
© David Kirk/NVIDIA, Wen-mei W. Hwu, and John Stratton, 2007-2009!
ECE 498AL, University of Illinois, Urbana-Champaign!

1 

ECE 498AL 
 

Lecture 15:  Reductions and Their 
Implementation 
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Parallel Reductions 
•  Simple array reductions reduce all of the data in an array to a 

single value that contains some information from the entire 
array.   
–  Sum, maximum element, minimum element, etc. 

•  Used in lots of applications, although not always in parallel form 
–  Matrix Multiplication is essentially performing a sum reduction over the 

element-product of two vectors for each output element: but the sum is 
computed by a single thread 

•  Assumes that the operator used in the reduction is associative 
–  Technically not true for things like addition on floating-point numbers, 

but it’s common to pretend that it is 
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Parallel Prefix Sum (Scan) 
•  Definition: 

 The all-prefix-sums operation takes a binary associative 
operator ⊕ with identity I, and an array of n elements 

[a0, a1, …, an-1] 

 and returns the ordered set 
[I, a0, (a0 ⊕ a1), …, (a0 ⊕ a1 ⊕ … ⊕ an-2)]. 

 

•  Example:  
if ⊕ is addition, then scan on the set 

[3 1 7 0 4 1 6 3] 
returns the set  

[0 3 4 11 11 15 16 22] 
(From Blelloch, 1990, “Prefix 
Sums and Their Applications) 

 

Each element is the 
array reduction of 

all previous 
elements!



© David Kirk/NVIDIA, Wen-mei W. Hwu, and John Stratton, 2007-2009!
ECE 498AL, University of Illinois, Urbana-Champaign!

4 

Relevance of Scan 
•  Scan is a simple and useful parallel building block 

–  Convert recurrences from sequential :   
   for(j=1;j<n;j++) 
    out[j] = out[j-1] + f(j); 
 

–  into parallel: 
   forall(j) { temp[j] = f(j) }; 
 scan(out, temp); 

•  Useful for many parallel algorithms: 
•  radix sort 
•  quicksort 
•  String comparison 
•  Lexical analysis 
•  Stream compaction 

•  Polynomial evaluation 
•  Solving recurrences 
•  Tree operations 
•  Histograms 
•  Etc. 
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Example: Application of Scan 

Tid 1 2 3 4 5 6 7 8 

Scan 0 3 4 11 11 15 16 22 
Cnt 3 1 7 0 4 1 6 3 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

•  Computing indexes into a global array where each 
thread needs space for a dynamic number of elements 
–  Each thread computes the number of elements it will produce 
–  The scan of the thread element counts will determine the 

beginning index for each thread. 
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Scan on the CPU 

•  Just add each element to the sum of the elements 
before it 

•  Trivial, but sequential 
•  Exactly n adds: absolute minimum bound 

void scan( float* scanned, float* input, int length)  
{ 
  scanned[0] = 0;  
  for(int i = 1; i < length; ++i)  
  { 
    scanned[i] = input[i-1] + scanned[i-1]; 
  } 
} 
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A First-Attempt Parallel Scan Algorithm 

1.  Read from input into  
a temporary array we 
can work on in place.  
Set first element to 
zero and shift others 
right by one. 
 
 

Each thread reads one value from the input 
array in device memory into shared memory array T0. 

Thread 0 writes 0 into shared memory array. 

T 0 3 1 7 0 4 1 6 

In 3 1 7 0 4 1 6 3 0 
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A First-Attempt Parallel Scan Algorithm 

•  Active threads: stride to n-1 (n-stride threads) 
•  Thread j adds elements j and j-stride from T 

Iteration #1 
Stride = 1 

T 0 3 4 8 7 4 5 7 

Stride 1 

T 0 3 1 7 0 4 1 6 

In 3 1 7 0 4 1 6 3 0 1.  Read input from  
into a temporary array 
(shared memory in 
CUDA). Set first 
element to zero and 
shift others right. 
 

2.  Iterate log(n)  
times: Threads stride 
to n: Add pairs of 
elements stride 
elements apart. 
Double stride at each 
iteration.  
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A First-Attempt Parallel Scan Algorithm 

T 0 3 4 8 7 4 5 7 

T 0 3 4 11 11 12 12 11 

Stride 1 

Stride 2 

1.  Read input from  
into a temporary array 
(shared memory in 
CUDA). Set first 
element to zero and 
shift others right. 
 

2.  Iterate log(n)  
times: Threads stride 
to n: Add pairs of 
elements stride 
elements apart. 
Double stride at each 
iteration.  

Iteration #2 
Stride = 2 

T 0 3 1 7 0 4 1 6 

In 3 1 7 0 4 1 6 3 0 

Note that threads need to synchronize before they read 
and before they write to T.  Double-buffering can allow 
them to only synchronize after writing. 
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A First-Attempt Parallel Scan Algorithm 

T 0 3 4 11 11 15 16 22 

1.  Read input from  
device memory to  
shared memory. Set 
first element to zero 
and shift others right 
by one. 
 

2.  Iterate log(n)  
times: Threads stride 
to n: Add pairs of 
elements stride 
elements apart. 
Double stride at each 
iteration.  

Iteration #3 
Stride = 4 

In 3 1 7 0 4 1 6 3 0 

T 0 3 4 8 7 4 5 7 

T 0 3 4 11 11 12 12 11 

Stride 1 

Stride 2 

T 0 3 1 7 0 4 1 6 

After each iteration, each array element contains the sum of the 
previous 2*stride elements of the original array.   
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A First-Attempt Parallel Scan Algorithm 

Out 0 3 4 11 11 15 16 22 

T1 0 3 4 11 11 15 16 22 

In 3 1 7 0 4 1 6 3 0 

T1 0 3 4 8 7 4 5 7 

T0 0 3 4 11 11 12 12 11 

Stride 1 

Stride 2 

T0 0 3 1 7 0 4 1 6 

1.  Read input from  
device memory to  
shared memory. Set 
first element to zero 
and shift others right 
by one. 
 

2.  Iterate log(n)  
times: Threads stride 
to n: Add pairs of 
elements stride 
elements apart. 
Double stride at each 
iteration.  

3.  Write output.  
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Work Efficiency Considerations 

•  The first-attempt Scan executes log(n) parallel iterations 
–  The steps do at least n/2 operations every step for log(n) steps 
–  Total adds  O(n*log(n)) work 

•  This scan algorithm is not very efficient on finite resources 
–  Presumably, if you have N or more parallel processors, the number of 

steps matters more than the number of operations 
–  For larger reductions, finite resources get their workload multiplied 

by factor of log(n) compared to a sequential implementation. 

•  Log(1024) = 10: this gets bad very quickly 



© David Kirk/NVIDIA, Wen-mei W. Hwu, and John Stratton, 2007-2009!
ECE 498AL, University of Illinois, Urbana-Champaign!

13 

Improving Efficiency 

•  A common parallel algorithm pattern: 
Balanced Trees 

–  Build a balanced binary tree on the input data and sweep it to and 
from the root 

–  Tree is not an actual data structure, but a concept to determine what 
each thread does at each step 

•  For scan: 
–  Traverse down from leaves to root building partial sums at internal 

nodes in the tree 
•  Root holds sum of all leaves 

–  Traverse back up the tree building the scan from the partial sums 
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Build the Sum Tree 
T 3 1 7 0 4 1 6 3 

Assume array is already in the temp array 
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Build the Sum Tree 
T 3 1 7 0 4 1 6 3 

T 3 4 7 7 4 5 6 9 

Stride 1 Iteration 1, n/2 threads 

Iterate log(n) times. Each thread adds value stride elements away to its own value 

Each       corresponds 
to a single thread. 
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Build the Sum Tree 
T 3 1 7 0 4 1 6 3 

T 3 4 7 7 4 5 6 9 

T 3 4 7 11 4 5 6 14 

Stride 1 

Stride 2 Iteration 2, n/4 threads 

Iterate log(n) times. Each thread adds value stride elements away to its own value 

Each       corresponds 
to a single thread. 



© David Kirk/NVIDIA, Wen-mei W. Hwu, and John Stratton, 2007-2009!
ECE 498AL, University of Illinois, Urbana-Champaign!

17 

Build the Sum Tree 
T 3 1 7 0 4 1 6 3 

T 3 4 7 7 4 5 6 9 

T 3 4 7 11 4 5 6 14 

T 3 4 7 11 4 5 6 25 

Iterate log(n) times. Each thread adds value stride elements away to its own value. 
 
After step with stride k, elements with indexes divisible by 2k contain the partial 
sum of itself and the preceding 2k-1 elements.   

Iteration log(n), 1 thread 

Stride 1 

Stride 2 

Stride 4 

Each       corresponds 
to a single thread. 
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Partial Sum Array 

Idx 0 1 2 3 4 5 6 7 
T 3 4 7 11 4 5 6 25 

Index k holds the partial sum of the elements from j to k where j is the greatest 
index less than or equal to k that is divisible by the greatest power of 2 by 
which k+1 is divisible, or 0 if there is none.  

Sum 0 0-1 2 0-3 4 4-5 6 0-7 

Trust me, it 
works!
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Zero The Last Element 

Idx 1 2 3 4 5 6 7 8 
T 3 4 7 11 4 5 6 0 

It’s an exclusive scan, so we don’t need it. 
It’ll propagate back to the beginning in the upcoming steps. 

Sum 1 1-2 3 1-4 5 5-6 7 1-8 
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Build Scan From Partial Sums 
T 3 4 7 11 4 5 6 0 
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Build Scan From Partial Sums 

T 3 4 7 0 4 5 6 11 

T 3 4 7 11 4 5 6 0 

Iterate log(n) times. Each thread adds value stride elements away to its own value, 
and sets the value stride elements away to its own previous value. 

Iteration 1 
1 thread 

Stride 4 

Each       corresponds 
to a single thread. 
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Build Scan From Partial Sums 

T 3 4 7 0 4 5 6 11 

T 3 4 7 11 4 5 6 0 

T 3 0 7 4 4 11 6 16 

Iterate log(n) times. Each thread adds value stride elements away to its own value, 
and sets the value stride elements away to its own previous value. 

Iteration 2  
2 threads 

Stride 4 

Stride 2 

Each       corresponds 
to a single thread. 
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Build Scan From Partial Sums 

T 3 4 7 0 4 5 6 11 

T 3 4 7 11 4 5 6 0 

T 3 0 7 4 4 11 6 16 

T 0 3 4 11 11 15 16 22 

Done!  We now have a completed scan that we can write to output. 
 
Total steps: 2 * log(n).   
Total operations: 2 * (n-1) adds - Work Efficient! 

Iteration log(n)  
n/2 threads 

Stride 2 

Stride 4 

Stride 1 

Each       corresponds 
to a single thread. 
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Shared memory bank conflicts 
•  Shared memory is as fast as registers if there are no bank 

conflicts 
 
•  The fast cases: 

–  All 16 threads of a half-warp access different banks: no bank conflict 
–  All 16 threads of a half-warp access the same address: broadcast 
 

•  The slow case: 
–  Multiple threads in the same half-warp access different values in the 

same bank 
–  Must serialize the accesses 
–  Cost = max # of values requested from one of the 16 banks 
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Bank Addressing Examples 

•  2-way Bank Conflicts 
–  Linear addressing  

stride == 2 

•  8-way Bank Conflicts 
–  Linear addressing  

stride == 8 

Thread 11 
Thread 10 
Thread 9 
Thread 8 

Thread 4 
Thread 3 
Thread 2 
Thread 1 
Thread 0 

Bank 15 

Bank 7 
Bank 6 
Bank 5 
Bank 4 
Bank 3 
Bank 2 
Bank 1 
Bank 0 

Thread 15 

Thread 7 
Thread 6 
Thread 5 
Thread 4 
Thread 3 
Thread 2 
Thread 1 
Thread 0 

Bank 9 
Bank 8 

Bank 15 

Bank 7 

Bank 2 
Bank 1 
Bank 0 x8 

x8 
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Use Padding to Reduce Conflicts 

•  This is a simple modification to the indexing 

•  After you compute a shared mem address like this: 
 

Address = 2 * stride * thid;  

•  Add padding like this: 
 
Address += (Address / 16); // divide by NUM_BANKS 

•  This removes most bank conflicts 
–  Not all, in the case of deep trees, but good enough for us 
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Fixing Scan Bank Conflicts 
•  Insert padding every NUM_BANKS elements 

 
const int LOG_NUM_BANKS = 4; // 16 banks on G80 
int tid = threadIdx.x; 
int s = 1; 
// Traversal from leaves up to root 
for (d = n>>1; d > 0; d >>= 1) 
{ 
 if (thid <= d) 
 { 

        int a = s*(2*tid); int b = s*(2*tid+1) 
        a += (a >> LOG_NUM_BANKS); // insert pad word 
        b += (b >> LOG_NUM_BANKS); // insert pad word 
      shared[a] += shared[b]; 

   } 
} 
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What About Really Big Arrays? 

•  What if the array doesn’t fit in shared memory? 
–  After all, we care about parallelism because we have big 

problems, right? 
•  Tiled reduction with global synchronization 

1.  Tile the input and perform reductions on tiles with 
individual thread blocks 

2.  Store the intermediate results from each block back to 
global memory to be the input for the next kernel 

3.  Repeat as necessary 
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Building the Global Sum Tree 
T0 3 1 7 0 4 1 6 3 

T0 3 4 7 7 4 5 6 9 

T0 3 4 7 11 4 5 6 14 

Iterate log(n) times. Each thread adds value stride elements away to its own value. 
 
After step with stride k, elements with indexes divisible by 2k contain the partial 
sum of itself and the preceding 2k-1 elements.   

Compact and globally 
synchronize, then 
continue 

Stride 1 

Stride 2 

…!

…!

…!

T1 11 14 … 
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Global Synchronization in CUDA 

•  Remember, there is no barrier synchronization 
between CUDA thread blocks 
–  You can have some limited communication through atomic 

integer operations on global memory on newer devices 
–  Doesn’t conveniently address the global reduction problem, 

or lots of others 
•  To synchronize, you need to end the kernel (have all 

thread blocks complete) 
–  Then launch a new one 


