
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

1

ECE 498AL

Applied Parallel Programming

Lecture 1: Introduction

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

2

Course Goals
•  Learn how to program massively parallel

processors and achieve
–  high performance
–  functionality and maintainability
–  scalability across future generations

•  Acquire technical knowledge required to
achieve the above goals
–  principles and patterns of parallel programming
–  processor architecture features and constraints
–  programming API, tools and techniques

3

•  A quiet revolution and potential build-up
–  Calculation: TFLOPS vs. 100 GFLOPS
–  Memory Bandwidth: ~10x

–  GPU in every PC– massive volume and potential impact

Why Massively Parallel Processing?

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

Figure 1.1. Enlarging Performance Gap between GPUs and CPUs.

Multi-core CPU

Many-core GPU

Courtesy: John Owens

4

16 highly threaded SM’s, >128 FPU’s, 367 GFLOPS, 768 MB
DRAM, 86.4 GB/S Mem BW, 4GB/S BW to CPU

Load/store

Global Memory

Thread Execution Manager

Input Assembler

Host

Texture Texture Texture Texture Texture Texture Texture Texture Texture

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Load/store Load/store Load/store Load/store Load/store

GeForce 8800 (2007)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

5

G80 Characteristics
•  367 GFLOPS peak performance (25-50 times of current

high-end microprocessors)
•  265 GFLOPS sustained for apps such as VMD
•  Massively parallel, 128 cores, 90W
•  Massively threaded, sustains 1000s of threads per app
•  30-100 times speedup over high-end microprocessors on

scientific and media applications: medical imaging,
molecular dynamics

“I think they're right on the money, but the huge performance

differential (currently 3 GPUs ~= 300 SGI Altix Itanium2s)
will invite close scrutiny so I have to be careful what I say
publically until I triple check those numbers.”

 -John Stone, VMD group, Physics UIUC

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

Fermi (2010)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL, Spring 2010 University of Illinois, Urbana-Champaign!

6

~1.5TFLOPS (SP)/~800GFLOPS (DP)!
230 GB/s DRAM Bandwidth!

7

Future Apps Reflect a Concurrent
World

•  Exciting applications in future mass computing
market have been traditionally considered
“supercomputing applications”
– Molecular dynamics simulation, Video and audio coding and

manipulation, 3D imaging and visualization, Consumer game
physics, and virtual reality products

– These “Super-apps” represent and model physical,
concurrent world

•  Various granularities of parallelism exist, but…
– programming model must not hinder parallel implementation
– data delivery needs careful management

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

8

Stretching Traditional Architectures
•  Traditional parallel architectures cover some

super-applications
– DSP, GPU, network apps, Scientific

•  The game is to grow mainstream architectures
“out” or domain-specific architectures “in”
– CUDA is latter

Traditional applications

Current architecture
coverage

New applications

Domain-specific
architecture coverage

Obstacles© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

9

Previous Projects
Application Description Source Kernel % time
H.264 SPEC ‘06 version, change in guess vector 34,811 194 35%

LBM SPEC ‘06 version, change to single precision
and print fewer reports 1,481 285 >99%

RC5-72 Distributed.net RC5-72 challenge client code 1,979 218 >99%

FEM Finite element modeling, simulation of 3D
graded materials 1,874 146 99%

RPES Rye Polynomial Equation Solver, quantum
chem, 2-electron repulsion 1,104 281 99%

PNS Petri Net simulation of a distributed system 322 160 >99%

SAXPY Single-precision implementation of saxpy,
used in Linpack’s Gaussian elim. routine 952 31 >99%

TRACF Two Point Angular Correlation Function 536 98 96%
FDTD Finite-Difference Time Domain analysis of

2D electromagnetic wave propagation 1,365 93 16%

MRI-Q Computing a matrix Q, a scanner’s
configuration in MRI reconstruction 490 33 >99% © David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!

ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

10

Speedup of Applications

•  GeForce 8800 GTX vs. 2.2GHz Opteron 248
•  10× speedup in a kernel is typical, as long as the kernel can occupy

enough parallel threads
•  25× to 400× speedup if the function’s data requirements and control flow

suit the GPU and the application is optimized
•  “Need for Speed” Seminar Series organized by Patel and Hwu from

Spring 2009

0

1 0

2 0

3 0

4 0

5 0

6 0

H.264 L BM RC5-72 F EM RPES PNS SAXPY T PACF F DT D M RI-Q M RI-

F HD

Ke rn e l

Ap p lic a tio n

210 457
431

316
263

G
PU

 S
pe

ed
up

R
el

at
iv

e
to

 C
PU

79

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

11

ECE 498AL

Lecture 2:
The CUDA Programming Model

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

Parallel Programming Basics

•  Things we need to consider:
– Control
– Synchronization
– Communication

•  Parallel programming languages offer
different ways of dealing with above

12 © David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

13

What is (Historical) GPGPU ?
•  General Purpose computation using GPU and graphics API

in applications other than 3D graphics
–  GPU accelerates critical path of application

•  Data parallel algorithms leverage GPU attributes
–  Large data arrays, streaming throughput
–  Fine-grain SIMD parallelism
–  Low-latency floating point (FP) computation

•  Applications – see //GPGPU.org
–  Game effects (FX) physics, image processing
–  Physical modeling, computational engineering, matrix algebra,

convolution, correlation, sorting

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

14

Previous GPGPU Constraints
•  Dealing with graphics API

–  Working with the corner cases of the
graphics API

•  Addressing modes
–  Limited texture size/dimension

•  Shader capabilities
–  Limited outputs

•  Instruction sets
–  Lack of Integer & bit ops

•  Communication limited
–  Between pixels
–  Scatter a[i] = p

Input Registers

Fragment Program

Output Registers

Constants

Texture

Temp Registers

per thread
per Shader
per Context

 FB Memory

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

15

CUDA
•  “Compute Unified Device Architecture”
•  General purpose programming model

–  User kicks off batches of threads on the GPU
–  GPU = dedicated super-threaded, massively data parallel co-

processor

•  Targeted software stack
–  Compute oriented drivers, language, and tools

•  Driver for loading computation programs into GPU
–  Standalone Driver - Optimized for computation
–  Interface designed for compute – graphics-free API
–  Data sharing with OpenGL buffer objects
–  Guaranteed maximum download & readback speeds
–  Explicit GPU memory management © David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!

ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

16

An Example of Physical Reality
Behind CUDA CPU!

(host)!
GPU w/ !

local DRAM!
(device)!

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

17

Parallel Computing on a GPU

•  8-series GPUs deliver 25 to 200+ GFLOPS
on compiled parallel C applications
–  Available in laptops, desktops, and clusters

•  GPU parallelism is doubling every year
•  Programming model scales transparently

•  Programmable in C with CUDA tools
•  Multithreaded SPMD model uses application

data parallelism and thread parallelism

GeForce 8800

Tesla S870

Tesla D870

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

18

Overview
•  CUDA programming model – basic

concepts and data types

•  CUDA application programming interface -
basic

•  Simple examples to illustrate basic concepts
and functionalities

•  Performance features will be covered later
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

19

CUDA – C with no shader
limitations!

•  Integrated host+device app C program
–  Serial or modestly parallel parts in host C code
–  Highly parallel parts in device SPMD kernel C code

Serial Code (host)‏

. . .

. . .

Parallel Kernel (device)‏
KernelA<<< nBlk, nTid >>>(args);

Serial Code (host)‏

Parallel Kernel (device)‏
KernelB<<< nBlk, nTid >>>(args);

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

20

CUDA Devices and Threads
•  A compute device

–  Is a coprocessor to the CPU or host
–  Has its own DRAM (device memory)‏
–  Runs many threads in parallel
–  Is typically a GPU but can also be another type of parallel processing

device

•  Data-parallel portions of an application are expressed as device
kernels which run on many threads

•  Differences between GPU and CPU threads
–  GPU threads are extremely lightweight

•  Very little creation overhead
–  GPU needs 1000s of threads for full efficiency

•  Multi-core CPU needs only a few

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

21

L2

FB

SP SP

L1

TF

Th
re

ad
 P

ro
ce

ss
or

Vtx Thread Issue

Setup / Rstr / ZCull

Geom Thread Issue Pixel Thread Issue

Input Assembler

Host

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

L2

FB

L2

FB

L2

FB

L2

FB

L2

FB

•  The future of GPUs is programmable processing
•  So – build the architecture around the processor

G80 – Graphics Mode

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

22

G80 CUDA mode – A Device Example

Load/store

Global Memory

Thread Execution Manager

Input Assembler

Host

Texture Texture Texture Texture Texture Texture Texture Texture Texture

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Load/store Load/store Load/store Load/store Load/store

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

23

Extended C
•  Type Qualifiers

–  global, device, shared,
local, constant

•  Keywords
–  threadIdx, blockIdx

•  Intrinsics
–  __syncthreads

•  Runtime API
–  Memory, symbol,

execution management

•  Function launch

__device__ float filter[N];

__global__ void convolve (float *image) {

 __shared__ float region[M];
 ...

 region[threadIdx] = image[i];

 __syncthreads()
 ...

 image[j] = result;
}

// Allocate GPU memory
void *myimage = cudaMalloc(bytes)

// 100 blocks, 10 threads per block
convolve<<<100, 10>>> (myimage);

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

24

gcc / cl

G80 SASS
foo.sass

OCG

Extended C

cudacc
EDG C/C++ frontend

Open64 Global Optimizer

GPU Assembly
foo.s

CPU Host Code
foo.cpp

Integrated source
(foo.cu)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

25

Arrays of Parallel Threads

•  A CUDA kernel is executed by an array of
threads
–  All threads run the same code (SPMD)‏
–  Each thread has an ID that it uses to compute

memory addresses and make control decisions
 76543210

…
float x = input[threadID];
float y = func(x);
output[threadID] = y;
…

threadID

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

26

…
float x = input
[threadID];
float y = func(x);
output[threadID] = y;
…

threadID

Thread Block 0

…
…
float x = input
[threadID];
float y = func(x);
output[threadID] = y;
…

Thread Block 1

…
float x = input
[threadID];
float y = func(x);
output[threadID] = y;
…

Thread Block N - 1

Thread Blocks: Scalable Cooperation
•  Divide monolithic thread array into multiple

blocks
–  Threads within a block cooperate via shared

memory, atomic operations and barrier
synchronization

–  Threads in different blocks cannot cooperate
76543210 76543210 76543210

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

27

Host

Kernel
1

Kernel
2

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(0, 1)

Block
(1, 1)

Grid 2

Courtesy: NDVIA

Figure 3.2. An Example of CUDA Thread Organization.

Block (1, 1)

Thread
(0,1,0)

Thread
(1,1,0)

Thread
(2,1,0)

Thread
(3,1,0)

Thread
(0,0,0)

Thread
(1,0,0)

Thread
(2,0,0)

Thread
(3,0,0)

(0,0,1) (1,0,1) (2,0,1) (3,0,1)

Block IDs and Thread IDs

•  Each thread uses IDs to decide

what data to work on
–  Block ID: 1D or 2D
–  Thread ID: 1D, 2D, or 3D

•  Simplifies memory
addressing when processing
multidimensional data
–  Image processing
–  Solving PDEs on volumes
–  …

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

28

CUDA Memory Model Overview
•  Global memory

– Main means of
communicating R/W Data
between host and device

– Contents visible to all threads
– Long latency access

•  We will focus on global
memory for now

Grid

Global Memory

Block (0, 0)‏

Shared Memory

Thread (0, 0)‏

Registers

Thread (1, 0)‏

Registers

Block (1, 0)‏

Shared Memory

Thread (0, 0)‏

Registers

Thread (1, 0)‏

Registers

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

Constant and texture memory will come later!
!

29

CUDA API Highlights:
Easy and Lightweight

•  The API is an extension to the ANSI C
programming language
 Low learning curve

•  The hardware is designed to enable

lightweight runtime and driver
 High performance

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

30

CUDA Device Memory Allocation
•  cudaMalloc()

– Allocates object in the
device Global Memory

– Requires two parameters
•  Address of a pointer to the

allocated object
•  Size of of allocated object

•  cudaFree()
– Frees object from device

Global Memory
•  Pointer to freed object

Grid

Global
Memory

Block (0, 0)‏

Shared Memory

Thread (0, 0)‏

Registers

Thread (1, 0)‏

Registers

Block (1, 0)‏

Shared Memory

Thread (0, 0)‏

Registers

Thread (1, 0)‏

Registers

Host

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

31

CUDA Device Memory Allocation (cont.)‏

•  Code example:
– Allocate a 64 * 64 single precision float array
– Attach the allocated storage to Md
–  “d” is often used to indicate a device data structure

TILE_WIDTH = 64;
Float* Md
int size = TILE_WIDTH * TILE_WIDTH * sizeof(float);

cudaMalloc((void**)&Md, size);
cudaFree(Md);

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

32

CUDA Host-Device Data Transfer
•  cudaMemcpy()

– memory data transfer
– Requires four parameters

•  Pointer to destination
•  Pointer to source
•  Number of bytes copied
•  Type of transfer

–  Host to Host
–  Host to Device
–  Device to Host
–  Device to Device

•  Asynchronous transfer

Grid

Global
Memory

Block (0, 0)‏

Shared Memory

Thread (0, 0)‏

Registers

Thread (1, 0)‏

Registers

Block (1, 0)‏

Shared Memory

Thread (0, 0)‏

Registers

Thread (1, 0)‏

Registers

Host

33

CUDA Host-Device Data Transfer
(cont.)

•  Code example:
– Transfer a 64 * 64 single precision float array
– M is in host memory and Md is in device memory
–  cudaMemcpyHostToDevice and

cudaMemcpyDeviceToHost are symbolic
constants

cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);

cudaMemcpy(M, Md, size, cudaMemcpyDeviceToHost);

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

34

CUDA Keywords

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

35

CUDA Function Declarations

host host __host__ float HostFunc()‏

host device __global__ void KernelFunc()‏

device device __device__ float DeviceFunc()‏

Only callable
from the:

Executed
on the:

•  __global__ defines a kernel function
–  Must return void

•  __device__ and __host__ can be used
together

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

36

CUDA Function Declarations (cont.)‏

•  __device__ functions cannot have their
address taken

•  For functions executed on the device:
– No recursion
– No static variable declarations inside the function
– No variable number of arguments

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

37

Calling a Kernel Function – Thread Creation

•  A kernel function must be called with an
execution configuration:

__global__ void KernelFunc(...);

dim3 DimGrid(100, 50); // 5000 thread blocks

dim3 DimBlock(4, 8, 8); // 256 threads per block

size_t SharedMemBytes = 64; // 64 bytes of shared
memory

KernelFunc<<< DimGrid, DimBlock, SharedMemBytes >>>
(...);

•  Any call to a kernel function is asynchronous
from CUDA 1.0 on, explicit synch needed for
blocking © David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!

ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

38

A Simple Running Example
Matrix Multiplication

•  A simple matrix multiplication example that
illustrates the basic features of memory and
thread management in CUDA programs
– Leave shared memory usage until later
– Local, register usage
– Thread ID usage
– Memory data transfer API between host and device
– Assume square matrix for simplicity

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

39

Programming Model:
Square Matrix Multiplication

Example
•  P = M * N of size WIDTH x

WIDTH

•  Without tiling:
–  One thread calculates one

element of P
–  M and N are loaded WIDTH times

from global memory
M

N

P

W
ID

T
H

W

ID
T

H

WIDTH WIDTH
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

40

M0,2!

M1,1!

M0,1!M0,0!

M1,0!

M0,3!

M1,2! M1,3!

Memory Layout of a Matrix in C

M0,2!M0,1!M0,0! M0,3! M1,1!M1,0! M1,2! M1,3! M2,1!M2,0! M2,2! M2,3!

M2,1!M2,0! M2,2! M2,3!

M3,1!M3,0! M3,2! M3,3!

M3,1!M3,0! M3,2! M3,3!

M!

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

41

Step 1: Matrix Multiplication
A Simple Host Version in C

M

N

P

W
ID

T
H

W

ID
T

H

WIDTH WIDTH

// Matrix multiplication on the (CPU) host in double
precision!
void MatrixMulOnHost(float* M, float* N, float* P, int Width)‏
{
 for (int i = 0; i < Width; ++i)‏
 for (int j = 0; j < Width; ++j) {
 double sum = 0;
 for (int k = 0; k < Width; ++k) {
 double a = M[i * width + k];
 double b = N[k * width + j];
 sum += a * b;
 }
 P[i * Width + j] = sum;
 }
}

i!

k!

k!
j!

42

void MatrixMulOnDevice(float* M, float* N, float* P, int Width)‏
{
 int size = Width * Width * sizeof(float);
 float* Md, Nd, Pd;!
 …
1. // Allocate and Load M, N to device memory
 cudaMalloc(&Md, size);
 cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);

 cudaMalloc(&Nd, size);
 cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice);

 // Allocate P on the device
 cudaMalloc(&Pd, size);

Step 2: Input Matrix Data Transfer
(Host-side Code)‏

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

43

Step 3: Output Matrix Data Transfer
(Host-side Code)‏

2. // Kernel invocation code – to be shown later!
 …!
!
3. // Read P from the device!
 cudaMemcpy(P, Pd, size, cudaMemcpyDeviceToHost);!
!
 // Free device matrices!
 cudaFree(Md); cudaFree(Nd); cudaFree (Pd);!
 }!

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

44

Step 4: Kernel Function

// Matrix multiplication kernel – per thread code

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)‏
{

 // Pvalue is used to store the element of the matrix
 // that is computed by the thread
 float Pvalue = 0;

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

45

Nd

Md Pd

W
ID

T
H

W

ID
T

H

WIDTH WIDTH

Step 4: Kernel Function (cont.)‏

 for (int k = 0; k < Width; ++k)‏ {
 float Melement = Md[threadIdx.y*Width+k];
 float Nelement = Nd[k*Width+threadIdx.x];
 Pvalue += Melement * Nelement;
 }

 Pd[threadIdx.y*Width+threadIdx.x] = Pvalue;
}
 ty!

tx!

ty!

tx!

k!

k!

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

46

 // Setup the execution configuration
 dim3 dimGrid(1, 1);
 dim3 dimBlock(Width, Width);

 // Launch the device computation threads!
 MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width);

Step 5: Kernel Invocation
(Host-side Code)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

47

Only One Thread Block Used
•  One Block of threads compute

matrix Pd
–  Each thread computes one

element of Pd
•  Each thread

–  Loads a row of matrix Md
–  Loads a column of matrix Nd
–  Perform one multiply and

addition for each pair of Md and
Nd elements

–  Compute to off-chip memory
access ratio close to 1:1 (not very
high)‏

•  Size of matrix limited by the
number of threads allowed in a
thread block

 Grid 1
Block 1

3 2 5 4

2

4

2

6

48

Thread
)2, 2(‏

 WIDTH

Md Pd

Nd

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

48

Step 7: Handling Arbitrary Sized Square
Matrices

•  Have each 2D thread block to
compute a (TILE_WIDTH)2 sub-
matrix (tile) of the result matrix
– Each has (TILE_WIDTH)2 threads

•  Generate a 2D Grid of (WIDTH/
TILE_WIDTH)2 blocks

Md

Nd

Pd

W
ID

T
H

W

ID
T

H

WIDTH WIDTH

ty!
tx!

by!

bx!

You still need to put a loop
around the kernel call for
cases where WIDTH/
TILE_WIDTH is greater
than max grid size (64K)!!

TILE_WIDTH!

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

49

Some Useful Information on
Tools

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

50

Compiling a CUDA Program

NVCC

C/C++ CUDA
Application

PTX to Target
Compiler

 G80 … GPU

Target code

PTX Code Virtual

Physical

CPU Code

•  Parallel Thread
eXecution (PTX)‏
–  Virtual Machine

and ISA
–  Programming

model
–  Execution

resources and
state

float4 me = gx[gtid];
me.x += me.y * me.z;

ld.global.v4.f32 {$f1,$f3,$f5,$f7}, [$r9+0];
mad.f32 $f1, $f5, $f3, $f1;

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

51

Compilation

•  Any source file containing CUDA language
extensions must be compiled with NVCC

•  NVCC is a compiler driver
–  Works by invoking all the necessary tools and

compilers like cudacc, g++, cl, ...
•  NVCC outputs:

–  C code (host CPU Code)‏
•  Must then be compiled with the rest of the application using another tool

–  PTX
•  Object code directly
•  Or, PTX source, interpreted at runtime

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

52

Linking

•  Any executable with CUDA code requires two
dynamic libraries:
– The CUDA runtime library (cudart)‏
– The CUDA core library (cuda)‏

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

53

Debugging Using the
Device Emulation Mode

•  An executable compiled in device emulation
mode (nvcc -deviceemu) runs
completely on the host using the CUDA
runtime
–  No need of any device and CUDA driver
–  Each device thread is emulated with a host thread

•  Running in device emulation mode, one can:
–  Use host native debug support (breakpoints, inspection, etc.)‏
–  Access any device-specific data from host code and vice-versa
–  Call any host function from device code (e.g. printf) and vice-

versa
–  Detect deadlock situations caused by improper usage of

__syncthreads
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

54

Device Emulation Mode Pitfalls
•  Emulated device threads execute sequentially,

so simultaneous accesses of the same memory
location by multiple threads could produce
different results.

•  Dereferencing device pointers on the host or
host pointers on the device can produce correct
results in device emulation mode, but will
generate an error in device execution mode

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

55

Floating Point

•  Results of floating-point computations will
slightly differ because of:
– Different compiler outputs, instruction sets
– Use of extended precision for intermediate results

•  There are various options to force strict single precision
on the host

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE498AL, University of Illinois, Urbana-Champaign!

56

ECE498AL

Lecture 3: A Simple Example,
Tools, and CUDA Threads

57

Step 1: Matrix Multiplication
A Simple Host Version in C

M

N

P

W
ID

T
H

W

ID
T

H

WIDTH WIDTH

// Matrix multiplication on the (CPU) host!
void MatrixMulOnHost(float* M, float* N, float* P, int Width) "‏
{ "
 for (int i = 0; i < Width; ++i) "‏
 for (int j = 0; j < Width; ++j) {""

"float sum = 0;"
"for (int k = 0; k < Width; ++k) {"

 float a = M[i * width + k];"
 float b = N[k * width + j];"
 sum += a * b;"
 }"
 P[i * Width + j] = sum;"
 }"
}"

i!

k!

k!
j!

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

58

void MatrixMulOnDevice(float* M, float* N, float* P, int Width)‏
{
 int size = Width * Width * sizeof(float);
 float* Md, Nd, Pd;!
 …
1. // Allocate and Load M, N to device memory
 cudaMalloc(&Md, size);
 cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);

 cudaMalloc(&Nd, size);
 cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice);

 // Allocate P on the device
 cudaMalloc(&Pd, size);

Step 2: Input Matrix Data Transfer
(Host-side Code)‏

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

59

Step 3: Output Matrix Data Transfer
(Host-side Code)‏

2. // Kernel invocation code – to be shown later!
 …!
!
3. // Read P from the device!
 cudaMemcpy(P, Pd, size, cudaMemcpyDeviceToHost);!
!
 // Free device matrices!
 cudaFree(Md); cudaFree(Nd); cudaFree (Pd);!
 }!

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

60

Step 4: Kernel Function

// Matrix multiplication kernel – per thread code

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)‏
{

 // Pvalue is used to store the element of the matrix
 // that is computed by the thread
 float Pvalue = 0;

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

61

Nd

Md Pd

W
ID

T
H

W

ID
T

H

WIDTH WIDTH

Step 4: Kernel Function (cont.)‏

 for (int k = 0; k < Width; ++k)‏ {
 float Melement = Md[threadIdx.y*Width+k];
 float Nelement = Nd[k*Width+threadIdx.x];
 Pvalue += Melement * Nelement;
 }

 Pd[threadIdx.y*Width+threadIdx.x] = Pvalue;
}
 ty!

tx!

ty!

tx!

k!

k!

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

62

 // Setup the execution configuration
 dim3 dimGrid(1, 1);
 dim3 dimBlock(Width, Width);

 // Launch the device computation threads!
 MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width);

Step 5: Kernel Invocation
(Host-side Code)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

63

Only One Thread Block Used
•  One Block of threads compute

matrix Pd
–  Each thread computes one

element of Pd
•  Each thread

–  Loads a row of matrix Md
–  Loads a column of matrix Nd
–  Perform one multiply and

addition for each pair of Md
and Nd elements

–  Compute to off-chip memory
access ratio close to 1:1 (not
very high)‏

•  Size of matrix limited by the
number of threads allowed in a
thread block

 Grid 1
Block 1

3 2 5 4

2

4

2

6

48

Thread
)2, 2(‏

 WIDTH

Md Pd

Nd

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

64

Step 7: Handling Arbitrary Sized Square
Matrices

•  Have each 2D thread block to
compute a (TILE_WIDTH)2
sub-matrix (tile) of the result
matrix
– Each has (TILE_WIDTH)2

threads
•  Generate a 2D Grid of

(WIDTH/TILE_WIDTH)2 blocks

Md

Nd

Pd

W
ID

T
H

W

ID
T

H

WIDTH WIDTH

ty!
tx!

by!

bx!

You still need to put a loop
around the kernel call for
cases where WIDTH/
TILE_WIDTH is greater
than max grid size (64K)!!

TILE_WIDTH!

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE498AL, University of Illinois, Urbana-Champaign!

65

Some Useful Information on
Tools

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE498AL, University of Illinois, Urbana-Champaign!

66

Compiling a CUDA Program

NVCC

C/C++ CUDA
Application

PTX to Target
Compiler

 G80 … GPU

Target code

PTX Code Virtual

Physical

CPU Code

•  Parallel Thread
eXecution (PTX)‏
–  Virtual Machine

and ISA
–  Programming

model
–  Execution

resources and
state

float4 me = gx[gtid];
me.x += me.y * me.z;

ld.global.v4.f32 {$f1,$f3,$f5,$f7}, [$r9+0];
mad.f32 $f1, $f5, $f3, $f1;

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE498AL, University of Illinois, Urbana-Champaign!

67

Compilation

•  Any source file containing CUDA language
extensions must be compiled with NVCC

•  NVCC is a compiler driver
–  Works by invoking all the necessary tools and

compilers like cudacc, g++, cl, ...
•  NVCC outputs:

–  C code (host CPU Code)
•  Must then be compiled with the rest of the application using another tool

–  PTX
•  Object code directly
•  Or, PTX source, interpreted at runtime

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE498AL, University of Illinois, Urbana-Champaign!

68

Linking

•  Any executable with CUDA code requires
two dynamic libraries:
– The CUDA runtime library (cudart)‏
– The CUDA core library (cuda)‏

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE498AL, University of Illinois, Urbana-Champaign!

69

Debugging Using the
Device Emulation Mode

•  An executable compiled in device
emulation mode (nvcc -deviceemu)
runs completely on the host using the
CUDA runtime
–  No need of any device and CUDA driver
–  Each device thread is emulated with a host thread

•  Running in device emulation mode, one
can:
–  Use host native debug support (breakpoints, inspection, etc.)‏
–  Access any device-specific data from host code and vice-versa
–  Call any host function from device code (e.g. printf) and

vice-versa
–  Detect deadlock situations caused by improper usage of

__syncthreads

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE498AL, University of Illinois, Urbana-Champaign!

70

Device Emulation Mode Pitfalls
•  Emulated device threads execute

sequentially, so simultaneous accesses of
the same memory location by multiple
threads could produce different results.

•  Dereferencing device pointers on the host
or host pointers on the device can produce
correct results in device emulation mode,
but will generate an error in device
execution mode

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE498AL, University of Illinois, Urbana-Champaign!

71

Floating Point

•  Results of floating-point computations will
slightly differ because of:
– Different compiler outputs, instruction sets
– Use of extended precision for intermediate

results
•  There are various options to force strict single

precision on the host

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE498AL, University of Illinois, Urbana-Champaign!

72

CUDA Threads

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE498AL, University of Illinois, Urbana-Champaign!

73

Host

Kernel
1

Kernel
2

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(0, 1)

Block
(1, 1)

Grid 2

Courtesy: NDVIA

Figure 3.2. An Example of CUDA Thread Organization.

Block (1, 1)

Thread
(0,1,0)

Thread
(1,1,0)

Thread
(2,1,0)

Thread
(3,1,0)

Thread
(0,0,0)

Thread
(1,0,0)

Thread
(2,0,0)

Thread
(3,0,0)

(0,0,1) (1,0,1) (2,0,1) (3,0,1)

Block IDs and Thread IDs

•  Each thread uses IDs to

decide what data to work on
–  Block ID: 1D or 2D
–  Thread ID: 1D, 2D, or 3D

•  Simplifies memory
addressing when
processing
multidimensional data
–  Image processing
–  Solving PDEs on volumes
–  …

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE498AL, University of Illinois, Urbana-Champaign!

74

Md

Nd

Pd

Pdsub

TILE_WIDTH

WIDTH WIDTH

bx

tx
01 TILE_WIDTH-1 2

0 1 2

by ty 2
1
0

TILE_WIDTH-1

2

1

0

T
IL

E
_W

ID
T

H
E

W
ID

T
H

W

ID
T

H

Matrix Multiplication Using
Multiple Blocks
•  Break-up Pd into tiles
•  Each block calculates one

tile
–  Each thread calculates one

element
–  Block size equal tile size

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE498AL, University of Illinois, Urbana-Champaign!

75

P1,0!P0,0!

P0,1!

P2,0! P3,0!

P1,1!

P0,2! P2,2! P3,2!P1,2!

P3,1!P2,1!

P0,3! P2,3! P3,3!P1,3!

Block(0,0)! Block(1,0)!

Block(1,1)!Block(0,1)!

TILE_WIDTH = 2!

A Small Example

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE498AL, University of Illinois, Urbana-Champaign!

76

Pd1,0!

A Small Example:
Multiplication

Md2,0!

Md1,1!

Md1,0!Md0,0!

Md0,1!

Md3,0!

Md2,1!

Pd0,0!

Md3,1! Pd0,1!

Pd2,0!Pd3,0!

Nd0,3!Nd1,3!

Nd1,2!

Nd1,1!

Nd1,0!Nd0,0!

Nd0,1!

Nd0,2!

Pd1,1!

Pd0,2! Pd2,2!Pd3,2!Pd1,2!

Pd3,1!Pd2,1!

Pd0,3! Pd2,3!Pd3,3!Pd1,3!

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE498AL, University of Illinois, Urbana-Champaign!

77

Revised Matrix Multiplication
Kernel using Multiple Blocks

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{
// Calculate the row index of the Pd element and M

int Row = blockIdx.y*TILE_WIDTH + threadIdx.y;
// Calculate the column idenx of Pd and N

int Col = blockIdx.x*TILE_WIDTH + threadIdx.x;

float Pvalue = 0;
// each thread computes one element of the block sub-matrix

for (int k = 0; k < Width; ++k)
 Pvalue += Md[Row*Width+k] * Nd[k*Width+Col];

Pd[Row*Width+Col] = Pvalue;
}

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE498AL, University of Illinois, Urbana-Champaign!

78

CUDA Thread Block
•  All threads in a block execute the same

kernel program (SPMD)
•  Programmer declares block:

–  Block size 1 to 512 concurrent threads
–  Block shape 1D, 2D, or 3D
–  Block dimensions in threads

•  Threads have thread id numbers within block
–  Thread program uses thread id to select

work and address shared data

•  Threads in the same block share data and
synchronize while doing their share of the
work

•  Threads in different blocks cannot cooperate
–  Each block can execute in any order relative

to other blocs!

CUDA Thread Block

Thread Id #:
0 1 2 3 … m

Thread program

Courtesy: John Nickolls,
NVIDIA!

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE498AL, University of Illinois, Urbana-Champaign!

79

Transparent Scalability
•  Hardware is free to assigns blocks to any

processor at any time
–  A kernel scales across any number of

parallel processors
Device

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Kernel grid

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Device

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7

Each block can execute in any order relative
to other blocks. !

time!

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE498AL, University of Illinois, Urbana-Champaign!

80

G80 Example: Executing Thread Blocks

•  Threads are assigned to Streaming
Multiprocessors in block granularity
–  Up to 8 blocks to each SM as

resource allows
–  SM in G80 can take up to 768 threads

•  Could be 256 (threads/block) * 3
blocks

•  Or 128 (threads/block) * 6 blocks, etc.

•  Threads run concurrently
–  SM maintains thread/block id #s
–  SM manages/schedules thread

execution

t0 t1 t2 … tm

Blocks

SP

Shared
Memory

MT IU

SP

Shared
Memory

MT IU

t0 t1 t2 … tm

Blocks

SM 1 SM 0

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE498AL, University of Illinois, Urbana-Champaign!

81

G80 Example: Thread
Scheduling

•  Each Block is executed as 32-

thread Warps
–  An implementation decision,

not part of the CUDA
programming model

–  Warps are scheduling units
in SM

•  If 3 blocks are assigned to an
SM and each block has 256
threads, how many Warps are
there in an SM?
–  Each Block is divided into

256/32 = 8 Warps
–  There are 8 * 3 = 24 Warps

…!
t0 t1 t2 … t31

…!
…!

t0 t1 t2 … t31
…!Block 1 Warps Block 2 Warps

SP
SP
SP
SP

SFU

SP
SP
SP
SP

SFU

Instruction Fetch/Dispatch
Instruction L1

Streaming Multiprocessor

Shared Memory

…!
t0 t1 t2 … t31

…!Block 1 Warps

© David Kirk/NVIDIA and Wen-mei W. Hwu,
2007-2009!
ECE498AL, University of Illinois, Urbana-Champaign!

82

G80 Example: Thread Scheduling
(Cont.)

•  SM implements zero-overhead warp scheduling
–  At any time, only one of the warps is executed by SM
–  Warps whose next instruction has its operands ready for

consumption are eligible for execution
–  Eligible Warps are selected for execution on a prioritized

scheduling policy
–  All threads in a warp execute the same instruction when selected

TB1
W1

TB = Thread Block, W = Warp

TB2
W1

TB3
W1

TB2
W1

TB1
W1

TB3
W2

TB1
W2

TB1
W3

TB3
W2

Time

TB1, W1 stall
TB3, W2 stallTB2, W1 stall

Instruction: 1 2 3 4 5 6 1 2 1 2 3 41 2 7 8 1 2 1 2 3 4

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE498AL, University of Illinois, Urbana-Champaign!

83

G80 Block Granularity Considerations
•  For Matrix Multiplication using multiple blocks, should I

use 8X8, 16X16 or 32X32 blocks?

–  For 8X8, we have 64 threads per Block. Since each SM can take
up to 768 threads, there are 12 Blocks. However, each SM can
only take up to 8 Blocks, only 512 threads will go into each SM!

–  For 16X16, we have 256 threads per Block. Since each SM can
take up to 768 threads, it can take up to 3 Blocks and achieve full
capacity unless other resource considerations overrule.

–  For 32X32, we have 1024 threads per Block. Not even one can fit
into an SM!

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE498AL, University of Illinois, Urbana-Champaign!

84

Some Additional API Features

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE498AL, University of Illinois, Urbana-Champaign!

85

Application Programming
Interface

•  The API is an extension to the C
programming language

•  It consists of:
–  Language extensions

•  To target portions of the code for execution on
the device

–  A runtime library split into:
•  A common component providing built-in vector

types and a subset of the C runtime library in
both host and device codes

•  A host component to control and access one
or more devices from the host

•  A device component providing device-specific
functions

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE498AL, University of Illinois, Urbana-Champaign!

86

Language Extensions:
Built-in Variables

•  dim3 gridDim;
–  Dimensions of the grid in blocks

(gridDim.z unused)
•  dim3 blockDim;

–  Dimensions of the block in threads
•  dim3 blockIdx;

–  Block index within the grid
•  dim3 threadIdx;

–  Thread index within the block

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE498AL, University of Illinois, Urbana-Champaign!

87

Common Runtime
Component:

Mathematical Functions •  pow, sqrt, cbrt, hypot
•  exp, exp2, expm1
•  log, log2, log10, log1p
•  sin, cos, tan, asin, acos, atan, atan2
•  sinh, cosh, tanh, asinh, acosh, atanh
•  ceil, floor, trunc, round
•  Etc.

–  When executed on the host, a given function
uses the C runtime implementation if
available

–  These functions are only supported for
scalar types, not vector types

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE498AL, University of Illinois, Urbana-Champaign!

88

Device Runtime Component:
Mathematical Functions

•  Some mathematical functions (e.g. sin
(x)) have a less accurate, but faster
device-only version (e.g. __sin(x))
–  __pow
–  __log, __log2, __log10
–  __exp
–  __sin, __cos, __tan

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE498AL, University of Illinois, Urbana-Champaign!

89

Host Runtime Component
•  Provides functions to deal with:

–  Device management (including multi-device
systems)

–  Memory management
–  Error handling

•  Initializes the first time a runtime function is
called

•  A host thread can invoke device code on
only one device
–  Multiple host threads required to run on

multiple devices

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE498AL, University of Illinois, Urbana-Champaign!

90

Device Runtime Component:
Synchronization Function
•  void __syncthreads();
•  Synchronizes all threads in a block
•  Once all threads have reached this point,

execution resumes normally
•  Used to avoid RAW / WAR / WAW

hazards when accessing shared or global
memory

•  Allowed in conditional constructs only if
the conditional is uniform across the entire
thread block

