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Course Goals 
•  Learn how to program massively parallel 

processors and achieve 
–  high performance 
–  functionality and maintainability 
–  scalability across future generations 

•  Acquire technical knowledge required to 
achieve the above goals 
–  principles and patterns of parallel programming 
–  processor architecture features and constraints 
–  programming API, tools and techniques 
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•  A quiet revolution and potential build-up 
–  Calculation: TFLOPS vs. 100 GFLOPS 
–  Memory Bandwidth: ~10x  

–  GPU in every PC– massive volume and potential impact 

Why Massively Parallel Processing? 
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Figure 1.1. Enlarging Performance Gap between GPUs and CPUs.

Multi-core CPU

Many-core GPU

Courtesy: John Owens
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16 highly threaded SM’s, >128 FPU’s, 367 GFLOPS, 768 MB 
DRAM, 86.4 GB/S Mem BW, 4GB/S BW to CPU 
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G80 Characteristics 
•  367 GFLOPS  peak performance (25-50 times of current 

high-end microprocessors) 
•  265 GFLOPS sustained for apps such as VMD 
•  Massively parallel, 128 cores, 90W 
•  Massively threaded, sustains 1000s of threads per app 
•  30-100 times speedup over high-end microprocessors on 

scientific and media applications: medical imaging, 
molecular dynamics 

 
“I think they're right on the money, but the huge performance  

differential (currently 3 GPUs ~= 300 SGI Altix Itanium2s)  
will invite close scrutiny so I have to be careful what I say 
publically until I triple check those numbers.”     

  -John Stone, VMD group, Physics UIUC 
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~1.5TFLOPS (SP)/~800GFLOPS (DP)!
230 GB/s DRAM Bandwidth!
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Future Apps Reflect a Concurrent 
World 

•  Exciting applications in future mass computing 
market have been traditionally considered 
“supercomputing applications” 
– Molecular dynamics simulation, Video and audio coding and 

manipulation, 3D imaging and visualization, Consumer game 
physics, and virtual reality products  

– These “Super-apps” represent and model physical, 
concurrent world 

•  Various granularities of parallelism exist, but… 
– programming model must not hinder parallel implementation 
– data delivery needs careful management 
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Stretching Traditional Architectures  
•  Traditional parallel architectures cover some 

super-applications 
– DSP, GPU, network apps, Scientific 

•  The game is to grow mainstream architectures 
“out” or domain-specific architectures “in” 
– CUDA is latter 

Traditional applications

Current architecture 
coverage

New applications

Domain-specific
architecture coverage

Obstacles© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
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Previous Projects 
Application Description Source Kernel % time  
H.264 SPEC ‘06 version, change in guess vector 34,811 194 35% 

LBM SPEC ‘06 version, change to single precision 
and print fewer reports 1,481 285 >99% 

RC5-72 Distributed.net RC5-72 challenge client code 1,979 218 >99% 

FEM Finite element modeling, simulation of 3D 
graded materials 1,874 146 99% 

RPES Rye Polynomial Equation Solver, quantum 
chem, 2-electron repulsion 1,104 281 99% 

PNS Petri Net simulation of a distributed system 322 160 >99% 

SAXPY Single-precision implementation of saxpy, 
used in Linpack’s Gaussian elim. routine 952 31 >99% 

TRACF Two Point Angular Correlation Function 536 98 96% 
FDTD Finite-Difference Time Domain analysis of 

2D electromagnetic wave propagation 1,365 93 16% 

MRI-Q Computing a matrix Q, a scanner’s 
configuration in MRI reconstruction 490 33 >99% © David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!

ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!



10 

Speedup of Applications 

•  GeForce 8800 GTX vs. 2.2GHz Opteron 248  
•  10× speedup in a kernel is typical, as long as the kernel can occupy 

enough parallel threads 
•  25× to 400× speedup if the function’s data requirements and control flow 

suit the GPU and the application is optimized 
•  “Need for Speed” Seminar Series organized by Patel and Hwu from 

Spring 2009 
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ECE 498AL 
 

Lecture 2:  
The CUDA Programming Model 
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Parallel Programming Basics 

•  Things we need to consider: 
– Control 
– Synchronization 
– Communication 
 

•  Parallel programming languages offer 
different ways of dealing with above 

12 © David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
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What is (Historical) GPGPU ? 
•  General Purpose computation using GPU and graphics API 

in applications other than 3D graphics 
–  GPU accelerates critical path of application 

•  Data parallel algorithms leverage GPU attributes 
–  Large data arrays, streaming throughput 
–  Fine-grain SIMD parallelism 
–  Low-latency floating point (FP) computation 

•  Applications – see //GPGPU.org 
–  Game effects (FX) physics, image processing 
–  Physical modeling, computational engineering, matrix algebra, 

convolution, correlation, sorting 

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
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Previous GPGPU Constraints 
•  Dealing with graphics API 

–  Working with the corner cases of the 
graphics API 

•  Addressing modes 
–  Limited texture size/dimension 

•  Shader capabilities 
–  Limited outputs 

•  Instruction sets 
–  Lack of Integer & bit ops 

•  Communication limited 
–  Between pixels 
–  Scatter  a[i] = p 

Input Registers 

Fragment Program 

 

 

Output Registers 

Constants 

Texture 

Temp Registers 

per thread 
per Shader 
per Context 

        FB       Memory 
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CUDA 
•  “Compute Unified Device Architecture” 
•  General purpose programming model 

–  User kicks off batches of threads on the GPU 
–  GPU = dedicated super-threaded, massively data parallel co-

processor 

•  Targeted software stack 
–  Compute oriented drivers, language, and tools 

•  Driver for loading computation programs into GPU 
–  Standalone Driver - Optimized for computation  
–  Interface designed for compute – graphics-free API 
–  Data sharing with OpenGL buffer objects  
–  Guaranteed maximum download & readback speeds 
–  Explicit GPU memory management © David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!

ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!
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An Example of Physical Reality 
Behind CUDA CPU!

(host)!
GPU w/ !

local DRAM!
(device)!
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Parallel Computing on a GPU  

•  8-series GPUs deliver 25 to 200+ GFLOPS 
on compiled parallel C applications 
–  Available in laptops, desktops, and clusters 

•  GPU parallelism is doubling every year 
•  Programming model scales transparently 

•  Programmable in C with CUDA tools 
•  Multithreaded SPMD model uses application  

data parallelism and thread parallelism 

GeForce 8800 

Tesla S870 

Tesla D870 

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
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Overview 
•  CUDA programming model – basic 

concepts and data types 

•  CUDA application programming interface - 
basic 

•  Simple examples to illustrate basic concepts 
and functionalities 

•  Performance features will be covered later 
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!
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CUDA – C with no shader 
limitations! 

•  Integrated host+device app C program 
–  Serial or modestly parallel parts in host C code 
–  Highly parallel parts in device SPMD kernel C code 

Serial Code (host)‏ 

. . . 

. . . 

Parallel Kernel (device)‏ 
KernelA<<< nBlk, nTid >>>(args); 

Serial Code (host)‏ 

Parallel Kernel (device)‏ 
KernelB<<< nBlk, nTid >>>(args); 

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
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CUDA Devices and Threads 
•  A compute device 

–  Is a coprocessor to the CPU or host 
–  Has its own DRAM (device memory)‏ 
–  Runs many threads in parallel 
–  Is typically a GPU but can also be another type of  parallel processing 

device  

•  Data-parallel portions of an application are expressed as device 
kernels which run on many threads 

•  Differences between GPU and CPU threads  
–  GPU threads are extremely lightweight 

•  Very little creation overhead 
–  GPU needs 1000s of threads for full efficiency 

•  Multi-core CPU needs only a few 

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
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•  The future of GPUs is programmable processing 
•  So – build the architecture around the processor 

G80 – Graphics Mode 

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
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G80 CUDA mode – A Device Example 
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Extended C 
•  Type Qualifiers 

–  global, device, shared, 
local, constant 

•  Keywords 
–  threadIdx, blockIdx 

•  Intrinsics 
–  __syncthreads 

•  Runtime API 
–  Memory, symbol, 

execution management 

•  Function launch 

__device__ float filter[N];  
 
__global__ void convolve (float *image)  { 
 
  __shared__ float region[M]; 
  ...  
 
  region[threadIdx] = image[i];  
 
  __syncthreads()   
  ...  
 
  image[j] = result; 
} 
 
// Allocate GPU memory 
void *myimage = cudaMalloc(bytes) 
 
 
// 100 blocks, 10 threads per block 
convolve<<<100, 10>>> (myimage); 

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
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gcc / cl 

G80 SASS 
foo.sass 

OCG 

Extended C 

cudacc 
EDG C/C++ frontend 

Open64 Global Optimizer 

GPU  Assembly 
foo.s 

CPU Host Code  
foo.cpp 

Integrated source 
(foo.cu) 

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
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Arrays of Parallel Threads 

•  A CUDA kernel is executed by an array of 
threads 
–  All threads run the same code (SPMD)‏ 
–  Each thread has an ID that it uses to compute 

memory addresses and make control decisions 
 76543210

… 
float x = input[threadID]; 
float y = func(x); 
output[threadID] = y; 
… 

threadID 

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
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… 
float x = input
[threadID]; 
float y = func(x); 
output[threadID] = y; 
… 

threadID 

Thread Block 0 

… 
… 
float x = input
[threadID]; 
float y = func(x); 
output[threadID] = y; 
… 

Thread Block 1 

… 
float x = input
[threadID]; 
float y = func(x); 
output[threadID] = y; 
… 

Thread Block N - 1 

Thread Blocks: Scalable Cooperation 
•  Divide monolithic thread array into multiple 

blocks 
–  Threads within a block cooperate via shared 

memory, atomic operations and barrier 
synchronization 

–  Threads in different blocks cannot cooperate 
76543210 76543210 76543210

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
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Host
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2
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Courtesy: NDVIA

Figure 3.2. An Example of CUDA Thread Organization.
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Block IDs and Thread IDs 
 
•  Each thread uses IDs to decide 

what data to work on 
–  Block ID: 1D or 2D 
–  Thread ID: 1D, 2D, or 3D  

•  Simplifies memory 
addressing when processing 
multidimensional data 
–  Image processing 
–  Solving PDEs on volumes 
–  … 

 
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
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CUDA Memory Model Overview 
•  Global memory 

– Main means of 
communicating R/W Data 
between host and device 

– Contents visible to all threads 
– Long latency access 

•  We will focus on global 
memory for now 

Grid 

Global Memory 

Block (0, 0)‏ 

Shared Memory 

Thread (0, 0)‏ 

Registers 

Thread (1, 0)‏ 

Registers 

Block (1, 0)‏ 

Shared Memory 

Thread (0, 0)‏ 

Registers 

Thread (1, 0)‏ 

Registers 

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
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Constant and texture memory will come later!
!
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CUDA API Highlights: 
Easy and Lightweight 

•  The API is an extension to the ANSI C 
programming language 
           Low learning curve 

 
•  The hardware is designed to enable 

lightweight runtime and driver 
           High performance 

 
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
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CUDA Device Memory Allocation 
•  cudaMalloc() 

– Allocates object in the 
device Global Memory 

– Requires two parameters 
•  Address of a pointer to the 

allocated object 
•  Size of of allocated object 

•  cudaFree() 
– Frees object from device 

Global Memory 
•  Pointer to freed object 

Grid 

Global 
Memory 

Block (0, 0)‏ 

Shared Memory 

Thread (0, 0)‏ 

Registers 

Thread (1, 0)‏ 

Registers 

Block (1, 0)‏ 

Shared Memory 

Thread (0, 0)‏ 
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Thread (1, 0)‏ 

Registers 

Host 
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CUDA Device Memory Allocation (cont.)‏ 

•  Code example:  
– Allocate a  64 * 64 single precision float array 
– Attach the allocated storage to Md 
–  “d” is often used to indicate a device data structure 

TILE_WIDTH = 64; 
Float* Md 
int size = TILE_WIDTH * TILE_WIDTH * sizeof(float); 

 
cudaMalloc((void**)&Md, size); 
cudaFree(Md); 

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
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CUDA Host-Device Data Transfer 
•  cudaMemcpy() 

– memory data transfer 
– Requires four parameters 

•  Pointer to destination  
•  Pointer to source 
•  Number of bytes copied 
•  Type of transfer  

–  Host to Host 
–  Host to Device 
–  Device to Host 
–  Device to Device 

•  Asynchronous transfer 

Grid 
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CUDA Host-Device Data Transfer 
(cont.) 

•  Code example:  
– Transfer a  64 * 64 single precision float array 
– M is in host memory and Md is in device memory 
–  cudaMemcpyHostToDevice and 

cudaMemcpyDeviceToHost are symbolic 
constants 

 
cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice); 
 
cudaMemcpy(M, Md, size, cudaMemcpyDeviceToHost); 

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
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CUDA Keywords 

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
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CUDA Function Declarations 

host host __host__   float HostFunc()‏ 

host device __global__ void  KernelFunc()‏ 

device device __device__ float DeviceFunc()‏ 

Only callable 
from the: 

Executed 
on the: 

•   __global__ defines a kernel function 
–  Must return void 

•   __device__ and __host__ can be used 
together 

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
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CUDA Function Declarations (cont.)‏ 

•    __device__ functions cannot have their 
address taken 

•  For functions executed on the device: 
– No recursion 
– No static variable declarations inside the function 
– No variable number of arguments 

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
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Calling a Kernel Function – Thread Creation 

•  A kernel function must be called with an 
execution configuration: 

 

__global__ void KernelFunc(...); 

dim3   DimGrid(100, 50);    // 5000 thread blocks  

dim3   DimBlock(4, 8, 8);   // 256 threads per block  

size_t SharedMemBytes = 64; // 64 bytes of shared 
memory 

KernelFunc<<< DimGrid, DimBlock, SharedMemBytes >>>
(...); 

•  Any call to a kernel function is asynchronous 
from CUDA 1.0 on, explicit synch needed for 
blocking © David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!

ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!
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A Simple Running Example 
Matrix Multiplication 

•  A simple matrix multiplication example that 
illustrates the basic features of memory and 
thread management in CUDA programs 
– Leave shared memory usage until later 
– Local, register usage 
– Thread ID usage 
– Memory data transfer API between host and device 
– Assume square matrix for simplicity 

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
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Programming Model: 
Square Matrix Multiplication 

Example 
•  P = M * N of size WIDTH x 

WIDTH 

•  Without tiling: 
–  One thread calculates one 

element of P 
–  M and N are loaded WIDTH times 

from global memory 
M 

N 

P 

 
 
 

W
ID

T
H

 
W

ID
T

H
 

WIDTH WIDTH 
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
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M0,2!

M1,1!

M0,1!M0,0!

M1,0!

M0,3!

M1,2! M1,3!

Memory Layout of a Matrix in C 

M0,2!M0,1!M0,0! M0,3! M1,1!M1,0! M1,2! M1,3! M2,1!M2,0! M2,2! M2,3!
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Step 1: Matrix Multiplication 
A Simple Host Version in C 

M 

N 

P 

 
 
 

W
ID

T
H

 
W

ID
T

H
 

WIDTH WIDTH 

// Matrix multiplication on the (CPU) host in double 
precision!
void MatrixMulOnHost(float* M, float* N, float* P, int Width)‏ 
{    
    for (int i = 0; i < Width; ++i)‏ 
        for (int j = 0; j < Width; ++j) { 
            double sum = 0; 
            for (int k = 0; k < Width; ++k) { 
                double a = M[i * width + k]; 
                double b = N[k * width + j]; 
                sum += a * b; 
            } 
            P[i * Width + j] = sum; 
        } 
} 
 

i!

k!

k!
j!
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void MatrixMulOnDevice(float* M, float* N, float* P, int Width)‏ 
{ 
   int size = Width * Width * sizeof(float);  
    float* Md, Nd, Pd;!
   … 
1. // Allocate and Load M, N to device memory  
    cudaMalloc(&Md, size); 
    cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice); 
 
     cudaMalloc(&Nd, size); 
     cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice); 
 
     // Allocate P on the device 
    cudaMalloc(&Pd, size); 
 

Step 2: Input Matrix Data Transfer 
(Host-side Code)‏ 

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
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Step 3: Output Matrix Data Transfer 
(Host-side Code)‏ 

2.   // Kernel invocation code – to be shown later!
     …!
!
3.    // Read P from the device!
      cudaMemcpy(P, Pd, size, cudaMemcpyDeviceToHost);!
!
       // Free device matrices!
      cudaFree(Md); cudaFree(Nd); cudaFree (Pd);!
     }!

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!



44 

Step 4: Kernel Function 

// Matrix multiplication kernel – per thread code 
 
__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)‏ 
{ 
     
    // Pvalue is used to store the element of the matrix 
    // that is computed by the thread 
    float Pvalue = 0; 
 
 

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
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Nd 

Md Pd 
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WIDTH WIDTH 

Step 4: Kernel Function  (cont.)‏ 
 
   for (int k = 0; k < Width; ++k)‏ { 
       float Melement = Md[threadIdx.y*Width+k]; 
       float Nelement = Nd[k*Width+threadIdx.x]; 
       Pvalue += Melement * Nelement; 
   } 
 
  Pd[threadIdx.y*Width+threadIdx.x] = Pvalue; 
} 
 ty!

tx!

ty!

tx!

k!

k!

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
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    // Setup the execution configuration 
       dim3 dimGrid(1, 1); 
       dim3 dimBlock(Width, Width); 
 
 
    // Launch the device computation threads! 
    MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width); 

Step 5: Kernel Invocation 
(Host-side Code)  

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign!



47 

Only One Thread Block Used 
•  One Block of threads compute 

matrix Pd 
–  Each thread computes one 

element of Pd 
•  Each thread 

–  Loads a row of matrix Md 
–  Loads a column of matrix Nd 
–  Perform one multiply and 

addition for each pair of Md and 
Nd elements 

–  Compute to off-chip memory 
access ratio close to 1:1 (not very 
high)‏ 

•  Size of matrix limited by the 
number of threads allowed in a 
thread block 
 

 Grid 1 
Block 1 

3 2 5 4

2

4

2

6

48 

Thread 
)2, 2(‏ 

   WIDTH 

Md Pd 

Nd 
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Step 7: Handling Arbitrary Sized Square 
Matrices 

•  Have each 2D thread block to 
compute a (TILE_WIDTH)2 sub-
matrix (tile) of the result matrix 
– Each has (TILE_WIDTH)2 threads 

•  Generate a 2D Grid of (WIDTH/
TILE_WIDTH)2 blocks 

 
 

Md 

Nd 

Pd 

 
 
 

W
ID

T
H

 
W

ID
T

H
 

WIDTH WIDTH 

ty!
tx!

by!

bx!

You still need to put a loop 
around the kernel call for 
cases where WIDTH/
TILE_WIDTH is greater 
than max grid size (64K)!!

TILE_WIDTH!
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Some Useful Information on 
Tools 
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Compiling a CUDA Program 

NVCC 

C/C++ CUDA 
Application 

PTX to Target 
Compiler 

 G80    …     GPU  

Target code 

PTX Code Virtual 

Physical 

CPU Code 

•  Parallel Thread 
eXecution (PTX)‏ 
–  Virtual Machine 

and ISA 
–  Programming 

model 
–  Execution 

resources and 
state 

float4 me = gx[gtid]; 
me.x += me.y * me.z; 

ld.global.v4.f32  {$f1,$f3,$f5,$f7}, [$r9+0]; 
mad.f32           $f1, $f5, $f3, $f1; 
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Compilation 

•  Any source file containing CUDA language 
extensions must be compiled with NVCC 

•  NVCC is a compiler driver 
–  Works by invoking all the necessary tools and 

compilers like cudacc, g++, cl, ... 
•  NVCC outputs: 

–  C code (host CPU Code)‏ 
•  Must then be compiled with the rest of the application using another tool 

–  PTX 
•  Object code directly 
•  Or, PTX source, interpreted at runtime 
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Linking 

•  Any executable with CUDA code requires two 
dynamic libraries: 
– The CUDA runtime library (cudart)‏ 
– The CUDA core library (cuda)‏ 
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Debugging Using the 
Device Emulation Mode 

•  An executable compiled in device emulation 
mode (nvcc -deviceemu) runs 
completely on the host using the CUDA 
runtime 
–  No need of any device and CUDA driver 
–  Each device thread is emulated with a host thread 
 

•  Running in device emulation mode, one can: 
–  Use host native debug support (breakpoints, inspection, etc.)‏ 
–  Access any device-specific data from host code and vice-versa 
–  Call any host function from device code (e.g. printf) and vice-

versa 
–  Detect deadlock situations caused by improper usage of 

__syncthreads 
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Device Emulation Mode Pitfalls 
•  Emulated device threads execute sequentially, 

so simultaneous accesses of the same memory 
location by multiple threads could produce 
different results. 

•  Dereferencing device pointers on the host or 
host pointers on the device can produce correct 
results in device emulation mode, but will 
generate an error in device execution mode 
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Floating Point 

•  Results of floating-point computations will 
slightly differ because of: 
– Different compiler outputs, instruction sets 
– Use of extended precision for intermediate results 

•  There are various options to force strict single precision 
on the host 
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ECE498AL  
 

Lecture 3: A Simple Example, 
Tools, and CUDA Threads 
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Step 1: Matrix Multiplication 
A Simple Host Version in C 

M 

N 

P 

 
 
 

W
ID

T
H

 
W
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T

H
 

WIDTH WIDTH 

// Matrix multiplication on the (CPU) host!
void MatrixMulOnHost(float* M, float* N, float* P, int Width) "‏
{   "
  for (int i = 0; i < Width; ++i) "‏
    for (int j = 0; j < Width; ++j) {""

"float sum = 0;"
"for (int k = 0; k < Width; ++k) {"

            float a = M[i * width + k];"
            float b = N[k * width + j];"
            sum += a * b;"
        }"
        P[i * Width + j] = sum;"
    }"
}"
 

i!

k!

k!
j!
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void MatrixMulOnDevice(float* M, float* N, float* P, int Width)‏ 
{ 
   int size = Width * Width * sizeof(float);  
    float* Md, Nd, Pd;!
   … 
1. // Allocate and Load M, N to device memory  
    cudaMalloc(&Md, size); 
    cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice); 
 
     cudaMalloc(&Nd, size); 
     cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice); 
 
     // Allocate P on the device 
    cudaMalloc(&Pd, size); 
 

Step 2: Input Matrix Data Transfer 
(Host-side Code)‏ 
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Step 3: Output Matrix Data Transfer 
(Host-side Code)‏ 

2.   // Kernel invocation code – to be shown later!
     …!
!
3.    // Read P from the device!
      cudaMemcpy(P, Pd, size, cudaMemcpyDeviceToHost);!
!
       // Free device matrices!
      cudaFree(Md); cudaFree(Nd); cudaFree (Pd);!
     }!
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Step 4: Kernel Function 

// Matrix multiplication kernel – per thread code 
 
__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)‏ 
{ 
     
    // Pvalue is used to store the element of the matrix 
    // that is computed by the thread 
    float Pvalue = 0; 
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Nd 

Md Pd 
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WIDTH WIDTH 

Step 4: Kernel Function  (cont.)‏ 
 
   for (int k = 0; k < Width; ++k)‏ { 
       float Melement = Md[threadIdx.y*Width+k]; 
       float Nelement = Nd[k*Width+threadIdx.x]; 
       Pvalue += Melement * Nelement; 
   } 
 
  Pd[threadIdx.y*Width+threadIdx.x] = Pvalue; 
} 
 ty!

tx!

ty!

tx!

k!

k!
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    // Setup the execution configuration 
   dim3 dimGrid(1, 1); 
   dim3 dimBlock(Width, Width); 
 
 
    // Launch the device computation threads! 
    MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width); 

Step 5: Kernel Invocation 
(Host-side Code)  
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Only One Thread Block Used 
•  One Block of threads compute 

matrix Pd 
–  Each thread computes one 

element of Pd 
•  Each thread 

–  Loads a row of matrix Md 
–  Loads a column of matrix Nd 
–  Perform one multiply and 

addition for each pair of Md 
and Nd elements 

–  Compute to off-chip memory 
access ratio close to 1:1 (not 
very high)‏ 

•  Size of matrix limited by the 
number of threads allowed in a 
thread block 
 

 Grid 1 
Block 1 

3 2 5 4

2

4

2

6

48 

Thread 
)2, 2(‏ 

   WIDTH 

Md Pd 

Nd 
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Step 7: Handling Arbitrary Sized Square 
Matrices 

•  Have each 2D thread block to 
compute a (TILE_WIDTH)2 
sub-matrix (tile) of the result 
matrix 
– Each has (TILE_WIDTH)2 

threads 
•  Generate a 2D Grid of 

(WIDTH/TILE_WIDTH)2 blocks 
 
 

Md 

Nd 

Pd 
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WIDTH WIDTH 

ty!
tx!

by!

bx!

You still need to put a loop 
around the kernel call for 
cases where WIDTH/
TILE_WIDTH is greater 
than max grid size (64K)!!

TILE_WIDTH!
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Some Useful Information on 
Tools 
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Compiling a CUDA Program 

NVCC 

C/C++ CUDA 
Application 

PTX to Target 
Compiler 

 G80    …     GPU  

Target code 

PTX Code Virtual 

Physical 

CPU Code 

•  Parallel Thread 
eXecution (PTX)‏ 
–  Virtual Machine 

and ISA 
–  Programming 

model 
–  Execution 

resources and 
state 

float4 me = gx[gtid]; 
me.x += me.y * me.z; 

ld.global.v4.f32  {$f1,$f3,$f5,$f7}, [$r9+0]; 
mad.f32           $f1, $f5, $f3, $f1; 
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Compilation 

•  Any source file containing CUDA language 
extensions must be compiled with NVCC 

•  NVCC is a compiler driver 
–  Works by invoking all the necessary tools and 

compilers like cudacc, g++, cl, ... 
•  NVCC outputs: 

–  C code (host CPU Code) 
•  Must then be compiled with the rest of the application using another tool 

–  PTX 
•  Object code directly 
•  Or, PTX source, interpreted at runtime 
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Linking 

•  Any executable with CUDA code requires 
two dynamic libraries: 
– The CUDA runtime library (cudart)‏ 
– The CUDA core library (cuda)‏ 
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Debugging Using the 
Device Emulation Mode 

•  An executable compiled in device 
emulation mode (nvcc -deviceemu) 
runs completely on the host using the 
CUDA runtime 
–  No need of any device and CUDA driver 
–  Each device thread is emulated with a host thread 
 

•  Running in device emulation mode, one 
can: 
–  Use host native debug support (breakpoints, inspection, etc.)‏ 
–  Access any device-specific data from host code and vice-versa 
–  Call any host function from device code (e.g. printf) and 

vice-versa 
–  Detect deadlock situations caused by improper usage of 

__syncthreads 



© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE498AL, University of Illinois, Urbana-Champaign!

70 

Device Emulation Mode Pitfalls 
•  Emulated device threads execute 

sequentially, so simultaneous accesses of 
the same memory location by multiple 
threads could produce different results. 

•  Dereferencing device pointers on the host 
or host pointers on the device can produce 
correct results in device emulation mode, 
but will generate an error in device 
execution mode 
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Floating Point 

•  Results of floating-point computations will 
slightly differ because of: 
– Different compiler outputs, instruction sets 
– Use of extended precision for intermediate 

results 
•  There are various options to force strict single 

precision on the host 
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CUDA Threads 
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Host

Kernel 
1

Kernel 
2

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(0, 1)

Block
(1, 1)

Grid 2

Courtesy: NDVIA

Figure 3.2. An Example of CUDA Thread Organization.

Block (1, 1)

Thread
(0,1,0)

Thread
(1,1,0)

Thread
(2,1,0)

Thread
(3,1,0)

Thread
(0,0,0)

Thread
(1,0,0)

Thread
(2,0,0)

Thread
(3,0,0)

(0,0,1) (1,0,1) (2,0,1) (3,0,1)

Block IDs and Thread IDs 
 
•  Each thread uses IDs to 

decide what data to work on 
–  Block ID: 1D or 2D 
–  Thread ID: 1D, 2D, or 3D  

•  Simplifies memory 
addressing when 
processing 
multidimensional data 
–  Image processing 
–  Solving PDEs on volumes 
–  … 
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Md 

Nd 

Pd 

Pdsub 

TILE_WIDTH 
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Matrix Multiplication Using 
Multiple Blocks 
•  Break-up Pd into tiles 
•  Each block calculates one 

tile 
–  Each thread calculates one 

element 
–  Block size equal tile size 
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P1,0!P0,0!

P0,1!

P2,0! P3,0!

P1,1!

P0,2! P2,2! P3,2!P1,2!

P3,1!P2,1!

P0,3! P2,3! P3,3!P1,3!

Block(0,0)! Block(1,0)!

Block(1,1)!Block(0,1)!

TILE_WIDTH = 2!

A Small Example 
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Pd1,0!

A Small Example: 
Multiplication 

Md2,0!

Md1,1!

Md1,0!Md0,0!

Md0,1!

Md3,0!

Md2,1!

Pd0,0!

Md3,1! Pd0,1!

Pd2,0!Pd3,0!

Nd0,3!Nd1,3!

Nd1,2!

Nd1,1!

Nd1,0!Nd0,0!

Nd0,1!

Nd0,2!

Pd1,1!

Pd0,2! Pd2,2!Pd3,2!Pd1,2!

Pd3,1!Pd2,1!

Pd0,3! Pd2,3!Pd3,3!Pd1,3!
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Revised Matrix Multiplication 
Kernel using Multiple Blocks 

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width) 
{ 
// Calculate the row index of the Pd element and M 

int Row = blockIdx.y*TILE_WIDTH + threadIdx.y; 
// Calculate the column idenx of Pd and N 

int Col = blockIdx.x*TILE_WIDTH + threadIdx.x; 
 
float Pvalue = 0; 
// each thread computes one element of the block sub-matrix 

for (int k = 0; k < Width; ++k) 
  Pvalue += Md[Row*Width+k] * Nd[k*Width+Col]; 
 
Pd[Row*Width+Col] = Pvalue; 
} 
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CUDA Thread Block 
•  All threads in a block execute the same 

kernel program (SPMD) 
•  Programmer declares block: 

–  Block size 1 to 512 concurrent threads 
–  Block shape 1D, 2D, or 3D 
–  Block dimensions in threads 

•  Threads have thread id numbers within block 
–  Thread program uses thread id to select 

work and address shared data 
 

•  Threads in the same block share data and 
synchronize while doing their share of the 
work 

•  Threads in different blocks cannot cooperate 
–  Each block can execute in any order relative 

to other blocs! 

CUDA Thread Block 

Thread Id #: 
0 1 2 3 …          m    

Thread program 

Courtesy: John Nickolls, 
NVIDIA!
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Transparent Scalability 
•  Hardware is free to assigns blocks to any 

processor at any time 
–  A kernel scales across any number of 

parallel processors 
Device 

Block 0 Block 1 

Block 2 Block 3 

Block 4 Block 5 

Block 6 Block 7 

Kernel grid 

Block 0 Block 1 

Block 2 Block 3 

Block 4 Block 5 

Block 6 Block 7 

Device 

Block 0 Block 1 Block 2 Block 3 

Block 4 Block 5 Block 6 Block 7 

Each block can execute in any order relative 
to other blocks. !

time!
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G80 Example: Executing Thread Blocks 

•  Threads are assigned to Streaming 
Multiprocessors in block granularity 
–  Up to 8 blocks to each SM as 

resource allows 
–  SM in G80 can take up to 768 threads 

•  Could be 256 (threads/block) * 3 
blocks  

•  Or 128 (threads/block) * 6 blocks, etc. 

•  Threads run concurrently 
–  SM maintains thread/block id #s 
–  SM manages/schedules thread 

execution 

t0 t1 t2 … tm 

Blocks 

SP 

Shared 
Memory 

MT IU 

SP 

Shared 
Memory 

MT IU 

t0 t1 t2 … tm 

Blocks 

SM 1 SM 0 



© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE498AL, University of Illinois, Urbana-Champaign!

81 

G80 Example: Thread 
Scheduling 

 

•  Each Block is executed as 32-

thread Warps 
–  An implementation decision, 

not part of the CUDA 
programming model 

–  Warps are scheduling units 
in SM 

•  If 3 blocks are assigned to an 
SM and each block has 256 
threads, how many Warps are 
there in an SM? 
–  Each Block is divided into 

256/32 = 8 Warps 
–  There are 8 * 3 = 24 Warps  

…!
t0 t1 t2 … t31 

…!
…!

t0 t1 t2 … t31 
…!Block 1 Warps Block 2 Warps 

SP 
SP 
SP 
SP 

SFU 

SP 
SP 
SP 
SP 

SFU 

Instruction Fetch/Dispatch 
Instruction L1 

Streaming Multiprocessor 

Shared Memory 

…!
t0 t1 t2 … t31 

…!Block 1 Warps 
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G80 Example: Thread Scheduling 
(Cont.) 

•  SM implements zero-overhead warp scheduling 
–  At any time, only one of the warps is executed by SM 
–  Warps whose next instruction has its operands ready for 

consumption are eligible for execution 
–  Eligible Warps are selected for execution on a prioritized 

scheduling policy 
–  All threads in a warp execute the same instruction when selected 

TB1
W1

TB = Thread Block, W = Warp

TB2
W1

TB3
W1

TB2
W1

TB1
W1

TB3
W2

TB1
W2

TB1
W3

TB3
W2

Time

TB1, W1 stall
TB3, W2 stallTB2, W1 stall

Instruction: 1 2 3 4 5 6 1 2 1 2 3 41 2 7 8 1 2 1 2 3 4
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G80 Block Granularity Considerations 
•  For Matrix Multiplication using multiple blocks, should I 

use 8X8, 16X16 or 32X32 blocks? 

–  For 8X8, we have 64 threads per Block. Since each SM can take 
up to 768 threads, there are 12 Blocks. However, each SM can 
only take up to 8 Blocks, only 512 threads will go into each SM! 

–  For 16X16, we have 256 threads per Block. Since each SM can 
take up to 768 threads, it can take up to 3 Blocks and achieve full 
capacity unless other resource considerations overrule. 

–  For 32X32, we have 1024 threads per Block. Not even one can fit 
into an SM! 
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Some Additional API Features 



© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE498AL, University of Illinois, Urbana-Champaign!

85 

Application Programming 
Interface 

•  The API is an extension to the C 
programming language 

•  It consists of: 
–  Language extensions 

•  To target portions of the code for execution on 
the device 

–  A runtime library split into: 
•  A common component providing built-in vector 

types and a subset of the C runtime library in 
both host and device codes 

•  A host component to control and access one 
or more devices from the host 

•  A device component providing device-specific 
functions 
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Language Extensions: 
Built-in Variables 

•  dim3 gridDim; 
–  Dimensions of the grid in blocks 

(gridDim.z unused) 
•  dim3 blockDim; 

–  Dimensions of the block in threads 
•  dim3 blockIdx; 

–  Block index within the grid 
•  dim3 threadIdx; 

–  Thread index within the block 
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Common Runtime 
Component: 

Mathematical Functions •  pow, sqrt, cbrt, hypot 
•  exp, exp2, expm1 
•  log, log2, log10, log1p 
•  sin, cos, tan, asin, acos, atan, atan2 
•  sinh, cosh, tanh, asinh, acosh, atanh 
•  ceil, floor, trunc, round 
•  Etc. 

–  When executed on the host, a given function 
uses the C runtime implementation if 
available 

–  These functions are only supported for 
scalar types, not vector types 
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Device Runtime Component: 
Mathematical Functions 

•  Some mathematical functions (e.g. sin
(x)) have a less accurate, but faster 
device-only version (e.g. __sin(x)) 
–  __pow 
–  __log, __log2, __log10 
–  __exp 
–  __sin, __cos, __tan 



© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009!
ECE498AL, University of Illinois, Urbana-Champaign!

89 

Host Runtime Component 
•  Provides functions to deal with: 

–  Device management (including multi-device 
systems) 

–  Memory management 
–  Error handling 

•  Initializes the first time a runtime function is 
called 

•  A host thread can invoke device code on 
only one device 
–  Multiple host threads required to run on 

multiple devices 
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Device Runtime Component: 
Synchronization Function 
•  void __syncthreads(); 
•  Synchronizes all threads in a block 
•  Once all threads have reached this point, 

execution resumes normally 
•  Used to avoid RAW / WAR / WAW 

hazards when accessing shared or global 
memory 

•  Allowed in conditional constructs only if 
the conditional is uniform across the entire 
thread block 


