[An Operating System in Action

¢ CPU loads boot program from ROM (e.g. BIOS in PC’s)

¢ Boot program:

W] Examines/checks machine configuration (number of CPU’s, how
much memory, number & type of hardware devices, etc.)

¥] Builds a configuration structure describing the hardware

¥]Loads the operating system, and gives it the configuration
structure

¢ Operating system initialization:
¥] Initialize kernel data structures
¥]Initialize the state of all hardware devices

¥]Creates a humber of processes to start operation (e.g. getty in
UNIX, the Windowing system in NT, e.g.)

[0.S. in Action (Cont’d)

4

4

W

4

4

4

4

4

¢ After basic processes have started, the OS runs user
programs, if available, otherwise enters the idle loop

¢ In the idle loop:

OS executes an infinite loop (UNIX)
OS performs some system management & profiling
OS halts the processor and enter in low-power mode (notebooks)

¢ OS wakes up on:

Interrupts from hardware devices
Exceptions from user programs
System calls from user programs

¢ Two modes of execution

User mode: Restricted execution mode (applications)
Supervisor mode: Unrestricted access to everything (OS)

[Control Flow in an OS

main

From

/

Initializatio

Idle
Loop

RT

Interrup

System

Operating System

Su

hervisor

Exceptio

Input / Output

W] Reading or writing data from a perepheral device is
not simple
& Each device has its own controller (hardware)

& Each device is managed by a device driver (software to use
the controller)

¥] Device drivers are specific to hardware and to the operating system
using the device

& Input and output is SLOW in comparison to CPU operations.

Busy Waiting

¥] Reading or writing data to a device is SLOW in comparison to the time

it takes to complete one CPU operation

¥] The CPU must send one or more instructions to the controller to make

the 1/0O device begin to read or write.

¥] The CPU can then wait until the I/O operation is finishes.

¢ While it waits the CPU will be in a loop
€& Each time through the loop the CPU will check a register in the controller to
see if the I/O operation is complete

Alternatives to Busy waiting

v} Busy waiting does not use CPU resources efficiently

"] Want to use the CPU to execute other instructions
while the 1/O operation is being completed

Interrupts : a mechanism to tell the CPU when the
controller completes the 1/O

Interrupts

¥] Mechanism by which other modules (memory, 1/0, timers ...) may

interrupt the normal sequence of instructions being executed by the
processor

¥] Interrupts are a critical component of the operation of spooling and
multiprogramming (more later).

¥} Interrupts allow the transfer of control between different programs

(remember the OS is also a program)

¥} Interrupts are generated by hardware (asynchronous)

& Exceptions are generated by particular instructions in software (synchronous),
e.g., divide by 0O, overflow, illegal instruction or address...

Some types of interrupts

¥] /0

€ Signaling normal completion of an operation (read or write)
€ Signaling error during operation

¥] Timer expiry
& Begin regularly scheduled task
€ End task that has exceeded allocated time

¥] Hardware failure

‘/ D Tnterrupt Controller

I

Ay1uo1ug

Control

Interrupts invoked with interrupt lines from devices
Interrupt controller chooses interrupt request to honor
- Mask enables/disables interrupts

- Priority encoder picks highest enabled interrupt

- Software Interrupt Set/Cleared by Software

- Interrupt identity specified with ID line

CPU can disable all interrupts with internal flag
Non-maskable interrupt line (NMI) can't be disabled

NM
Networ

Example: Network Interrupt

Raise priority
Reenable All Ints
Save registers
Dispatch to Handler

add © S8rl,$r2,5$r3
subi o $r4,S$rl,#4
slli o $r4,$5r4d,#2

o ...
E Transfer Network Packe
Q . . from hardware
"i Pipeline Flush to Kernel Buffers ;
Ly ° ...

lw 32,0 ($r4) Restore registers

lwe Sr3,4 ($r4) Clear current Int

addo $r2,8r2,8r3 Disable All Ints

SWO 8($Sr4d) ,S$r2 Restore priority

RTI

/

- Disable/Enable All Ints = Internal CPU disable bit
- RTI reenables interrupts, returns to user mode

- Raise/lower priority: change interrupt mask

- Software interrupts can be provided entirely in software at
priority switching boundaries

Interrupt processing (1)

W

A device issues an interrupt request

'he CPU finishes execution of the present instruction

[he CPU checks if there is a pending interrupt,
& sends ACK to the device

€ CPU saves registers and state to the stack (including current
instruction)

['he CPU loads the address of the appropriate ISR into the
address register

12

Interrupt processing (2)

W] The CPU executes the ISR

] When the ISR finishes, the saved register and state
information is restored to the CPU registers

W] The program counter is reset to point to the next
Instruction

] The original program continues execution

REMEMBER: the time when an interrupt occurs is not
known in advance!! Interrupts are asynchronous

13

Increase in efficiency

No interrupts With interrupts

Write Instruction Write Instruction

CPU (processor) B2

|
|]
.

Complete Write ISR execution

The busy waiting time 1s eliminated.

14

1!

[On Exceptions

¢ Hardware calls the operating system at a pre-specified
location

divide by 0)
¢ TIf user program has exception handling specified, then OS
adjust the user program state so that it calls its handler
Execute an RTI instruction to return to the user program

If user program did not have a specified handler, then OS
kills it and runs some other user program, as available

=

Key Fact: Effects of exceptions are visible to user programs
and cause abnormal execution flow

¢ Operating system identifies the cause of the exception (e.g.

1€

[On System Calls

¢ o

4

* ¢+ 00

User program executes a trap instruction (system call)

Hardware calls the operating system at a pre-specified
location

Operating system identifies the required service and
parameters (e.g. open(filename, O_RDONLY))

Operating system executes the required service

Operating system sets a register to contain the result of call
Execute an RTT instruction to return to the user program
User program receives the result and continues

Key Fact: To the user program, it appears as a function call
executed under program control

1

Operating System Today
High-level software architecture

Command
Interprete

User
Windo
W
“Middleware

Operating System

(process/device/memory management,
file systems, interprocess communication, ...

Instruction Execution & Interrupt

I/O Devices Memor

1¢

[Operating System Structures

¢ Monolithic OS (e.g., Unix)

Command Interpreter

File

Securit

Network Support

Memory

CPU

Process

Device

Hardwar

¢ Micro-kernel OS (e.q.,
Mach, Exokernel, ...)

AP

Network File Window
Support Serve Server

Memory CPU

Mgmt. Schedulin
Device || Interrupt || Boot and
Drivers || Handler Init.
Message
Hardwar

1€

[Summary

4

W

W

¢ An OS is just a program:

I't has a main() function, which gets called only once (during boot)

Like any program, it consumes resources (such as memory), can
do silly things (like generating an exception), etc.

¢ But it is a very strange program:

It is “entered” from different locations in response to external
events

I't does not have a single thread of control, it can be invoked
simultaneously by two different events (e.g. system call & an
interrupt)

It is not supposed to terminate
It can execute any instruction in the machine

2

