
© David Kirk/NVIDIA, Wen-mei W. Hwu, and John Stratton, 2007-2009!
ECE 498AL, University of Illinois, Urbana-Champaign!

1

ECE 498AL

Lecture 15: Reductions and Their
Implementation

© David Kirk/NVIDIA, Wen-mei W. Hwu, and John Stratton, 2007-2009!
ECE 498AL, University of Illinois, Urbana-Champaign!

2

Parallel Reductions
•  Simple array reductions reduce all of the data in an array to a

single value that contains some information from the entire
array.
–  Sum, maximum element, minimum element, etc.

•  Used in lots of applications, although not always in parallel form
–  Matrix Multiplication is essentially performing a sum reduction over the

element-product of two vectors for each output element: but the sum is
computed by a single thread

•  Assumes that the operator used in the reduction is associative
–  Technically not true for things like addition on floating-point numbers,

but it’s common to pretend that it is

© David Kirk/NVIDIA, Wen-mei W. Hwu, and John Stratton, 2007-2009!
ECE 498AL, University of Illinois, Urbana-Champaign!

3

Parallel Prefix Sum (Scan)
•  Definition:

 The all-prefix-sums operation takes a binary associative
operator ⊕ with identity I, and an array of n elements

[a0, a1, …, an-1]

 and returns the ordered set
[I, a0, (a0 ⊕ a1), …, (a0 ⊕ a1 ⊕ … ⊕ an-2)].

•  Example:
if ⊕ is addition, then scan on the set

[3 1 7 0 4 1 6 3]
returns the set

[0 3 4 11 11 15 16 22]
(From Blelloch, 1990, “Prefix
Sums and Their Applications)

Each element is the
array reduction of

all previous
elements!

© David Kirk/NVIDIA, Wen-mei W. Hwu, and John Stratton, 2007-2009!
ECE 498AL, University of Illinois, Urbana-Champaign!

4

Relevance of Scan
•  Scan is a simple and useful parallel building block

–  Convert recurrences from sequential :
 for(j=1;j<n;j++)
 out[j] = out[j-1] + f(j);

–  into parallel:
 forall(j) { temp[j] = f(j) };
 scan(out, temp);

•  Useful for many parallel algorithms:
•  radix sort
•  quicksort
•  String comparison
•  Lexical analysis
•  Stream compaction

•  Polynomial evaluation
•  Solving recurrences
•  Tree operations
•  Histograms
•  Etc.

© David Kirk/NVIDIA, Wen-mei W. Hwu, and John Stratton, 2007-2009!
ECE 498AL, University of Illinois, Urbana-Champaign!

5

Example: Application of Scan

Tid 1 2 3 4 5 6 7 8

Scan 0 3 4 11 11 15 16 22
Cnt 3 1 7 0 4 1 6 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

•  Computing indexes into a global array where each
thread needs space for a dynamic number of elements
–  Each thread computes the number of elements it will produce
–  The scan of the thread element counts will determine the

beginning index for each thread.

© David Kirk/NVIDIA, Wen-mei W. Hwu, and John Stratton, 2007-2009!
ECE 498AL, University of Illinois, Urbana-Champaign!

6

Scan on the CPU

•  Just add each element to the sum of the elements
before it

•  Trivial, but sequential
•  Exactly n adds: absolute minimum bound

void scan(float* scanned, float* input, int length)
{
 scanned[0] = 0;
 for(int i = 1; i < length; ++i)
 {
 scanned[i] = input[i-1] + scanned[i-1];
 }
}

© David Kirk/NVIDIA, Wen-mei W. Hwu, and John Stratton, 2007-2009!
ECE 498AL, University of Illinois, Urbana-Champaign!

7

A First-Attempt Parallel Scan Algorithm

1.  Read from input into
a temporary array we
can work on in place.
Set first element to
zero and shift others
right by one.

Each thread reads one value from the input
array in device memory into shared memory array T0.

Thread 0 writes 0 into shared memory array.

T 0 3 1 7 0 4 1 6

In 3 1 7 0 4 1 6 3 0

© David Kirk/NVIDIA, Wen-mei W. Hwu, and John Stratton, 2007-2009!
ECE 498AL, University of Illinois, Urbana-Champaign!

8

A First-Attempt Parallel Scan Algorithm

•  Active threads: stride to n-1 (n-stride threads)
•  Thread j adds elements j and j-stride from T

Iteration #1
Stride = 1

T 0 3 4 8 7 4 5 7

Stride 1

T 0 3 1 7 0 4 1 6

In 3 1 7 0 4 1 6 3 0 1.  Read input from
into a temporary array
(shared memory in
CUDA). Set first
element to zero and
shift others right.

2.  Iterate log(n)
times: Threads stride
to n: Add pairs of
elements stride
elements apart.
Double stride at each
iteration.

© David Kirk/NVIDIA, Wen-mei W. Hwu, and John Stratton, 2007-2009!
ECE 498AL, University of Illinois, Urbana-Champaign!

9

A First-Attempt Parallel Scan Algorithm

T 0 3 4 8 7 4 5 7

T 0 3 4 11 11 12 12 11

Stride 1

Stride 2

1.  Read input from
into a temporary array
(shared memory in
CUDA). Set first
element to zero and
shift others right.

2.  Iterate log(n)
times: Threads stride
to n: Add pairs of
elements stride
elements apart.
Double stride at each
iteration.

Iteration #2
Stride = 2

T 0 3 1 7 0 4 1 6

In 3 1 7 0 4 1 6 3 0

Note that threads need to synchronize before they read
and before they write to T. Double-buffering can allow
them to only synchronize after writing.

© David Kirk/NVIDIA, Wen-mei W. Hwu, and John Stratton, 2007-2009!
ECE 498AL, University of Illinois, Urbana-Champaign!

10

A First-Attempt Parallel Scan Algorithm

T 0 3 4 11 11 15 16 22

1.  Read input from
device memory to
shared memory. Set
first element to zero
and shift others right
by one.

2.  Iterate log(n)
times: Threads stride
to n: Add pairs of
elements stride
elements apart.
Double stride at each
iteration.

Iteration #3
Stride = 4

In 3 1 7 0 4 1 6 3 0

T 0 3 4 8 7 4 5 7

T 0 3 4 11 11 12 12 11

Stride 1

Stride 2

T 0 3 1 7 0 4 1 6

After each iteration, each array element contains the sum of the
previous 2*stride elements of the original array.

© David Kirk/NVIDIA, Wen-mei W. Hwu, and John Stratton, 2007-2009!
ECE 498AL, University of Illinois, Urbana-Champaign!

11

A First-Attempt Parallel Scan Algorithm

Out 0 3 4 11 11 15 16 22

T1 0 3 4 11 11 15 16 22

In 3 1 7 0 4 1 6 3 0

T1 0 3 4 8 7 4 5 7

T0 0 3 4 11 11 12 12 11

Stride 1

Stride 2

T0 0 3 1 7 0 4 1 6

1.  Read input from
device memory to
shared memory. Set
first element to zero
and shift others right
by one.

2.  Iterate log(n)
times: Threads stride
to n: Add pairs of
elements stride
elements apart.
Double stride at each
iteration.

3.  Write output.

© David Kirk/NVIDIA, Wen-mei W. Hwu, and John Stratton, 2007-2009!
ECE 498AL, University of Illinois, Urbana-Champaign!

12

Work Efficiency Considerations

•  The first-attempt Scan executes log(n) parallel iterations
–  The steps do at least n/2 operations every step for log(n) steps
–  Total adds  O(n*log(n)) work

•  This scan algorithm is not very efficient on finite resources
–  Presumably, if you have N or more parallel processors, the number of

steps matters more than the number of operations
–  For larger reductions, finite resources get their workload multiplied

by factor of log(n) compared to a sequential implementation.

•  Log(1024) = 10: this gets bad very quickly

© David Kirk/NVIDIA, Wen-mei W. Hwu, and John Stratton, 2007-2009!
ECE 498AL, University of Illinois, Urbana-Champaign!

13

Improving Efficiency

•  A common parallel algorithm pattern:
Balanced Trees

–  Build a balanced binary tree on the input data and sweep it to and
from the root

–  Tree is not an actual data structure, but a concept to determine what
each thread does at each step

•  For scan:
–  Traverse down from leaves to root building partial sums at internal

nodes in the tree
•  Root holds sum of all leaves

–  Traverse back up the tree building the scan from the partial sums

© David Kirk/NVIDIA, Wen-mei W. Hwu, and John Stratton, 2007-2009!
ECE 498AL, University of Illinois, Urbana-Champaign!

14

Build the Sum Tree
T 3 1 7 0 4 1 6 3

Assume array is already in the temp array

© David Kirk/NVIDIA, Wen-mei W. Hwu, and John Stratton, 2007-2009!
ECE 498AL, University of Illinois, Urbana-Champaign!

15

Build the Sum Tree
T 3 1 7 0 4 1 6 3

T 3 4 7 7 4 5 6 9

Stride 1 Iteration 1, n/2 threads

Iterate log(n) times. Each thread adds value stride elements away to its own value

Each corresponds
to a single thread.

© David Kirk/NVIDIA, Wen-mei W. Hwu, and John Stratton, 2007-2009!
ECE 498AL, University of Illinois, Urbana-Champaign!

16

Build the Sum Tree
T 3 1 7 0 4 1 6 3

T 3 4 7 7 4 5 6 9

T 3 4 7 11 4 5 6 14

Stride 1

Stride 2 Iteration 2, n/4 threads

Iterate log(n) times. Each thread adds value stride elements away to its own value

Each corresponds
to a single thread.

© David Kirk/NVIDIA, Wen-mei W. Hwu, and John Stratton, 2007-2009!
ECE 498AL, University of Illinois, Urbana-Champaign!

17

Build the Sum Tree
T 3 1 7 0 4 1 6 3

T 3 4 7 7 4 5 6 9

T 3 4 7 11 4 5 6 14

T 3 4 7 11 4 5 6 25

Iterate log(n) times. Each thread adds value stride elements away to its own value.

After step with stride k, elements with indexes divisible by 2k contain the partial
sum of itself and the preceding 2k-1 elements.

Iteration log(n), 1 thread

Stride 1

Stride 2

Stride 4

Each corresponds
to a single thread.

© David Kirk/NVIDIA, Wen-mei W. Hwu, and John Stratton, 2007-2009!
ECE 498AL, University of Illinois, Urbana-Champaign!

18

Partial Sum Array

Idx 0 1 2 3 4 5 6 7
T 3 4 7 11 4 5 6 25

Index k holds the partial sum of the elements from j to k where j is the greatest
index less than or equal to k that is divisible by the greatest power of 2 by
which k+1 is divisible, or 0 if there is none.

Sum 0 0-1 2 0-3 4 4-5 6 0-7

Trust me, it
works!

© David Kirk/NVIDIA, Wen-mei W. Hwu, and John Stratton, 2007-2009!
ECE 498AL, University of Illinois, Urbana-Champaign!

19

Zero The Last Element

Idx 1 2 3 4 5 6 7 8
T 3 4 7 11 4 5 6 0

It’s an exclusive scan, so we don’t need it.
It’ll propagate back to the beginning in the upcoming steps.

Sum 1 1-2 3 1-4 5 5-6 7 1-8

© David Kirk/NVIDIA, Wen-mei W. Hwu, and John Stratton, 2007-2009!
ECE 498AL, University of Illinois, Urbana-Champaign!

20

Build Scan From Partial Sums
T 3 4 7 11 4 5 6 0

© David Kirk/NVIDIA, Wen-mei W. Hwu, and John Stratton, 2007-2009!
ECE 498AL, University of Illinois, Urbana-Champaign!

21

Build Scan From Partial Sums

T 3 4 7 0 4 5 6 11

T 3 4 7 11 4 5 6 0

Iterate log(n) times. Each thread adds value stride elements away to its own value,
and sets the value stride elements away to its own previous value.

Iteration 1
1 thread

Stride 4

Each corresponds
to a single thread.

© David Kirk/NVIDIA, Wen-mei W. Hwu, and John Stratton, 2007-2009!
ECE 498AL, University of Illinois, Urbana-Champaign!

22

Build Scan From Partial Sums

T 3 4 7 0 4 5 6 11

T 3 4 7 11 4 5 6 0

T 3 0 7 4 4 11 6 16

Iterate log(n) times. Each thread adds value stride elements away to its own value,
and sets the value stride elements away to its own previous value.

Iteration 2
2 threads

Stride 4

Stride 2

Each corresponds
to a single thread.

© David Kirk/NVIDIA, Wen-mei W. Hwu, and John Stratton, 2007-2009!
ECE 498AL, University of Illinois, Urbana-Champaign!

23

Build Scan From Partial Sums

T 3 4 7 0 4 5 6 11

T 3 4 7 11 4 5 6 0

T 3 0 7 4 4 11 6 16

T 0 3 4 11 11 15 16 22

Done! We now have a completed scan that we can write to output.

Total steps: 2 * log(n).
Total operations: 2 * (n-1) adds - Work Efficient!

Iteration log(n)
n/2 threads

Stride 2

Stride 4

Stride 1

Each corresponds
to a single thread.

© David Kirk/NVIDIA, Wen-mei W. Hwu, and John Stratton, 2007-2009!
ECE 498AL, University of Illinois, Urbana-Champaign!

24

Shared memory bank conflicts
•  Shared memory is as fast as registers if there are no bank

conflicts

•  The fast cases:

–  All 16 threads of a half-warp access different banks: no bank conflict
–  All 16 threads of a half-warp access the same address: broadcast

•  The slow case:
–  Multiple threads in the same half-warp access different values in the

same bank
–  Must serialize the accesses
–  Cost = max # of values requested from one of the 16 banks

© David Kirk/NVIDIA, Wen-mei W. Hwu, and John Stratton, 2007-2009!
ECE 498AL, University of Illinois, Urbana-Champaign!

25

Bank Addressing Examples

•  2-way Bank Conflicts
–  Linear addressing

stride == 2

•  8-way Bank Conflicts
–  Linear addressing

stride == 8

Thread 11
Thread 10
Thread 9
Thread 8

Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 9
Bank 8

Bank 15

Bank 7

Bank 2
Bank 1
Bank 0 x8

x8

© David Kirk/NVIDIA, Wen-mei W. Hwu, and John Stratton, 2007-2009!
ECE 498AL, University of Illinois, Urbana-Champaign!

26

Use Padding to Reduce Conflicts

•  This is a simple modification to the indexing

•  After you compute a shared mem address like this:

Address = 2 * stride * thid;

•  Add padding like this:

Address += (Address / 16); // divide by NUM_BANKS

•  This removes most bank conflicts
–  Not all, in the case of deep trees, but good enough for us

© David Kirk/NVIDIA, Wen-mei W. Hwu, and John Stratton, 2007-2009!
ECE 498AL, University of Illinois, Urbana-Champaign!

27

Fixing Scan Bank Conflicts
•  Insert padding every NUM_BANKS elements

const int LOG_NUM_BANKS = 4; // 16 banks on G80
int tid = threadIdx.x;
int s = 1;
// Traversal from leaves up to root
for (d = n>>1; d > 0; d >>= 1)
{
 if (thid <= d)
 {

 int a = s*(2*tid); int b = s*(2*tid+1)
 a += (a >> LOG_NUM_BANKS); // insert pad word
 b += (b >> LOG_NUM_BANKS); // insert pad word
 shared[a] += shared[b];

 }
}

© David Kirk/NVIDIA, Wen-mei W. Hwu, and John Stratton, 2007-2009!
ECE 498AL, University of Illinois, Urbana-Champaign!

28

What About Really Big Arrays?

•  What if the array doesn’t fit in shared memory?
–  After all, we care about parallelism because we have big

problems, right?
•  Tiled reduction with global synchronization

1.  Tile the input and perform reductions on tiles with
individual thread blocks

2.  Store the intermediate results from each block back to
global memory to be the input for the next kernel

3.  Repeat as necessary

© David Kirk/NVIDIA, Wen-mei W. Hwu, and John Stratton, 2007-2009!
ECE 498AL, University of Illinois, Urbana-Champaign!

29

Building the Global Sum Tree
T0 3 1 7 0 4 1 6 3

T0 3 4 7 7 4 5 6 9

T0 3 4 7 11 4 5 6 14

Iterate log(n) times. Each thread adds value stride elements away to its own value.

After step with stride k, elements with indexes divisible by 2k contain the partial
sum of itself and the preceding 2k-1 elements.

Compact and globally
synchronize, then
continue

Stride 1

Stride 2

…!

…!

…!

T1 11 14 …

© David Kirk/NVIDIA, Wen-mei W. Hwu, and John Stratton, 2007-2009!
ECE 498AL, University of Illinois, Urbana-Champaign!

30

Global Synchronization in CUDA

•  Remember, there is no barrier synchronization
between CUDA thread blocks
–  You can have some limited communication through atomic

integer operations on global memory on newer devices
–  Doesn’t conveniently address the global reduction problem,

or lots of others
•  To synchronize, you need to end the kernel (have all

thread blocks complete)
–  Then launch a new one

