
1

An Operating System in Action 

CPU loads boot program from ROM (e.g. BIOS in PC’s)

Boot program:
Examines/checks machine configuration (number of CPU’s, how 

much memory, number & type of hardware devices, etc.)
Builds a configuration structure describing the hardware
Loads the operating system, and gives it the configuration 

structure

Operating system initialization:
Initialize kernel data structures
Initialize the state of all hardware devices
Creates a number of processes to start operation (e.g. getty in 

UNIX, the Windowing system in NT, e.g.)



2

O.S. in Action (Cont’d)

After basic processes have started, the OS runs user 
programs, if available, otherwise enters the idle loop

In the idle loop:
OS executes an infinite loop (UNIX)
OS performs some system management & profiling
OS halts the processor and enter in low-power mode (notebooks)

OS wakes up on:
Interrupts from hardware devices
Exceptions from user programs
System calls from user programs

Two modes of execution
User mode: Restricted execution mode (applications)
Supervisor mode: Unrestricted access to everything (OS)



3

Control Flow in an OS

Operating System 

Idle
Loop

From 

Initializatio

RT

Interrup System 
main

Exceptio

Supervisor 

Return to 
user 



Input / Output 
 Reading or writing data from a perepheral device is 

not simple
Each device has its own controller (hardware)
Each device is managed by a device driver (software to use 
the controller)
 Device drivers are specific to hardware and to the operating system 

using the device
Input and output is SLOW in comparison to CPU operations.  

4



Busy Waiting

 Reading or writing data to a device is SLOW in comparison to the time 
it takes to complete one CPU operation

 The CPU must send one or more instructions to the controller to make 
the I/O device begin to read or write.

 The CPU can then wait until the I/O operation is finishes.  
While it waits the CPU will be in a loop
Each time through the loop the CPU will check a register in the controller to 
see if the I/O operation is complete

5



Alternatives to Busy waiting

 Busy waiting does not use CPU resources efficiently 

 Want to use the CPU to execute other instructions 
while the I/O operation is being completed

 Interrupts : a mechanism to tell the CPU when the 
controller completes the I/O

6



7

Interrupts

 Mechanism by which other modules (memory, I/0, timers …) may 
interrupt the normal sequence of instructions being executed by the 
processor 

 Interrupts are a critical component of the operation of spooling and 
multiprogramming (more later). 

 Interrupts allow the transfer of control between different programs 
(remember the OS is also a program)

 Interrupts are generated by hardware (asynchronous) 
Exceptions are generated by particular instructions in software (synchronous), 
e.g., divide by 0, overflow, illegal instruction or address…



8

Some types of  interrupts
 I/0 

Signaling normal completion of an operation (read or write)
Signaling error during operation

 Timer expiry
Begin regularly scheduled task
End task that has exceeded allocated time

 Hardware failure



9



Interrupt Controller

• Interrupts invoked with interrupt lines from devices
• Interrupt controller chooses interrupt request to honor

– Mask enables/disables interrupts
– Priority encoder picks highest enabled interrupt 
– Software Interrupt Set/Cleared by Software
– Interrupt identity specified with ID line

• CPU can disable all interrupts with internal flag
• Non-maskable interrupt line (NMI) can’t be disabled

Networ

IntI

Interrup

Interrupt 

Control
Softwar NM

CPUPriority 

Tim
e

Int 



Example: Network Interrupt

• Disable/Enable All Ints ⇒ Internal CPU disable bit
– RTI reenables interrupts, returns to user mode

• Raise/lower priority: change interrupt mask 
• Software interrupts can be provided entirely in software at 

priority switching boundaries

…
add 	 $r1,$r2,$r3
subi 	 $r4,$r1,#4
slli 	 $r4,$r4,#2

PC
 sa

ved

Dis
ab

le 
All

 In
ts

Restore PC

User Mode

Raise priority
Reenable All Ints
Save registers
Dispatch to Handler

…
Transfer Network Packet 

from hardware
to Kernel Buffers

…
Restore registers
Clear current Int
Disable All Ints
Restore priority
RTI

“I
nt

er
ru

pt
 

lw	 $r2,0($r4)
lw	 $r3,4($r4)
add	 $r2,$r2,$r3
sw	 8($r4),$r2

…

Ex
te

rn
al
 

Pipeline Flush



12

Interrupt processing (1)
 A device issues an interrupt request

 The CPU finishes execution of the present instruction

 The CPU checks if there is a pending interrupt,
sends ACK to the device 
CPU saves registers and state to the stack (including current 
instruction)

 The CPU loads the address of the appropriate ISR into the 
address register



13

Interrupt processing (2)
 The CPU executes the ISR

 When the ISR finishes, the saved register and state 
information is restored to the CPU registers

 The program counter is reset to point to the next 
instruction

 The original program continues execution

REMEMBER: the time when an interrupt occurs is not 
known in advance!!   Interrupts are asynchronous



14

Increase in efficiency

No interrupts

B1 B1

With interrupts

Write Instruction Write Instruction

B2

B2

CPU (processor)
wait

ISR execution

B3

B3

Complete Write

Time

The busy waiting time is eliminated.



15



16

On Exceptions

Hardware calls the operating system at a pre-specified 
location
Operating system identifies the cause of the exception (e.g. 
divide by 0)
If user program has exception handling specified, then OS 
adjust the user program state so that it calls its handler
Execute an RTI instruction to return to the user program
If user program did not have a specified handler, then OS 
kills it and runs some other user program, as available

Key Fact: Effects of exceptions are visible to user programs 
and cause abnormal execution flow



17

On System Calls

User program executes a trap instruction (system call)
Hardware calls the operating system at a pre-specified 
location
Operating system identifies the required service and 
parameters (e.g. open(filename, O_RDONLY))
Operating system executes the required service
Operating system sets a register to contain the result of call
Execute an RTI instruction to return to the user program
User program receives the result and continues

Key Fact: To the user program, it appears as a function call 
executed under program control



18

Operating System
(process/device/memory management, 

file systems, interprocess communication, …) 

Operating System Today
High-level software architecture

Memor

Instruction Execution & Interrupt 

User 

Windo
w

Command
Interprete

I/O Devices

“Middleware



19

Operating System Structures

Monolithic OS (e.g., Unix) Micro-kernel OS (e.g., 
Mach, Exokernel, …)

Memory 

CPU 

Process 

Hardwar

Network Support

Securit

File 

Command Interpreter

Device 

Network 
Support

Memory
Mgmt.

Window
Server

File
Serve

..

 

Hardwar

CPU
Schedulin

Device 
Drivers

Interrupt
Handler

Boot and
Init.

Message …

AP



20

Summary

An OS is just a program:
It has a main() function, which gets called only once (during boot)
Like any program, it consumes resources (such as memory), can 

do silly things (like generating an exception), etc.

But it is a very strange program:
It is “entered” from different locations in response to external 

events
It does not have a single thread of control, it can be invoked 

simultaneously by two different events (e.g. system call & an 
interrupt)

It is not supposed to terminate
It can execute any instruction in the machine


