ECE 498AL

Applied Parallel Programming

[Lecture 1: Introduction

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign

Course Goals

e Learn how to program massively parallel
processors and achieve

— high performance
— functionality and maintainability
— scalability across future generations
» Acquire technical knowledge required to
achieve the above goals
— principles and patterns of parallel programming
— processor architecture features and constraints
— programming API, tools and techniques

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 2
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign

Why Massively Parallel Processing?

* A quiet revolution and potential build-up
— Calculation: TFLOPS vs. 100 GFLOPS
— Memory Bandwidth: ~10x

e

1%, schy ~owisnsitrp ermpEpL ZON | mipl-fp, paf

| Pk plac s Lsira s Media | ‘Wi

Search Weh - :IJ - ‘lf"r.'ll - | & Pinance - Bl Games - % shoppirg - G kids -) Mews - b Sports = (L Movies =) My
b, Ediegn-thecom . ERiogin - The Com . [5Pe.pof (appbc . [Ovder Steitus psm.p.:ﬂ.nppk ~pfgeants Summ | L#
" - L.J vidl ly =CO0IC GIr v

1200

=8 LMD (GPU)
=== NVIDIA (GPU)
1000 | 4=l [npa| (CPU)

S0 Multi-core CPU
:El:l
2 &o0
5
C o11rtes ohn Owens
— GPU in every PC— massive volume and potential impact
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 3

ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign

GeForce 8800 (2007)

16 highly threaded SM’ s, >128 FPU’ s, 367 GFLOPS, 768 MB
DRAM, 86.4 GB/S Mem BW, 4GB/S BW to CPU

Host

:

Input Assembler

\ 4 V‘ \4
I B
I B
I B
NN BN BN
Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data

Cache Cache Cache Cache Cache Cache Cache Cache

[[Texture | |]} || Texture || |J] | |vexture | |} || rexture || || | {rexture || §|| | exture | | W[| |rexture || [§| || roxture ||
| | | | |

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
1. ECE498AL Spring 2010, University of Illinois, Urbana-Champaign

(G&0 Characteristics

367 GFLOPS peak performance (25-50 times of current
high-end microprocessors)

e 265 GFLOPS sustained for apps such as VMD
» Massively parallel, 128 cores, 90W
» Massively threaded, sustains 1000s of threads per app

e 30-100 times speedup over high-end microprocessors on
scientific and media applications: medical imaging,
molecular dynamics

“I think they're right on the money, but the huge performance
differential (currently 3 GPUs ~= 300 SGI Altix Itanium2s)
will mvite close scrutiny so I have to be careful what I say
publically until I triple check those numbers.”

-John Stone, VMD group, Physics UITUC

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign

Instruction Cache

Register Flie

Fermi (2010

DRAMIF
N1\ 2 (e

Core Core Core Core

Core Core Core Core

HOSTI/F
dN\™Na

: Core Core Core Core
—LZ———_

Core Core Core Core

N1\ 2 (e

Core Core Core Core

Core Core Core Core
— T & T | T T T £ T § T ¥ TSI T4

ET1I 2 (e

Core Core Core Core

Core Core Core Core

oad/Store Units x 1

Interconnect Network

~1.5TFLOPS (SP)/ ~800GFLOPS (DP) e R
230 GB/s DRAM Bandwidth i

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 6
ECE 498AL, Spring 2010 University of Illinois, Urbana-Champaign

Uniform Cache

Future Apps Reflect a Concurrent
World

« Exciting applications 1n future mass computing
market have been traditionally considered
“supercomputing applications”

— Molecular dynamics simulation, Video and audio coding and
manipulation, 3D 1maging and visualization, Consumer game
physics, and virtual reality products

—These “Super-apps” represent and model physical,
concurrent world

* Various granularities of parallelism exist, but...
— programming model must not hinder parallel implementation
— data delivery needs careful management

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 7
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign

Stretching Traditional Architectures

» Traditional parallel architectures cover some
super-applications
— DSP, GPU, network apps, Scientific

* The game 1s to grow mainstream architectures
“out” or domain-specific architectures “in”

— CUDA 1s latter

[Traditional applications

D Current architecture
coverage

|| New applications

B Domain-specific
=8 architecture coverage

b
© David Kirk/NVIDIA and Wen-mei W. Hwu, 200
ECE 498AL Spring 2010, University of Illinois, Urbana=Champaign

- (Qbstacles 8

Previous Projects

T 400 AT (O b

o100 1 1 £ T11°

Application | Description Source | Kernel | % time
H2 6 4 SPEC 06 version, change in guess vector 3 4, 8 1 1 1 9 4 3 5%
SPEC ‘06 version, change to single precision 0
LBM and print fewer reports 1 948 1 2 85 >99 A)
RC 5 _7 2 Distributed.net RC5-72 challenge client code 1 ,979 2 1 8 >99%
Finite element modeling, simulation of 3D 0
FEM graded materials 1 > 8 74 1 46 99 A)
Rye Polynomial Equation Solver, quantum 0
RPES chem, 2-electron repulsion 1 > 1 04 2 8 1 99 A)
PNS Petri Net simulation of a distributed system 3 2 2 1 6 O >99%
Single-precision implementation of saxpy, 0
SAXPY used in Linpack’s Gaussian elim. routine 952 3 1 >99 A)
-TRACF Two Point Angular Correlation Function 5 3 6 9 8 9 6%
Finite-Difference Time Domain analysis of 0
FDTD 2D electromagnetic wave propagation 1 93 65 93 1 6 A)
Computing a matrix Q, a scanner’s 0
NI@BBle(lrk/ NVII)%ﬁﬁéﬁYﬁnm%WRWwo%lQ?tﬁWQon 490 33 >99 /0

LN T /00N LJF

UlVU, UIlIVCIOoIL L)’ UL 11111TUI1S, ULUG Lcl _, LAl J:JC[6

Speedup of Applications

210 457 316
79 431 263

(=]
(=]
1

- E Kernel
/_IAppIication

o
AV

o
\

GPU Speedup
Relative to CPU
N w E =N (&]

—
o
\

H.264 LBM RC5-72 FEM RPES PNS SAXPY TPACF FDTD MRI-Q MRI-

FHD

* GeForce 8800 GTX vs. 2.2GHz Opteron 248

« 10x speedup 1n a kernel is typical, as long as the kernel can occupy
enough parallel threads

* 25x to 400x speedup if the function’ s data requirements and control flow
suit the GPU and the application 1s optimized

 “Need for Speed” Seminar Series organized by Patel and Hwu from
Spring 2009

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 10
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign

ECE 498AL

Lecture 2:
The CUDA Programming Model

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 11
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign

Parallel Programming Basics

* Things we need to consider:
— Control
— Synchronization

— Communication

» Parallel programming languages offer
different ways of dealing with above

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign

12

What 1s (Historical) GPGPU ?

e General Purpose computation using GPU and graphics API
in applications other than 3D graphics
— GPU accelerates critical path of application

e Data parallel algorithms leverage GPU attributes
— Large data arrays, streaming throughput
— Fine-grain SIMD parallelism EEG P U
— Low-latency floating point (FP) computation

» Applications — see //GPGPU.org

— Game effects (FX) physics, image processing

— Physical modeling, computational engineering, matrix algebra,
convolution, correlation, sorting

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 13
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign

Previous GPGPU Constraints

e Dealing with graphics API
— Working with the corner cases of the
graphics API

e Addressing modes
— Limited texture size/dimension
« Shader capabilities

— Limited outputs

e Instruction sets
— Lack of Integer & bit ops
e Communication limited

— Between pixels
— Scatter a[i]=p

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign

O

Input Registers

!

l

Temp Registers

Output Registers

14

« “Compute Unified Device Architecture”

* General purpose programming model
— User kicks off batches of threads on the GPU

— GPU = dedicated super-threaded, massively data parallel co-
processor

« Targeted software stack

— Compute oriented drivers, language, and tools

* Driver for loading computation programs into GPU
— Standalone Driver - Optimized for computation
— Interface designed for compute — graphics-free API
— Data sharing with OpenGL buffer objects
— QGuaranteed maximum download & readback speeds

© David Kirk/Kxphcitd@BlLhaemoryomanagement

ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign

An Example of Physical Reality

Behind CUDA s

) Intel Pentium’ 4 (hOSt)
GPU w/ e

local DRAM o
_ (device)

PCI Express* 82925X

x16 Graphics) MCH 85G8/'s

4 Serial
4 PCl -
Express* x1
A Intel* Matrix

8Hi-Speed ¥ v Storage Technology

USB 2.0 Ports
Intel’ Wireless

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 16
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign

Intel* High :
Definition Audio MEB/s

* 8-series GPUs deliver 25 to 200+ GFLOPSY NG
on compiled parallel C applications
— Available in laptops, desktops, and clusters

e GPU parallelism 1s doubling every year
* Programming model scales transparently

nnnnn

Tesla D870

* Programmable in C with CUDA tools

* Multithreaded SPMD model uses application =7
data parallelism and thread parallelism —

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 Tesla’S870
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign

Overview

 CUDA programming model — basic
concepts and data types

 CUDA application programming interface -
basic

* Simple examples to 1llustrate basic concepts
and functionalities

 Performance features will be covered later

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 18
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign

CUDA — C with no shader

limitations!
* Integrated host+device app C program

— Serial or modestly parallel parts in host C code

— Highly parallel parts in device SP kernel C code

Serial Code (host) g
Parallel Kernel (device) ;;4 > ;;é > || e ;;4 >
KernelA<<< nBlk, nTid >>>(args); || 55 || s || s | - - - | 99
Serial Code (host) g
Parallel Kernel (device) QD || D> | | e
. « (X P < &
KernelB<<< nBIk, nTid >>>(args);
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 =

ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign

CUDA Devices and Threads

* A compute device
— Is a coprocessor to the CPU or host
— Has its own DRAM (device memory])
— Runs many threads in parallel
— Is typically a GPU but can also be another type of parallel processing
device
« Data-parallel portions of an application are expressed as device
kernels which run on many threads

 Difterences between GPU and CPU threads
— GPU threads are extremely lightweight

* Very little creation overhead

— GPU needs 1000s of threads for full efficiency
» Multi-core CPU needs only a few

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 20
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign

G80 — Graphics Mode

* The future of GPUs 1s programmable processing
e So — build the architecture around the processor

Host
Input Aslsembler l Setup / Rstr / ZCull
Vtx Thread Issue Geom Thread Issue Pixel Thread Issue

~—— Thread Processor

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
I' ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign

G880 CUDA mode — A Device Example

Host

}

Input Assembler

y JL JL A \ 4 VL JL \ 4
TN N T N O
N T
TN N T N O
I T g O] |
Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data

Cache Cache Cache Cache Cache Cache Cache Cache

s 1 rocor L rocor s oo [s [e [s

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 22
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign

Extended C

device float filter[N];

* Type Qualifiers
— global, device, shared,
local, constant __global void convolve (float *image)

shared float region[M];

 Keywords

— threadIdx, blockldx region[threadIdx] = image[i];
e Intrinsics _ syncthreads ()

— __syncthreads

image[]] = result;
L4 }

* Runtime API

— Memory, symbol, // Allocate GPU memory

void *myimage = cudaMalloc (bytes)

execution management

. // 100 blocks, 10 threads per block
Function launch convolve<<<100, 10>>> (myimage);

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 23
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign

Extended C

Integrated source
(foo.cu)

cudacc
EDG C/C++ frontend
Open64 Global Optimizer

GPU Assembly CPU Host Code

foo.s foo.cpp

OCG gcc / cl

G80 SASS

foo.sass

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign

24

Arrays of Parallel Threads

« A CUDA kernel is executed by an array of
threads
— All threads run the same code (SPMD)

— Each thread has an ID that it uses to compute
memory addresses and make control decisions

threadID 0[1[2[3]4]5]6]7

float x = input[threadID];

float y = func(x);
output[threadID] = y;

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign

25

Thread Blocks: Scalable Cooperation

* Divide monolithic thread array into multiple
blocks

— Threads within a block cooperate via shared
memory, atomic operations and barrier

synchronization
— Threads 1n different blocks cannot cooperate
Thread Block 0 Thread Block 1 Thread Block N - 1
threadID o 1] 21 3| 4] 5|1 6| 7 o 11 2| 3| 4] 5| 6| 7 ol 1] 2| 3| 4| 5| 6| 7

Eloat x = input float x = input float x = input

[threadID] ; [threadID] ; [threadID];
float y = func(x); float y = func(x); mEEE float y = func(x);
output[threadID] = y; output|[threadID] = y; output[threadID] = y;

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 26
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign

Block IDs and Thread IDs

 FEach thread uses IDs to decide
what data to work on

— Block ID: 1D or 2D

Host

Kernel

— Thread ID: 1D, 2D, or 3D

« Simplifies memory
addressing when processing
multidimensional data

— Image processing
— Solving PDEs on volumes

Kernel Z)

Block

(1,0)

| Block

(1,1)

p—

7/
/
/

Block (1, 1

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign

Courtesy: NDVIA

a—

CUDA Memory Model Overview

* Global memory o

— Main means of Block (0, 0) Block (1, 0)
communicating R/W Data
between host and device

— Contents visible to all threads * * ’ *

Thread (0, 0)) Thread (1, 0)) | Thread (0, 0)) Thread (1, 0)

— Long latency access

* We will focus on global GlobalMemory

memory for now

Constant and texture memory will come later

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 28
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign

CUDA API Highlights:

Easy and Lightweight
* The API 1s an extension to the ANSI C
programming language

Low learning curve

* The hardware 1s designed to enable
lightweight runtime and driver

High performance

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign

29

CUDA Device Memory Allocation

» cudaMalloc()

— Allocates object in the
device Global Memory Block (0, 0} Block (1, 0)

— Requires two parameters

E=EEE EEEEDE
* Address of a pointer to the " " F' "

allocated object

Grid

Thread (0, 0) Thread (1, 0)] | Thread (0, 0) Thread (1, 0)

! ! ! !

* Size of of allocated object

Host

» cudaFree()

— Frees object from device
Global Memory

 Pointer to freed object
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 30

ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign

CUDA Device Memory Allocation (cont.)

* Code example:
— Allocate a 64 * 64 single precision float array
— Attach the allocated storage to Md

— “d” is often used to indicate a device data structure

TILE_WIDTH = 64;
Float* Md
int size = TILE_ WIDTH * TILE_WIDTH * sizeof(float);

cudaMalloc((void**)&Md, size);
cudaFree(Md);

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 31
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign

CUDA Host-Device Data Transfer

* cudaMemcpy()

— memory data transfer

— Requires four parameters

 Pointer to destination
 Pointer to source

* Number of bytes copied
* Type of transfer

Grid

Block (0, 0)

| e

Block (1, 0))

|

Thread (0, 0)

Thread (1, 0)

Thread (0, 0)

Thread (1, 0)

N\

— Host to Host

— Host to Device
— Device to Host
— Device to Device

* Asynchronous transfer

{) —

N/

32

CUDA Host-Device Data Transter
(cont.)

* Code example:
— Transfer a 64 * 64 single precision float array
— M 1s 1n host memory and Md is in device memory

— cudaMemcpyHostToDevice and
cudaMemcpyDeviceToHost are symbolic
constants

cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);

cudaMemcpy(M, Md, size, cudaMemcpyDeviceToHost);

© David Kirk /NVIDIA and Wen-mei W. Hwu, 2007-2009 33
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign

CUDA Keywords

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign

34

CUDA Function Declarations

Executed | Only callable

on the: from the:
__device float DeviceFunc() | device device
__global void KernelFunc() device host
__host float HostFunc() | host host

* global defines a kernel function

— Must return void

. device and host can be used
together
© David Kirk /NVIDIA and Wen-mei W. Hwu, 2007-2009 35

ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign

CUDA Function Declarations (cont.)

. device functions cannot have their

acﬁ‘ess taken
 For functions executed on the device:

— No recursion
— No static variable declarations inside the function

— No variable number of arguments

© David Kirk /NVIDIA and Wen-mei W. Hwu, 2007-2009 36
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign

Calling a Kernel Function — Thread Creation

A kernel function must be called with an
execution configuration:

__global wvoid KernelFunc(...);
dim3 DimGrid (100, 50); // 5000 thread blocks
dim3 DimBlock (4, 8, 8); // 256 threads per block

size t SharedMemBytes = 64; // 64 bytes of shared
memory

KernelFunc<<< DimGrid, DimBlock, SharedMemBytes >>>
(cv0)s

* Any call to a kernel function 1s asynchronous
from CUDA 1.0 on, explicit synch needed for

© Davmyg¢\1€j@ Wen-mei W. Hwu, 2007-2009 37
ECE 49 pring , @iversity of Illinois, Urbana-Champaign

A Simple Running Example
Matrix Multiplication

* A simple matrix multiplication example that
illustrates the basic features of memory and
thread management in CUDA programs

— Leave shared memory usage until later

— Local, register usage

— Thread ID usage

— Memory data transfer API between host and device
— Assume square matrix for simplicity

© David Kirk /NVIDIA and Wen-mei W. Hwu, 2007-2009 38
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign

A AV A CA1111111116n A VANNJINAANG Lo
)

Square Matrix Multiplication

Example

e P=M * N of size WIDTH x
WIDTH

* Without tiling:

— One calculates one
element of P

— M and N are loa
from global men

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2087-2669 > <

ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign

v

Memory Layout of a Matrix in C

Ml,O Ml,l M1,2 M1,3
MZ,O MZ,I MZ,Z M2,3

M3,O M3,1 M3,2 M3,3

Ml,O Ml,l M1,2 M1,3 MZ,O MZ,I MZ,Z M2,3 M3,O M3,1 M3,2 M3,3

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 40
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign

Step 1: Matrix Multiplication
A Simple Host Version in C

/ | Matrix multiplication on the (CPU) host in double

precision
void MatrixMulOnHost(float* M, float* N, float* P, int Width) k
{

for (inti=0; i < Width; ++i) j >

for (intj = 0; j < Width; ++j) {
double sum = 0;
for (int k = 0; k < Width; ++k) {
double a = M[i * width + K];
double b = N[k * width + j];
sum +=a * b; :
) 1
P[i * Width + j] = sum;
}

Step 2: Input Matrix Data Transfer

(Host-side Code)
void MatrixMulOnDevice(float* M, float* N, float* P, int Width)

{

int size = Width * Width * sizeof(float);
float™ Md, Nd, Pd;

1.. ./-/ Allocate and Load M, N to device memory
cudaMalloc(&Md, size);

cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);

cudaMalloc(&Nd, size);
cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice);

/] Allocate P on the device
cudaMalloc(&Pd, size);

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009

42
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign

Step 3: Output Matrix Data Transfer
(Host-s1de Code)

2. // Kernel invocation code — to be shown later

3. // Read P from the device
cudaMemcpy(P, Pd, size, cudaMemcpyDeviceToHost);

/ | Free device matrices
cudaFree(Md); cudaFree(Nd); cudaFree (Pd);

}

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 43
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign

Step 4: Kernel Function

// Matrix multiplication kernel — per thread code

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)

{

/| Pvalue is used to store the element of the matrix
// that is computed by the thread
float Pvalue = 0O;

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 44
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign

}

Step 4: Kernel Function (cont.)

for (int k = 0; k < Width; ++k){
float Melement = Md[threadldx.y*Width+k];
float Nelement = Nd[k*Width+threadldx.x];
Pvalue += Melement * Nelement;

}

tx

Pd[threadldx.y*Width+threadldx.x] = Pvalue;

k

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009

tx

ECE 498AL Spring 2010, University of Illinois, UrbanaiChampaign

Step 5: Kernel Invocation
(Host-s1de Code)

I/l Setup the execution configuration
dim3 dimGrid(1, 1);
dim3 dimBlock(Width, Width);

// Launch the device computation threads!
MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width);

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 46
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign

Only One Thread Block Used

Nd

* One Block of threads compute
matrix Pd

— Each thread computes one
element of Pd

o FEach thread

— Loads a row of matrix Md
— Loads a column of matrix Nd

— Perform one multiply and
addition for each pair of Md and
Nd elements

— Compute to off-chip memory
access ratio close to 1:1 (not very
high)

e Size of matrix limited by the
number of threads allowed in a
thread block

Md Pd

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 47
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign

v

<
<«

WIDTH

Step 7: Handling Arbitrary Sized Square

Matrices

» Have each 2D thread block to
compute a (TILE WIDTH)? sub-
matrix (tile) of the result matrix

— Each has (TILE WIDTH)? threads

* Generate a 2D Grid of (WIDTH/
TILE WIDTH > bl

You still need to put a loop

around the kernel call for

cases where WIDTH /

TILE_WIDTH is greater

than max grid size (64K)! bx

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009

by

TILE_WIDTH

X

ty

ECE 498AL Spring 2010, University of Illinois, UrbanaiChampaign

Some Useful Information on
Tools

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign

49

Compiling a CUDA Program

float4 me = gx[gtid];
me.Xx += me.y * me.z;

e

Parallel Thread
eXecution (PTX]

Virtual Machine
and ISA

Programming
model

Execution

Virtual —

resources and

Physic

1d.global.v4.f32
mad. f32

{$f
$f1

Target code

state

1,$f3,$F5,%$f7}, [$r9+0];
$f5, $f3, $f1;

© David Kitk/ N VIDIA and Wen-mei W. Hiwu, 2007-2009
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign

50

Compilation

* Any source file containing CUDA language
extensions must be compiled with NVCC

« NVCC is a compiler driver

— Works by invoking all the necessary tools and
compilers like cudacc, g++, cl, ...

« NVCC outputs:
— C code (host CPU Code})

Must then be compiled with the rest of the application using another tool
— PTX
* Obiject code directly
« Or, PTX source, interpreted at runtime

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009

51
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign

Linking

* Any executable with CUDA code requires two
dynamic libraries:

— The CUDA runtime library (cudart)
— The CUDA core library (cuda)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 52
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign

Debugging Using the
Device Emulation Mode

* An executable compiled in device emulation
mode (nveec -deviceemu) runs
completely on the host using the CUDA

runtime

— No need of any device and CUDA driver
— Each device thread 1s emulated with a host thread

* Running in device emulation mode, one can:

— Use host native debug support (breakpoints, inspection, etc.]
— Access any device-specific data from host code and vice-versa

— Call any host function from device code (e.g. printf) and vice-
versa

o Davidkirk/Netastdeadlockvsituattons@aused by improper usage of 53
ECE 498AL Spring waf}é)galgls, Urbana-Champaign

Device Emulation Mode Pitfalls

 Emulated device threads execute sequentially,
so simultaneous accesses of the same memory
location by multiple threads could produce
different results.

* Dereferencing device pointers on the host or
host pointers on the device can produce correct
results 1n device emulation mode, but will
generate an error 1n device execution mode

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 54
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign

Floating Point

» Results of floating-point computations will
slightly differ because of:

— Different compiler outputs, instruction sets

— Use of extended precision for intermediate results

» There are various options to force strict single precision
on the host

© David Kirk /NVIDIA and Wen-mei W. Hwu, 2007-2009 55
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign

ECE498AL

Lecture 3: A Simple Example,
Tools, and CUDA Threads

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 56
ECE498AL, University of Illinois, Urbana-Champaign

Step 1: Matrix Multiplication
A Simple Host Version in C

/ | Matrix multiplication on the (CPU) host

void MatrixMulOnHost(float* M, float* N, float* P, int Width)
¢ k
for (int i = 0; i < Width; ++1i)
for (int j = 0; j < Width; ++3j) {)
float sum = 0;]
for (int k = 0; k < Width; ++k) {
float a = M[i * width + k];
float b = N[k * width + j];
sum += a * Db;
} v
P[i * Width + j] = sum;

\ 4

k

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign v

\ 4
A
v

Step 2: Input Matrix Data Transfer

(Host-side Code)
void MatrixMulOnDevice(float* M, float* N, float* P, int Width)

{

int size = Width * Width * sizeof(float);
float™ Md, Nd, Pd;

1.. ./-/ Allocate and Load M, N to device memory
cudaMalloc(&Md, size);

cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);

cudaMalloc(&Nd, size);
cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice);

/] Allocate P on the device
cudaMalloc(&Pd, size);

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009

58
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign

Step 3: Output Matrix Data Transfer
(Host-side Code)

2. // Kernel invocation code — to be shown later

3. // Read P from the device
cudaMemcpy(P, Pd, size, cudaMemcpyDeviceToHost);

/ | Free device matrices
cudaFree(Md); cudaFree(Nd); cudaFree (Pd);

}

© David Kirk /NVIDIA and Wen-mei W. Hwu, 2007-2009 59
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign

Step 4: Kernel Function

// Matrix multiplication kernel — per thread code

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)

{

/| Pvalue is used to store the element of the matrix
// that is computed by the thread
float Pvalue = 0O;

© David Kirk /NVIDIA and Wen-mei W. Hwu, 2007-2009 60
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign

}

Step 4: Kernel Function (cont.)

for (int k = 0; k < Width; ++k){
float Melement = Md[threadldx.y*Width+k];
float Nelement = Nd[k*Width+threadldx.x];
Pvalue += Melement * Nelement;

}

tx

Pd[threadldx.y*Width+threadldx.x] = Pvalue;

k

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009

tx

ECE 498AL Spring 2010, University of Illinois, UrbanaiChampaign

Step 5: Kernel Invocation
(Host-side Code)

I/l Setup the execution configuration
dim3 dimGrid(1, 1);
dim3 dimBlock(Width, Width);

// Launch the device computation threads!
MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width);

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 62
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign

Only One Thread Block Used

Nd

* One Block of threads compute
matrix Pd

— Each thread computes one
element of Pd

« Each thread
— Loads a row of matrix Md
— Loads a column of matrix Nd

— Perform one multiply and
addition for each pair of Md
and Nd elements

— Compute to off-chip memory
access ratio close to 1:1 (not
very high)

« Size of matrix limited by the «
number of threads allowed in a
thread block Md Pd

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 63
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign

v

WIDTH

Step 7: Handling Arbitrary Sized Square
Matrices

» Have each 2D thread block to
compute a (TILE_ WIDTH)?
sub-matrix (tile) of the result
matrix

— Each has (TILE_WIDTH)?
threads

ousitill need to,put a b
éouﬁé&@%é\tz%;ﬁ }2]5 G TILE_%IVIDTH
casNBTHITFILE. W ty

TILE_WIDTH is greater —
than max grid size (64K)! bx |tx

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009

ECE 498AL Spring 2010, University of Illinois, UrbanaiChampaign

Some Useful Information on
Tools

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

65

Compiling a CUDA Program

float4 me = gx[gtid];
me.Xx += me.y * me.z;

e

Virtual

Td.global.v4.f32 {$f
mad.f32 $f1

 Parallel Thread
eXecution (PTX]

— Virtual Machine
and ISA

— Programming
model

— Execution
resources and
state

1,$f3,$F5,%$f7}, [$r9+0];

Target code

ECE498AL, University of Illinois, Urbana-Champaign

$f5, $f3, $f1;

66

Compilation

* Any source file containing CUDA language
extensions must be compiled with NVCC

« NVCC is a compiler driver

— Works by invoking all the necessary tools and
compilers like cudacc, g++, cl, ...

« NVCC outputs:
— C code (host CPU Code)

Must then be compiled with the rest of the application using another tool
— PTX
* Obiject code directly
« Or, PTX source, interpreted at runtime

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009

67
ECE498AL, University of Illinois, Urbana-Champaign

Linking

* Any executable with CUDA code requires
two dynamic libraries:

— The CUDA runtime library (cudart)
— The CUDA core library (cuda)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 6%
ECE498AL, University of Illinois, Urbana-Champaign

Debugging Using the
Device Emulation Mode

* An executable compiled in device
emulation mode (nvec -deviceemu)

runs completely on the host using the
CUDA runtime

— No need of any device and CUDA driver
— Each device thread is emulated with a host thread

* Running in device emulation mode, one
can:

— Use host native debug support (breakpoints, inspection, etc.)
— Access any device-specific data from host code and vice-versa

— Call any host function from device code (e.g. print£f) and

© David Kirk /%EéLleé\én-mei W. Hwu, 2007-2009 69
ECE498AL, University of Illnois, Urbana-Champaign

— Detect deadlock sitiiations cailised hv imnroner 11Isaae of

Device Emulation Mode Pitfalls

« Emulated device threads execute
sequentially, so simultaneous accesses of
the same memory location by multiple
threads could produce different results.

* Dereferencing device pointers on the host
or host pointers on the device can produce
correct results in device emulation mode,
but will generate an error in device
execution mode

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 70
ECE498AL, University of Illinois, Urbana-Champaign

Floating Point

» Results of floating-point computations will
slightly differ because of:

— Different compiler outputs, instruction sets

— Use of extended precision for intermediate
results

* There are various options to force strict single
precision on the host

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 71
ECE498AL, University of Illinois, Urbana-Champaign

CUDA Threads

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

72

Block IDs and Thread IDs

e Each thread uses IDs to
decide what data to work on
— Block ID: 1D or 2D

— Thread ID: 1D, 2D, or 3D

« Simplifies memory
addressing when
processing
multidimensional data

— Image processing
— Solving PDEs on volumes

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

Host Device
Grid 1
Kel:nel » = Block || Block
=> | 00 | (1,0
Block”| Block |
(01) (L1 P
- ' I\
Grid2 b
7/ / :
4 / .
Kernel —4— L
2 /’ I' ! ‘I
Block (1, 1

Courtesy: NDVIA

1 <

Matrix Multiplication Using
Multiple Blocks

* Break-up Pd into tiles

« Each block calculates one
tile
— Each thread calculates one
element
— Block size equal tile size

© David Kirk/NVIDIA and Wen -mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

v
A

74

v

A Small Example

Block(0,0) Block(1,0)
Poo | P1o| P20 | Pao| TILE WIDTH =2
PO,l Pl,l P2,1 P3,1
PO,Z P1,2 P2,2 P32
P0,3 P1,3 P2,3 P3,3
Block(0,1) Block(1,1)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

75

A Small Example:
Multiplication

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 76
ECE498AL, University of Illinois, Urbana-Champaign

Revised Matrix Multiplication
Kernel using Multiple Blocks

__global _ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{

// Calculate the row index of the Pd element and M

int Row = blockIdx.y*TILE WIDTH + threadldx.y;
// Calculate the column idenx of Pd and N

int Col = blockIdx.x*TILE WIDTH + threadIdx.x;

float Pvalue = 0;

// each thread computes one element of the block sub-matrix
for (int k = 0; k < Width; ++k)
Pvalue += Md[Row*Width+k] * Nd[k*Width+Col];

Pd[Row*Width+Col] = Pwvalue;

}

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 77
ECE498AL, University of Illinois, Urbana-Champaign

CUDA Thread Block

« All threads in a block execute the same
kernel program (SPMD)

« Programmer declares block: CUDA Thread Block
— Block size 1 to 512 concurrent threads)
_ Block shape 1D, 2D, or 3D Thread Id #:
0123.. m

— Block dimensions in threads
« Threads have thread id numbers within block M
— Thread program uses thread id to select

work and address shared data Thread program

e Threads in the same block share data and
synchronize while doing their share of the
work

 Threads in different blocks cannot cooperate

— Each block can execute in any order relative
to other blocs!

Courtesy: John Nickolls,
NVIDIA

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 78
ECE498AL, University of Illinois, Urbana-Champaign

Transparent Scalability

 Hardware is free to assigns blocks to any
processor at any time

— A kernel scales across any number of
parallel processors

Block 0 Block 1

/ Block 2 Block 3 \
Block 4 Block 5
Block 6 Block 7 t Block 0 Block1 Block2 Block3
Block2 Block 3 me

Block 0 Block 1

Block4 Block5 Block6 Block7

Block 4 Block 5 . .
Each block can execute in any order relative

Block 6 Block 7 to other blocks.

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 79
ECE498AL, University of Illinois, Urbana-Champaign

G80 Example: Executing Thread Blocks

T

I |
sz o1 SMO SMA e |

NNNNNNNNNN

% Blocks
é S E . E . J—'

Blocks N BN Streaming

HE BN Multiprocessors in block granularity

.. .. — Up to 8 blocks to each SM as
' 1 resource allows

H — SM in G80 can take up to 768 threads

» Could be 256 (threads/block) * 3
blocks

« Or 128 (threads/block) * 6 blocks, etc.
 Threads run concurrently
— SM maintains thread/block id #s
— SM manages/schedules thread

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 : 20
ECE498AL, University of Illinois, Urbana-Champaign execution

G80 Example: Thread
Scheduling

Each Block is executed as 32-| — Block 1 Warps Block 2 Warps — Block 1 Warps
oo | s s |
thread Warps t0t1t2 ... t31 t0t1t2 ... t31 t0t1t2 .. t31
. - o SONINNINNNNN SONINNINNNNN
— Animplementation decision, < > SO
not part of the CUDA — | & S - | £ S
programming model
— Warps are scheduling units Streaming Multiprocessor
in SM | Instruction L1
If 3 blocks are assigned to an Instruction Fetch/Dispatch
SM and each block has 256 Shared Memory

threads, how many Warps are
there in an SM?

— Each Block is divided into
256/32 = 8 Warps

— There are 8 * 3 = 24 Warps

SFU SFU

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 81
ECE498AL, University of Illinois, Urbana-Champaign

G80 Example: Thread Scheduling
(Cont.)

« SM implements zero-overhead warp scheduling
— At any time, only one of the warps is executed by SM

— Warps whose next instruction has its operands ready for
consumption are eligible for execution

— Eligible Warps are selected for execution on a prioritized
scheduling policy
— All threads in a warp execute the same instruction when selected

TB1, W1 stall4|
—TB2, W1 stal—————TB3, W2 stal——|
TB1 TB2 | TB3 | TB3 | TB2 | TB1 | TB1 | TB1 | TB3
. W1 W1 W1 WZ W1 W1 W2 W3 WZ
Instruction: | 1i2i3i4i5i6[4i2|1 2128147 i8|1i2]|1i2]|3i4
—Time-» TB = Thread Block, W = Warp
© David Kirk/NVIDIA and Wen-mei W. Hwu,]2

2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

G380 Block Granularity Considerations

* For Matrix Multiplication using multiple blocks, should |
use 8X8, 16X16 or 32X32 blocks?

— For 8X8, we have 64 threads per Block. Since each SM can take
up to 768 threads, there are 12 Blocks. However, each SM can
only take up to 8 Blocks, only 512 threads will go into each SM!

— For 16X16, we have 256 threads per Block. Since each SM can
take up to 768 threads, it can take up to 3 Blocks and achieve full
capacity unless other resource considerations overrule.

— For 32X32, we have 1024 threads per Block. Not even one can fit
into an SM!

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 83
ECE498AL, University of Illinois, Urbana-Champaign

Some Additional API Features

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 84
ECE498AL, University of Illinois, Urbana-Champaign

Application Programming

Interface

* The APl is an extension to the C
programming language
* |t consists of:

— Language extensions

« To target portions of the code for execution on
the device

— A runtime library split into:

« A common component providing built-in vector
types and a subset of the C runtime library in
both host and device codes

© David Kirk/NVIBIA o 1rost 'cOmMponent to control and access oness

ECE498AL, University of Illinois, Urbana-Chanlpaign
or more devices from the host

Language Extensions:
Built-in Variables

e dim3 gridDim;
— Dimensions of the grid in blocks
(gridDim. z unused)

e dim3 blockDim;
— Dimensions of the block in threads

e dim3 blockIdx;
— Block index within the grid

e dim3 threadIdx;

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 86

sk 2 THREEd THEEX Within the block

Common Runtime
Component:
Mathematical Functions

pow, sqrt, cbrt

exp, exp2, expml

log, 1log2, 10g10, 1loglp

sin, cos, tan, asin, acos, atan, atan2
sinh, cosh, tanh, asinh, acosh, atanh

ceil, floor, trunc, round

Etc.

— When executed on the host, a given function
uses the C runtime implementation if

available
oot WRESEfUNGtions are only supported for

el U ardrtypes, ot vector types

Device Runtime Component:

Mathematical Functions

* Some mathematical functions (e.g. sin
(x)) have a less accurate, but faster
device-only version (e.g. sin(x))

— _pow
- log, log2, 1loglO
- exp

— sin, cos, tan

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 88
ECE498AL, University of Illinois, Urbana-Champaign

Host Runtime Component

 Provides functions to deal with:

— Device management (including multi-device
systems)

— Memory management
— Error handling

* Initializes the first time a runtime function is
called

SNt read can,invoke device code on

ECE498AL, UnI'\&e/rsi’%)of Illinois, Jrbana-Champaign

on ne devic

Device Runtime Component:
Synchronization Function

* void _ syncthreads() ;
« Synchronizes all threads in a block

* Once all threads have reached this point,
execution resumes normally

» Used to avoid RAW / WAR / WAW

hazards when accessing shared or global
memory

* Allowed in conditional constructs only if
© Dav thh@m@@nmtl@ﬂazbomunlform across the entire

ECE498AL, University of Illinois, Urbana-Champ

'Hﬁr'gth hlr\r\|/

