific instruments, batteries,

solar panels, and locomotion equipment
• Can’t hit reset button very easily!

– Must reboot itself
• Individual Programs must not interfere

– Better not crash antenna positioning software!
• Further, all software may crash occasionally

– Automatic restart with diagnostics sent to Earth
– Periodic checkpoint of results saved?

• Certain functions critical:
– Need to stop before hitting something

Mars Rover Program

How do we tame complexity?
๏ Every piece of computer hardware different

Different CPU (Pentium, PowerPC, ColdFire, ARM, MIPS….)
Different amounts of memory, disk, …
Different types of devices
l Mice, Keyboards, Sensors, Fingerprint readers, touch screen

Different networking environment
l Cable, Wireless, Firewalls,…

๏ Questions:
Programmer need to write a single program that performs
many independent activities?
Very program need to be moded for every hardware?
Faulty program crash everything?
Program have access to all hardware?

18

Virtual Machine Abstraction

๏ Software Engineering Problem:
Turn HW/SW quirks ⇒ what programmers want
Optimize for convenience, utilization, security, etc…

๏ For any OS area (e.g. sched, virtual memory, network):
Whatʼs the hardware interface? (physical reality)
Whatʼs the application interface? (nicer abstraction)

Application
Operating System

Hardware
Physical Machine Interface

Virtual Machine Interface

19

Virtual Machines
๏ Software emulation of an abstract machine

Make it look like hardware has features you want
Programs from one hardware & OS on another one

๏ Programming simplicity
Each process thinks it has all memory/CPU time
Different Devices appear to have same interface
Device Interfaces more powerful than raw hardware
l Bitmapped display ⇒ windowing system
l Ethernet card ⇒ networking (TCP/IP)

๏ Fault Isolation
Processes do not impact other processes
Bugs cannot crash whole machine

20

21

What does an OS do?
๏ Silberschatz and Gavin: “An OS is Similar to a government”

Begs the question: does a government do anything useful by itself?

๏ Coordinator and Traffic Cop:
Manages all resources
Prevents errors and improper use of the computer

๏ Facilitator (“useful” abstractions):
Provides facilities/services; Standard Libraries
Make application programming easier, faster, less error-prone

๏ Some features reflect both tasks:
File system is needed by everyone (Facilitator) …
… but File system must be protected (Traffic Cop)

22

What is an Operating System,…
Really?
๏ Most Likely:

Memory Management
I/O Management
CPU Scheduling
Synchronization / Mutual exclusion primitives
Communications? (Does Email belong in OS?)
Multitasking/multiprogramming?

๏ What about?
File System?
Multimedia Support?
User Interface?
Internet Browser? J

23

Operating System Definition
(Contʼd)
๏ No universally accepted definition

๏ “Everything a vendor ships when you order an
operating system” is good approximation

But varies wildly

๏ “The one program running at all times on the
computer” is the OS kernel

Everything else is either a system program (ships
with the operating system) or an application
program

24

Summary
๏ Provides a virtual machine abstraction to

handle diverse hardware

๏ Coordinate resources and protect users from
each other

๏ Simplify application development by providing
standard services and abstractions

๏ Provide an array of fault containment, fault
tolerance, and fault recovery

25

26

Machine language
๏ Each type of processor (like Pentium 4, Athalon,

Z80, …) has its own instruction set
๏ Each instruction in an instruction set does a

single thing like access a piece of data, add two
pieces of data, compare two pieces of data …

๏ Each instruction is represented by a unique
number .This # may be different for different
instruction sets, but no two instructions in the
same instruction set should have the same #

19

27

Machine Language programs

๏ A machine language program is a list of
instructions

Each instruction is represented by a number
Inside the memory of the computer, each
number is represented in binary (as a string of
1ʼs and 0ʼs)
The long string of 0ʼs and 1ʼs is easy for the
computer to understand, but difficult for a
human to read or write

28

Assembly

๏ Assembly languages make it easier for the
programmer.

Assembly is easier for humans to read/write
Use mnemonics like ADD, CMP, … to replace
the numbers that identify each of the
instructions in the instruction set
The code for an Assembly program is written
into a text file, which is translated into machine
language program and executed.

29

Computer Software: Languages
๏ Some Computer Languages

Machine language (machine instruction set)
assembly language
high level languages (Compilers/Interpreters)
l C, C++, Ada, Fortran, Basic, Java
l Do YOU know of any others?
l mathematical computation tools (MATLAB, Mathematica, ...)

๏ Application software is written using computer
languages.

๏ Operating systems are also written using computer
languages (often C, some assembly)

30

Computer Software: Applications

๏ Application Software (Software Tools)
Word processors (Microsoft Word, WordPerfect, ...)
Spreadsheet programs (Excel, Lotus1-2-3, ...)
Computer games
Communication software (email, chat, web browser…)
Telecommunication software (VOIP, …)
Integrated programming environments

User mode / kernel mode
๏ Most application software runs in user mode. No access

to direct hardware

๏ Operating systems run in kernel mode (supervisor mode)
and have access to the complete instruction set,

๏ Application software running in user mode can used
system calls to access hardware managed by OS

๏ User mode programs may perform duties for the OS

31

Modes

32

Applications

Application interface (system libraries)

Operating System

Hardware

USER MODE

KERNEL MODE

KERNEL (OS)
SERVICE

PROCESSES

For some operating systems there may not be a separation between kernel mode and
user mode (embedded systems, interpreted systems)

Dual-Mode operation

33

34

User Mode

Kernel Mode

Hardware

Applications

Standard Libs

35

Memory Hierarchy
๏ Different types of memory have different access

speeds and costs
๏ Faster access speed implies higher cost
๏ Greater capacity often implies lower access

speed
๏ From fastest access to slowest access

Registers
Cache
Memory
Disk
Tapes

36

Memory

๏ Modern computers use several kinds of
storage

registers1 nsec < 1KB

Cache1.5 nsec

6 nsec

8 MByte

Main Memory
(RAM volatile. ROM non volatile)

10 GByte

DISK 3000 GByte5 msec

Flash Memory (non volatile, rewritable)

CD, DVD, USB memory stick

37

Memory Hierarchy

๏ As you go down the pyramid
a)Decreasing cost per bit, Increasing capacity
b) Increasing access time, Decreasing frequency of

access
Note that the fastest memory, sometimes referred to
as primary memory, is usually volatile (register,
cache, main memory)

Non-volatile (continues to store information when the
power is off) memory is usually slower. Referred to as
secondary or auxiliary memory. e.g., Flash

38

Registers and cache

๏ Parts of the CPU
๏ Register access speed comparable to CPU clock

speed
๏ Cache memory may be as fast or as much as

several times slower
๏ Registers

Usually 64x64 for 64-bit machine, 32x32 for 32-bit
machine
Usually < 1 Kbyte

๏ Cache
As much as 8Mbytes

39

Concept of Cache

๏ Provide Hash-Table on the CPU
 slower that the registers
 cheaper and larger than registers
 faster than main memory

40

Cache design
๏ Cache size and Cache line size

Determined to optimize access time

๏ Mapping function
Which cache lines may be loaded into which cache
slots
l can any line go in any slot, or is there a mapping function to

define rules governing which line can be place in which slot

๏ Replacement algorithm
When is a cache line in a cache slot replaced by
another cache line

Modern Cache Architectures

41

Core 2 Duo Core2 Quad

Nehalem (i5, i7) AMD K10 (Phenom 9)

Shared cache requires more
complicated cache controller

Individual caches are more
difficult to keep coherent
(properly synchronized)

On-chip L1 caches are omitted
from the figure

Memory

๏ Main memory is typically DRAM (Dynamic
Random Access Memory)

๏ Cache is typically SRAM (Static Random
Access Memory)

Smaller and faster than DRAM
๏ Both are volatile: contents lost when power

is turned off

42

Disk

๏ Hard disk
๏ CD, DVD, Blu-Ray

Disk storage is much cheaper that memory
๏ (3GB memory or 2000GB disk about the

same cost)
๏ Access time for disk is at least one order of

magnitude slower than for memory

43

Input / Output
๏ Reading or writing data from a perepheral device

is not simple
Each device has its own controller (hardware)
Each device is managed by a device driver (software
to use the controller)
l Device drivers are specific to hardware and to the operating

system using the device
Input and output is SLOW in comparison to CPU
operations.

44

45

Topic coverage

46

1 week Fundamentals & History

1.5 weeks Process Control and Threads

2.5 weeks Synch. and Scheduling

2 weeks Protection and Address Translation

1 week Demand paging

1 week File system

2.5 weeks Network and Distributed Sys.

1 week Protection and Security

Grading

๏ 5 Assignments (Total: 75%)
3 / 5 linux kernel-based assignments
l adding a syscall, thread scheduling, VM, I/O

Functional Shell
Synchronization

๏ Midterm and Final (10%)
๏ Class Participation (5%)

47

Computing

๏ All assignments will be Linux/C/gcc.
No Java, No C++
Real OSs use combination of C/C++

๏ All linux kernel assignments will be on
QEMU (runs Linux on Linux)

๏ All assignments will be tested on
undergrad lab machines.

48

49

50

CMPT 300
History of Operating Systems

[RIP] : Dennis Ritchie
Creator of C and Unix

 © Zonghua Gu, CMPT 300, Fall 2011

History of Operating Systems
] First generation 1945 - 1955

S vacuum tubes, plug boards
] Second generation 1955 - 1965

S transistors, batch systems
] Third generation 1965 – 1980

S ICs and multiprogramming
] Fourth generation 1980 – present

S personal computers

51

52

The earliest computers (1945-55)

๏ Built of relays, vacuum tubes
๏ Very large, Very slow by todayʼs standards
๏ Built, programmed and maintained by the same

people
๏ Programmed by using switches, paper tape, etc)
๏ No operating system, single operation, single

problem, sequential access

53

The next generation (1955-65)

๏ Transistor based, increased reliability
๏ The first commercial mainframes, still very large

and very expensive
๏ Used assembler or even early high level

languages like Fortran or ALGOL
๏ Rudimentary operating system, one program at a

time, with control commands to compile, load,
execute, terminate, basic compilers

๏ Input using cards, paper tape, magnetic tape …

54

History	
 of	
 Operating	
 Systems:	
 Phases

Phase 1: Hardware is expensive, humans are cheap
➡ User at console: single-user systems
➡ Batching systems
➡ Multi-programming systems

Phase 2: Hardware is cheap, humans are expensive
➡ Time sharing: Users use cheap terminals and share servers

Phase 3: Hardware is very cheap, humans are very expensive
➡ Personal computing: One system per user
➡ Distributed computing: lots of systems per user

Phase 4: Ubiquitous computing/Cloud computing
➡ Cell phone, mp3 player, DVD player, TIVO, PDA, iPhone, eReader
➡ Software as a service, Amazon’s elastic compute cloud

55

History	
 of	
 Operating	
 Systems:	
 Phases

Phase 1: Hardware is expensive, humans are cheap
Ø User at console: single-user systems
Ø Batching systems
Ø Multi-programming systems

Phase 2: Hardware is cheap, humans are expensive
Ø Time sharing: Users use cheap terminals and share servers

Phase 3: Hardware is very cheap, humans are very expensive
Ø Personal computing: One system per user
Ø Distributed computing: lots of systems per user

Phase 4: Ubiquitous computing

56

A	
 Brief	
 History	
 of	
 Operating	
 Systems
Hand	
 programmed	
 machines	
 (‘45-­‐‘55)

Single user systems

OS = loader + libraries of common subroutines

Problem: low utilization of expensive components

= % utilization
Execution time

Execution time +
Card reader time

57

Batching v. sequential execution of jobs

Card Reader:

CPU:

Printer:

Read Batch 1

Execute Batch 1 Batch 2 Batch 3

Batch 2 Batch 3

Print Batch 1 Batch 2 Batch 3

Card Reader:

CPU:

Printer:

Read Job 1

Execute Job 1 Job 2 Job 3

Job 2 Job 3

Print Job 1 Job 2 Job 3

58

TapeTape

Operating system = loader + sequencer + output processor

Input

Compute

Output

Card
Reader Printer

Tape Tape

Operating System

“System Software”

User Program

User Data

59

Keep several jobs in memory and multiplex CPU between
jobs

Operating System

“System Software”

User Program 1

User Program 2User Program 2

User Program n

...

program P
begin
 :
 Read(var)
 :
end P

system call Read()
begin
 StartIO(input device)
 WaitIO(interrupt)
 EndIO(input device)
 :
end Read

Simple, “synchronous” input:
What to do while we wait
for the I/O device?

60

Keep several jobs in memory and multiplex CPU between
jobs

Operating System

“System Software”

User Program 1

User Program 2User Program 2

User Program n

...

Program 1 I/O
Device

k: read()

k+1:

endio()
interrupt

main{

}

}

OS

read{

startIO()
waitIO()

61

Keep several jobs in memory and multiplex CPU between
jobs

Operating System

“System Software”

User Program 1

User Program 2User Program 2

User Program n

...

Program 1 Program 2OS I/O
Device

k: read()

startIO()

interrupt

main{

read{

endio{

}
schedule()

main{

k+1:

}

}
schedule()

62

History	
 of	
 Operating	
 Systems:	
 Phases

Phase 1: Hardware is expensive, humans are cheap
Ø User at console: single-user systems
Ø Batching systems
Ø Multi-programming systems

Phase 2: Hardware is cheap, humans are expensive
Ø Time sharing: Users use cheap terminals and share servers

Phase 3: Hardware is very cheap, humans are very expensive
Ø Personal computing: One system per user
Ø Distributed computing: lots of systems per user

Phase 4: Ubiquitous computing

63

A timer interrupt is used to multiplex CPU among jobs

Operating System

“System Software”

User Program 1

User Program 2User Program 2

User Program n

...
Program 1 Program 2OS

k+1:
schedule{

timer
interrupt schedule{

timer
interrupt

k:

main{

}
main{

}

timer
interrupt schedule{

64

History	
 of	
 Operating	
 Systems:	
 Phases

Phase 1: Hardware is expensive, humans are cheap
Ø User at console: single-user systems
Ø Batching systems
Ø Multi-programming systems

Phase 2: Hardware is cheap, humans are expensive
Ø Time sharing: Users use cheap terminals and share servers

Phase 3: Hardware is very cheap, humans are very expensive
Ø Personal computing: One system per user
Ø Distributed computing: lots of systems per user

Phase 4: Ubiquitous computing

65

Operating	
 Systems	
 for	
 PCs

Personal computing systems
Ø Single user
Ø Utilization is no longer a concern
Ø Emphasis is on user interface and API
Ø Many services & features not present

Evolution
Ø Initially: OS as a simple service provider

(simple libraries)
Ø Now: Multi-application systems with support

for coordination and communication
Ø Growing security issues (e.g., online

commerce, medical records)

66

Distributed	
 Operating	
 Systems

Typically support distributed services
Ø Sharing of data and coordination across multiple systems

Possibly employ multiple processors
Ø Loosely coupled v. tightly coupled systems

High availability & reliability requirements
Ø Amazon, CNN

OS
process

management

User
Program

CPU

LAN/WAN

OS
process management
memory management

User
Program

CPU

OS
file system

name services
mail services

CPU

Network

67

History	
 of	
 Operating	
 Systems:	
 Phases

Phase 1: Hardware is expensive, humans are cheap
Ø User at console: single-user systems
Ø Batching systems
Ø Multi-programming systems

Phase 2: Hardware is cheap, humans are expensive
Ø Time sharing: Users use cheap terminals and share servers

Phase 3: Hardware is very cheap, humans are very expensive
Ø Personal computing: One system per user
Ø Distributed computing: lots of systems per user

Phase 4: Ubiquitous computing/Cloud computing
Ø Everything will have computation, from pacemakers to toasters
Ø Computing centralizing
Ø “I think there is a world market for maybe five computers” – Tomas

J. Watson, 1943 (president of IBM)

68

What	
 is	
 cloud	
 computing?

Cloud computing is where dynamically scalable and
often virtualized resources are provided as a service
over the Internet (thanks, wikipedia!)
Infrastructure as a service (IaaS)
Ø Amazon’s EC2 (elastic compute cloud)

Platform as a service (PaaS)
Ø Google gears
Ø Microsoft azure

Software as a service (SaaS)
Ø gmail
Ø facebook
Ø flickr

69

Thanks, James Hamilton, amazon

70

Richer	
 Operating	
 Systems
Intellectual	
 property

Copyrighted material is being disseminated in digital form without
payment to copyright owners.
Sue them (DMCA)
➡Napster (99-7/00)
➡RIAA lawsuits (9/03)
➡MPAA lawsuits against bittorrent operators (11/04)

What is the future of file sharing?
➡Attempts to ban all file sharing at the university level.
➡Government tapping of IP networks.

Can software stop intellectual property piracy?
➡Why not? The consumer controls the OS.

What about adding hardware?
➡ Intel’s trusted execution technology. Who is trusted? Hint: Its

not the owner of the computer…
A PC is an open-ended system, not an appliance. For how much
longer?

71

Richer	
 Operating	
 Systems

Is it better to search for data (google), or organize it
hierarchically (file folders)?
➡Organization along a particular set of ideas (schema) might not

be ideal for a different set of ideas.
➡Gmail search vs. mail folders

Integration of search in Vista and MacOS.
➡Do you use My Documents folder, or do you maintain your own

directories? use both a lot?

