Thursday, December 1,

One more thing...
OpenMP has tasks

Thursday, December 1,

Multicore Programming
and Architecture

Task-Based Parallelism

Thursday, December 1,

Intel® Software College

Old Dynamic of Parallel Computing

Parallel computers

/ are expensive

Parallel computing Th ‘
not mainstream €re are not many

\ piﬁcomputers

Most people do not learn
parallel programming

Parallel programming —p Parallel programming
environments are inadequate is difficult
3 Recognizing Potential Parallelism

Software

Copyright © 2006, Intel Corporation. All rights reserved.

Thursday, December 1,

Intel® Software College

New Dynamic of Parallel Computing

PCs are parallel computers

/

Parallel programming .]
considered mainstream veryone nas a

\ parallel computer

More people learning
parallel programming

Parallel programming —0_, Parallel programming
environments improve gets easier

(, a Recognizing Potential Parallelism

Software

Copyright © 2006, Intel Corporation. All rights reserved.

Thursday, December 1,

Disclaimer

Thursday, December 1,

Disclaimer

e I'm a big fan of task-based parallelism

e Seems like most attractive multicore programming paradigm

e Captures loop-level parallelism of OpenMP + more irregular
parallelism

Thursday, December 1,

Disclaimer

e I'm a big fan of task-based parallelism

e Seems like most attractive multicore programming paradigm

e Captures loop-level parallelism of OpenMP + more irregular
parallelism

e Several variants of task-based parallelism
e Cilk (language extension)
e Intel’s Threaded Building Blocks (C++ library)

e Java’s JSR-166y (for potential inclusion in Java 7)
e Microsoft’s Parallel Patterns Library (PPL)

Thursday, December 1,

Disclaimer

e I'm a big fan of task-based parallelism

e Seems like most attractive multicore programming paradigm

e Captures loop-level parallelism of OpenMP + more irregular
parallelism

e Several variants of task-based parallelism
e Cilk (language extension)
e Intel’s Threaded Building Blocks (C++ library)
e Java’s JSR-166y (for potential inclusion in Java 7)
e Microsoft's Parallel Patterns Library (PPL)

e All variants have some basic idea...
e But many differences in interface, implementation, etc.

Thursday, December 1,

Acknowledgments

e Includes slides from:
e “Shared Memory Control Programming UPCRC lllinois

Intel Threading Building Blocks” ?n“lﬂ%.ﬁgi';"ﬂf,ﬁgs,‘;“n?,",l.ﬁg

e Clay Breshears (Intel)
e Presented at UIUC’s UPCRC 2009 Summer School
e With permission, includes some modifications by me

e Various “Intel Software College” slides Blue background slides
e "Threading for Performance with Intel Threading Building Blocks”
e “"Recognizing Potential Parallelism”
e "Implementing Task Decompositions”

e (Other sources and references:

e “Intel Threading Building Blocks"” by James Reinders, O'Reilly
e TBB documentation

Thursday, December 1,

Irregular Parallelism

Thursday, December 1,

Irregular Parallelism

e Beyond OpenMP’s “Loop-level” parallelism

e Primary focus on parallel loops
e \With known iteration counts

Thursday, December 1,

Irregular Parallelism

e Beyond OpenMP’s “Loop-level” parallelism

e Primary focus on parallel loops
e \With known iteration counts

e What if the parallelism is more irregular?
e Walking a tree or graph

Thursday, December 1,

Irregular Parallelism

e Beyond OpenMP’s “Loop-level” parallelism

e Primary focus on parallel loops
e \With known iteration counts

e What if the parallelism is more irregular?
e Walking a tree or graph

n

e (Can often express this irregular parallelism as “tasks
e Tasks are bundles of (mostly) independent computation

Thursday, December 1,

Irregular Parallelism

e Beyond OpenMP’s “Loop-level” parallelism

e Primary focus on parallel loops
e \With known iteration counts

e What if the parallelism is more irregular?
e Walking a tree or graph

n

e (Can often express this irregular parallelism as “tasks
e Tasks are bundles of (mostly) independent computation

e Generalization of work-list algorithm
e Task may or may not have dependencies

Thursday, December 1,

Case Study: N Queens

Thursday, December 1,

Intel® Software College

Case Study: The N Queens Problem

Is there a way to place
N queens on an N-by-N
chessboard such that
no queen threatens
another queen?

Implementing Task Decompositions H t I
3 thie)

Copyright © 2006, Intel Corporation. All rights reserved.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

Thursday, December 1,

Intel® Software College

A Solution to the 4 Queens Problem

| i@‘ . Implementing Task Decompositions intel).

Copyright © 2006, Intel Corporation. All rights reserved.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

Thursday, Dece ri,

Intel® Software College

Exhaustive Search

9

(& ({8

L

| |@ Implementing Task Decompositions intel .

Copyright © 2006, Intel Corporation. All rights reserved.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

Thursday, Dece ri,

Intel® Software College

Design #1 for Parallel Search

Create threads to explore different parts of the
search tree simultaneously

If a node has children
The thread creates child nodes

The thread explores one child node itself

Thread creates a new thread for every other
child node

intel) - Implementing Task Decompositions in tel »

Copyright © 2006, Intel Corporation. All rights reserved.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners

Thursday, December 1,

Intel® Software College

Design #1 for Parallel Search

Thread W
=
,,,

o)
.
e

N
=3

Thread W New New New
Thread X Thread Y Thread Z

intel) > Implementing Task Decompositions (i n tel : ’

Copyright © 2006, Intel Corporation. All rights reserved.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

Thursday, December 1,

Pros and Cons of Design #1

Pros
Simple design, easy to implement
Balances work among threads
Cons
Too many threads created
Lifetime of threads too short

Overhead costs too high

intel) Implementing Task Decompositions

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademark: gistered trademarks of Intel Corporation or i bsidiaries in the United States or oth tries. *Other brands and nam

Intel® Software College

re the property of their resp

—
=
N
I0)
[V
S
n
o
=
=
I
o
o
=
=
n
(9]
C
D
o
=
o
el
I}
=
[a}
o
c
>
o
I}
[}
o
I}
(e}
o
<
@
o
2
3
I}
=
)

Thursday, December 1,

Intel® Software College

Design #2 for Parallel Search

One thread created for each subtree rooted at a
particular depth

Each thread sequentially explores its subtree

intel) - Implementing Task Decompositions in tel »

Copyright © 2006, Intel Corporation. All rights reserved.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners

Thursday, December 1,

Intel® Software College

Design #2 in Action

“IIIIIIIII IIIIIIIII..

“IIIIIIIIIIIIIIIIIIII.

I EEEEEEEEEEEEEN
A< .Q

*
<

*
L 2
*
*

 J

Thread

2 .\.
d
\

—]
-y
=3
)
Q
Q

.\. 0

C
é

e A 00

*
..IIIIIIIIIIIIIIIIIIII“ ..IIIIIIIIIIIIIII“

‘IllllIIIIIIIIIIIIIIIIIIIIIIIII..
..IIIIIIIIIIIIIIIIIIIIIIIIIIIIII‘

o—
./

“IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII..
Qg EEEEEEEEEEEEEEEEEEEEEEEEEEEEEER®

“
L 4
.

*
*
L 2
4

¢
..IIIIIIIIIIIIIIIIIIII"

)

Implementing Task Decompositions H t I
10 tnie)

Copyright © 2006, Intel Corporation. All rights reserved.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

Thursday, December 1,

Intel® Software College

Pros and Cons of Design #2

Pros

Thread creation/termination time minimized

Cons
Subtree sizes may vary dramatically

Some threads may finish long before others

Imbalanced workloads lower efficiency

intel) - Implementing Task Decompositions in tel »

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners

Thursday, December 1,

Intel® Software College

Design #3 for Parallel Search

Main thread creates work pool—Ilist of subtrees to explore
Main thread creates finite number of co-worker threads
Each subtree exploration is done by a single thread

Inactive threads go to pool to get more work

intel) 5 Implementing Task Decompositions (i n tel »

Copyright © 2006, Intel Corporation. All rights reserved.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

Thursday, December 1,

Intel® Software College

Design #3 in Action

Thread Thread
pi 3

Thread
1

eEEEEHN Ny

®
I
L

*
L 2

@, O
Thread Th reay
3 1

%
L\

L 4 *
.IIIIIIII’ ’.IIIIIIIIIIII‘ ’.IIIIIII’ .IIIIIIIIIII’

‘lllllllllllllllllllll..
‘-IIIIIIIIIIIIIIIIIIII'
4qEEEEEEEEEEEEEEEEEEEEER®
‘IIIIIIIIIIIIIIIIIIIII.
..IIIIIIIIIIIIIIIIIIII‘
4qEEEEEEEEEEEEEEEEEEEEER®

qQ
¢S I NN EENEEEENENEEEEEENENENEER)

¢ QuemmEmnn?®

5
-
8)

Implementing Task Decompositions H t I
14 tnie)

Copyright © 2006, Intel Corporation. All rights reserved.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

Thursday, December 1,

Intel® Software College

Pros and Cons of Strategy #3

Pros
Thread creation/termination time minimized
Good workload balance

Cons

Threads need exclusive access to data structure
containing work to be done

intel) ic Implementing Task Decompositions (i n tel »

Copyright © 2006, Intel Corporation. All rights reserved.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

Thursday, December 1,

Intel® Software College

Implementing Strategy #3 for N Queens

Work pool consists of N boards representing N
possible placements of queen on first row

{8

Implementing Task Decompositions H t I >
16 ln e

Copyright © 2006, Intel Corporation. All rights reserved.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

Thursday, December 1,

Intel® Software College

Parallel Program Design

One thread creates list of partially filled-in boards
Fork: Create one thread per CPU

Each thread repeatedly gets board from list, searches
for solutions, and adds to solution count, until
no more board on list

Join: Occurs when list is empty

One thread prints number of solutions found

intel) o Implementing Task Decompositions in tel »

Copyright © 2006, Intel Corporation. All rights reserved.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners

Thursday, December 1,

N Queens Recap

23

Thursday, December 1,

N Queens Recap

e Unlike dynamic loop scheduling in OpenMP
e Amount of work not known at the start
e “context” of the task is more than just an iteration count

23

Thursday, December 1,

N Queens Recap

e Unlike dynamic loop scheduling in OpenMP
e Amount of work not known at the start
e “context” of the task is more than just an iteration count

e Encapsulate data and computation into a task
e Number of queens placed thus far (how many rows processed)
e State of the board
e “execute” method

23

Thursday, December 1,

N Queens Recap

e Unlike dynamic loop scheduling in OpenMP
e Amount of work not known at the start
e “context” of the task is more than just an iteration count

e Encapsulate data and computation into a task
e Number of queens placed thus far (how many rows processed)
e State of the board
e “execute” method

e Execute method of task
e if (number of queens placed thus far > threshold):
e Complete search sequentially
e Atomic increment of global counter of found solutions

e Else:
e Enqueue a sub-task for each valid placement of queen on next row

23

Thursday, December 1,

N Queens Recap

e Unlike dynamic loop scheduling in OpenMP

e Amount of work not known at the start
e “context” of the task is more than just an iteration count

e Encapsulate data and computation into a task
e Number of queens placed thus far (how many rows processed)
e State of the board
e “execute” method

o Execute method of task
e if (number of queens placed thus far > threshold):
e Complete search sequentially
e Atomic increment of global counter of found solutions

e Else:
e Enqueue a sub-task for each valid placement of queen on next row

o Work-list scheduling of computation, no explicit dependencies

23

Thursday, December 1,

Task Decomposition & Dependencies

24

Thursday, December 1,

Task Decomposition and Dependencies

25

Thursday, December 1,

Task Decomposition and Dependencies

e In more general task-based models...
e Tasks can have dependencies (implicit or explicit)

25

Thursday, December 1,

Task Decomposition and Dependencies

e In more general task-based models...
e Tasks can have dependencies (implicit or explicit)

e Task Decomposition
o Identify “tasks”
e Bundles of mostly independent work
e Identify dependencies between tasks
e Creates a direct acyclic graph (DAG) of computation

25

Thursday, December 1,

Task Decomposition and Dependencies

e In more general task-based models...
e Tasks can have dependencies (implicit or explicit)

e Task Decomposition
o Identify “tasks”
e Bundles of mostly independent work
e Identify dependencies between tasks
e Creates a direct acyclic graph (DAG) of computation

e Task scheduling
e Static: if all tasks know at start

e Dynamic: worker threads executes tasks from a task pool
e Allows tasks to create sub-tasks

25

Thursday, December 1,

Intel® Software College

Task Dependencies

f()

Total work: 6

('nD! 26 Recognizing Potential Parallelism (inte| '

Copyright © 2006, Intel Corporation. All rights reserved.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

Thursday, December 1,

Intel® Software College

Task Dependencies

Total work: 6 Critical path: 4

('n‘le?l 27 Recognizing Potential Parallelism (intel »

Copyright © 2006, Intel Corporation. All rights reserved.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

Thursday, December 1,

Intel® Software College

Task Dependencies

CPU 1 CPU 2 0 CPUO

g()

I
4 r()

h() q()
AN

Total work: 6 Critical path: 4 Max speedup: 1.5

("@! 28 Recognizing Potential Parallelism (intel }

Copyright © 2006, Intel Corporation. All rights reserved.
el an 11 are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners

Thursday, December 1,

Intel® Software College

Task Dependencies
CPU 1 CPUO

g()
|

v

a()
h() \ /

Total work: 6 Critical path: 4 Max speedup: 1.5

("@! 29 Recognizing Potential Parallelism (intel ’

Copyright © 2006, Intel Corporation. All rights reserved.
el and the Intel | are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners

Thursday, December 1,

Recursive Task-Based Parallelism

30

Thursday, December 1,

Recursive Task-Based Parallelism

31

Thursday, December 1,

Recursive Task-Based Parallelism

e Dynamic
e Tasks can create more tasks

31

Thursday, December 1,

Recursive Task-Based Parallelism

e Dynamic
e Tasks can create more tasks

e Recursive fork/join
e Parent task “spawns” sub-tasks
e “Join” operation waits until all sub-tasks complete
e But not all tasks
e Impact: need some way to track which sub-tasks have completed
e Reference counting of live (non-completed) sub-tasks

31

Thursday, December 1,

Recursive Task-Based Parallelism

e Dynamic
e Tasks can create more tasks

o Recursive fork/join
e Parent task “spawns” sub-tasks
e “Join” operation waits until all sub-tasks complete

e But not all tasks
e Impact: need some way to track which sub-tasks have completed
e Reference counting of live (non-completed) sub-tasks

e In essence, creates a implicit task dependency

31

Thursday, December 1,

Recursive Task-Based Parallelism

e Dynamic
e Tasks can create more tasks

e Recursive fork/join
e Parent task “spawns” sub-tasks
e “Join” operation waits until all sub-tasks complete
e But not all tasks
e Impact: need some way to track which sub-tasks have completed
e Reference counting of live (non-completed) sub-tasks

e In essence, creates a implicit task dependency

e On “Join”:
e Option #1: continue with code at join point (“spawn and wait”)

e Option #2: call an explicit continuation (no “wait”)
31

Thursday, December 1,

Tasks in OpenMP 3.0

32

Thursday, December 1,

New Addition to OpenMP

* Tasks — Main change for OpenMP 3.0

» Allows parallelization of irregular problems
* unbounded loops
* recursive algorithms
« producer/consumer

33

UPCRC lllinois

2009 Summer School on
Multicore Programming

Thursday, December 1,

What are tasks?

* Tasks are independent units of work
— Threads are assigned to perform the work of each task
* Tasks may be deferred
— Tasks may be executed immediately
* The runtime system decides which of the above

— Tasks are composed of:
 code to execute
* data environment
* internal control variables (ICV)

y

Serial

-

Parallel

UPCRC lllinois

2009 Summer School on
Multicore Programming

Thursday, December 1,

Task Construct — Explicit Task View

» Ateam of threads is created at the
omp parallel construct #pragma omp parallel

* Asingle thread, TO0, is chosen to {
execute the while loop

» TO operates the while loop, creates
tasks, and fetches next pointers

« Each time TO crosses the omp
task construct it generates a new

#pragma omp single
{ /l block 1
node * p = head;

#pragma omp task
process(p);

task o p = p->next; //block 3
e Each task runs in its own thread }
* All tasks complete at the barrier at } Il tasks done

the end of the parallel region’s single)

construct

while (p) { //block 2

5

UPCRC lllinois

2009 Summer School on
Multicore Programming

Thursday, December 1,

Why are tasks useful?

Have potential to parallelize irregular patterns and recursive function calls

#pragma omp parallel
{
#pragma omp single
{ /| block 1
node * p = head;
while (p) { //block 2
#pragma omp task
process(p);
p = p->next; //block 3

}

36

AW 4

UPCAC lllinois

2009 Summer School on
Multicore Programming

Thursday, December 1,

Why are tasks useful?
Have potential to parallelize irregular patterns and recursive function calls

Single
Threaded
Block 1
#pragma omp parallel
{ Block 2
#pragma omp single faskct
{ /| block 1 —
node * p = head; N
while (p) { //block 2
#pragma omp task g:;f(kzz
process(p); —
p = p->next; //block 3 3
} ®
} } Block 3
UPCRE lllinois
4 2009 Summer School on

MulGicore Programming

Thursday, December 1,

Why are tasks useful?
Have potential to parallelize irregular patterns and recursive function calls

Single Thri Thr2 Thr3 Thr4
Threaded
#pragmaompuparallel | | cEwSsm7s » ~ -~ T
{ /ﬁv —-— e -
#pragma omp single Block s |
{ /I block 1 Task 2 | | Block 2
node * p = head; Task 3
while (p) { //block 2 -
#pragma omp task o
process(p); — | pmm S - '
p = p->next; //block 3
}
} |
} » Time Saved

Block 2

Task 3 UPCRC lllinois

J 2009 Summer School on
= Multicore Programming

Thursday, December 1,

When are tasks guaranteed to be complete?

Tasks are guaranteed to be complete:

e At thread or task barriers

e At the directive: #pragma omp barrier

e At the directive: #pragma omp taskwait

UPCRC lllinois

2009 Summer School on
37 Multicore Programming

Thursday, December 1,

C_)penMPE

General task characteristics

e A task has

¢ Code to execute
¢ A data environment (it owns its data)

¢ An assigned thread that executes the code and
uses the data

e Two activities: packaging and execution

¢ Each encountering thread packages a new instance
of a task (code and data)

¢ Some thread in the team executes the task at some
later time

Thursday, December 1,

C_)penMPE

Definitions

e Task construct — task directive plus structured
block

e Task — the package of code and instructions
for allocating data created when a thread
encounters a task construct

e Task region — the dynamic sequence of
instructions produced by the execution of a
task by a thread

Thursday, December 1,

C_)penMPE

Tasks and OpenMP

e Tasks have been fully integrated into OpenMP

e Key concept: OpenMP has always had tasks, we just
never called them that.

¢ Thread encountering parallel construct packages
up a set of implicit tasks, one per thread.

¢ Team of threads is created.

¢Each thread in team is assigned to one of the tasks
(and tied to it).

¢Barrier holds original master thread until all implicit
tasks are finished.

e We have simply added a way to create a task explicitly
for the team to execute.

e Every part of an OpenMP program is part of one task or
another!

Thursday, December 1,

C_)penMPE

task Construct

#pragma omp task [clause[[,]clause]
structured-block

where clause can be one of:

if (expression)

untied

shared (list)

private (list)
firstprivate (list)
default(shared | none)

Thursday, December 1,

C_)penMPE

The if clause

e When the if clause argument is false

¢ The task is executed immediately by the encountering
thread.

¢ The data environment is still local to the new task...

¢ ...and it’s still a different task with respect to
synchronization.

e It’s a user directed optimization

¢ when the cost of deferring the task is too great
compared to the cost of executing the task code

to control cache and memory affinity

Thursday, December 1,

C_)penMPE

When/where are tasks complete?

e At thread barriers, explicit or implicit

¢ applies to all tasks generated in the current paraliel
region up to the barrier

¢ matches user expectation

e At task barriers

¢ i.e. Wait until all tasks defined in the current task have
completed.

#pragma omp taskwait

¢ Note: applies only to tasks generated in the current task,
not to “descendants” .

Thursday, December 1,

Example — parallel pointer chasing
using tasks

#pragma omp parallel
{
#pragma omp single private (p)
{
p = listhead ; p is firstprivate inside
while (p) { ///tmsumk
#fpragma omp task
process (p)
p=next (p) ;

Thursday, December 1,

OpenMP 3.0
Example — parallel pointer chasing on
multiple lists using tasks

#pragma omp parallel
{
#pragma omp for private (p)
for (int 1 =0; i <numlists ; i++) {
p = listheads [i] ;
while (p) {
#pragma omp task
process (p)
p=next (p) ;

Thursday, December 1,

C_)penMPE

Example: postorder tree traversal

void postorder (node *p) {
if (p->left)
#pragma omp task
postorder (p->left) ;
if (p->right)
#fpragma omp task
postorder (p->right) ;
#pragma omp taskwait // wait for descendants

->data) ; <\\\\\\\\\\\\\
} process(®) Task scheduling point

e Parent task suspended until children tasks complete

Thursday, December 1,

C_)penMPE

Task switching

e Certain constructs have task scheduling points
at defined locations within them

e When a thread encounters a task scheduling
point, it is allowed to suspend the current task
and execute another (called task switching)

e It can then return to the original task and
resume

Thursday, December 1,

C_)penMPE

Task switching example

#pragma omp single
{
for (i=0; i<ONEZILLION; i++)
#pragma omp task
process (item[i]) ;

}

e Too many tasks generated in an eye-blink
e Generating task will have to suspend for a while
e With task switching, the executing thread can:

¢execute an already generated task (draining the
“task pool”)

+dive into the encountered task (could be very
cache-friendly)

Thursday, December 1,

C_)penMPE

Thread switching

#pragma omp single
{
#pragma omp task untied
for (i=0; i<ONEZILLION; i++)
#pragma omp task
process (item[i]) ;

e Eventually, too many tasks are generated

Generating task is suspended and executing thread switches to a
long and boring task

Other threads get rid of all already generated tasks, and start
starving...

With thread switching, the generating task can be resumed by a
different thread, and starvation is over

Too strange to be the default: the programmer is responsible!

Thursday, December 1,

C_)penMPE

Dealing with taskprivate data

e The Taskprivate directive was removed from
OpenMP 3.0

¢Too expensive to implement

e Restrictions on task scheduling allow
threadprivate data to be used
¢User can avoid thread switching with tied tasks

¢ Task scheduling points are well defined

Thursday, December 1,

Data Sharing: tasks (OpenMP 3.0)

e The default for tasks is usually firstprivate, because the task may
not be executed until later (and variables may have gone out of

scope).
e Variables that are shared in all constructs starting from the

innermost enclosing parallel construct are shared, because the
barrier guarantees task completion.

#pragma omp parallel shared(A) private(B) :
{ A is shared

B is firstprivate
#pragma omp task / C is private
{

int C;
compute(A, B, C);
}
}

57
Thursday, December 1,

. -
: -y S~ - & > S ."..‘ -t T
- / R - '."(T2~ \.‘-(. 2 - .‘l.~-‘
- — - ~'- » - vv.- - > i S s ~ \\» .

Parallel Sort Example
(with work stealing)

@ Inte

Software

Thursday, December 1,

Intel® Software College

Quicksort — Step 1

tbb::parallel_sort (color, color+64);

32 44 9 26 31 57 3 19 55 29 27 1 20 5 42 62 25 51 49 15 54 6 18 48 10 2 60 41 14 47 24 36 37 52 22 34 35 11 28 8 13 43 53 23 61 38 56 16 59 17 50 7 21 45 4 39 33 40 58 12 30 0 46 63

Intel and the Intel logo are trademarks or registered tragdemarks of Intel Corporation or its subsidiaries in the United States
Software SPBYH'&hEo n%plé% f%‘ithB%F?o%Oé‘nc;lf %isaﬁees?ﬁ% roperty of their respective owners.

Thursday, December 1,

Intel® Software College

Quicksort — Step 2

32 44 9 26 31 57 3 19 55 29 27 1 20 5 42 62 25 51 49 15 54 6 18 48 10 2 60 41 14 47 24 36 37 52 22 34 35 11 28 8 13 43 53 23 61 38 56 16 59 17 50 7 21 45 4 39 33 40 58 12 30 0 46 63

v

Intel and the Intel logo are trademarks or registered tragdemarks of Intel Corporation or its subsidiaries in the United States
sotvmre SPOUBNEEATOE: TGP RO And I SIHEE 5 the Ehoperty of their respective owners.

Thursday, December 1,

Intel® Software College

Quicksort — Step 2

THREAD 2

24 36 37 52 22 34 35 11 28 8 13 43 53 23 61 38 56 16 59 17 50 7 21 45 4 39 33 40 58 12 30 0 46 63

v

37 52 47 41 43 53 60 61 38 56 48 59 54 50
49 51 45 62 39 42 40 58 55 57 44 46 63

Thread 2 gets work by
stealing from Thread 1

32 44 9 26 31 57 3 19 55 29 27 1 20 5 42 62 25 51 49 15 54 6 18 48 10 2 60 41 14 47

Intel and t are trademark demarks of Intel Corporation or its subsidiaries in the United States

I | |] . istered t
Software &P BYﬁ@hEo%er&ﬁé%l f%’%gpmgﬁéogm&fgé%%%%%ﬁgr operty of their respective owners.

Thursday, December 1,

Intel® Software College

Quicksort — Step 3

THREAD 2

32 44 9 26 31 57 3 19 55 29 27 1 20 5 42 62 25 51 49 15 54 6 18 48 10 2 60 41 14 47 24 36 37 52 22 34 35 11 28 8 13 43 53 23 61 38 56 16 59 17 50 7 21 45 4 39 33 40 58 12 30 0 46 63

\ y v

52 47 41 43 53 60 61 38 56 48 59 54 50
49 51 45 62 39 42 40 58 55 57 44 46 63

|
v v v
45 47 41 43 50 52 51 54 62

46 44 40 38 49 59 56 61 58 55
42 48 39 57 60 53 63

Thread 2 partitions/
splits its data

intel
Intel and the Intel logo are trademarks or registered tragdemarks of Intel Corporation or its subsidiaries in the United States
sottmre GO SErANOE: TR P RS M DL B BN roperty of thelr respectinve awners.

Thursday, December 1,

Intel® Software College

Quicksort — Step 3

32 44 9 26 31 57 3 19 55 29 27 1 20 5 42 62 25 51 49 15 54 6 18 48 10 2 60 41 14 47

24 36 37

THREAD 4

THREAD 2

52 22 34 35 11 28 8 13 43 53 23 61 38 56 16 59 17 50 7 21 45 4 39 33 40 58 12 30 0 46 63

\

11 0 9 26 31 30 3 19 12 29 27 1 20 5 33 4 25 21 7
15 17 6 18 16 10 2 23 13 14 8 24 36 32 28 22 34 35

12 29 27 19 20 30 33 31 25 21 11 15
17 26 18 16 10 9 23 13 14 8 24 36
32 28 22 34 35

Thread 3 gets work by
stealing from Thread 1

¥

37

v

52 47 41 43 53 60 61 38 56 48 59 54 50
49 51 45 62 39 42 40 58 55 57 44 46 63

\ v v
45 47 41 43 50 52 51 54 62

46 44 40 38 49 59 56 61 58 55
42 48 39 57 60 53 63

Thread 4 gets work by
stealing from Thread 2

Intel and t%e Intel logo are trademarks or registered trgdemarks of Intel Corporation or its subsidiaries in the United States
sottmore (DRHEEDEHATNS: T Rh P BTG I NSRBI SRS L ihoperty of their respective owners.

Thursday, December 1,

Intel® Software College

Quicksort — Step 4

_ THREAD 3 THREAD 2 THREAD 4

32 44 9 26 31 57 3 19 55 29 27 1 20 5 42 62 25 51 49 15 54 6 18 48 10 2 60 41 14 47 24 36 37 52 22 34 35 11 28 8 13 43 53 23 61 38 56 16 59 17 50 7 21 45 4 39 33 40 58 12 30 0 46 63

\ y v

37 52 47 41 43 53 60 61 38 56 48 59 54 50
49 51 45 62 39 42 40 58 55 57 44 46 63

. 12 29 27 19 20 30 33 31 25 21 11 15 45 47 41 43 50 52 51 54 62

17 26 18 16 10 9 23 13 14 8 24 36 46 44 40 38 49 59 56 61 58 55
32 28 22 34 35 42 48 39 57 60 53 63

11 8 14 13 21 25 26 31 33 30
9 10 16 12 20 23 19 27 29 24
17 15 36 32 28 22 34 35

Thread 3 partitions/splits Thread 2 sorts the Thread 4 sorts the
its data rest its data rest of its data

01234567 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

@ intel)

Intel and the Intel logo are trademarks or registered tragdemarks of Intel Corporation or its subsidiaries in the United States
sottmre GOHANEGHrANOE: TGP ARSI M ST

SRS Sroperty of their respective owners.
Thursdayv, December 1,

Intel® Software College

Quicksort — Step 5

THREAD 3 THREAD 2 THREAD 4

32 44 9 26 31 57 3 19 55 29 27 1 20 5 42 62 25 51 49 15 54 6 18 48 10 2 60 41 14 47 24 36 37 52 22 34 35 11 28 8 13 43 53 23 61 38 56 16 59 17 50 7 21 45 4 39 33 40 58 12 30 0 46 63

v v

52 47 41 43 53 60 61 38 56 48 59 54 50
49 51 45 62 39 42 40 58 55 57 44 46 63

12 29 27 19 20 30 33 31 25 21 11 15 45 47 41 43 50 52 51 54 62

17 26 18 16 10 9 23 13 14 8 24 36 46 44 40 38 59 56 61 58 55
32 28 22 34 35 42 48 39 57 60 53 63

11 8 14 13
9 10 16 12
17 15

Thread 3 sorts the
rest of its data

0123456789 1011 12 13 14 15 16 17 18 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

intel
Intel and the Intel logo are trademarks or registered tragdemarks of Intel Corporation or its subsidiaries in the United States
Software SPBYﬁ'é;\hEo%r&ﬂé% f%‘ih%PB?%F?&é°5‘n§\f %%sgr%s%g roperty of their respective owners.

Thursday, December 1,

Intel® Software College

Quicksort — Step 6

THREAD 3 THREAD 2 THREAD 4

32 44 9 26 31 57 3 19 55 29 27 1 20 5 42 62 25 51 49 15 54 6 18 48 10 2 60 41 14 47 24 36 37 52 22 34 35 11 28 8 13 43 53 23 61 38 56 16 59 17 50 7 21 45 4 39 33 40 58 12 30 0 46 63

\ y v

37 52 47 41 43 53 60 61 38 56 48 59 54 50
49 51 45 62 39 42 40 58 55 57 44 46 63
|

. 12 29 27 19 20 30 33 31 25 21 11 15 45 47 41 43 50 52 51 54 62

v

17 26 18 16 10 9 23 13 14 8 24 36 46 44 40 38 59 56 61 58 55
32 28 22 34 35 42 48 39 57 60 53 63

11 8 14 13
9 10 16 12
17 15

0123456789 1011 12 13 14 15 16 17 18 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Intel and the Iné | If%?are trademar isstered trgdemarks of Intel Corporation or its subsidiaries in the United States
SPBYﬁ&hEo %p thB?%F?J&OQn Jrees?ﬁ% roperty of their respective owners.

Thursday, December 1,

Intel® Software College

Quicksort — Step 6

THREAD 3 THREAD 2 THREAD 4

32 44 9 26 31 57 3 19 55 29 27 1 20 5 42 62 25 51 49 15 54 6 18 48 10 2 60 41 14 47 24 36 37 52 22 34 35 11 28 8 13 43 53 23 61 38 56 16 59 17 50 7 21 45 4 39 33 40 58 12 30 0 46 63

\ y v

37 52 47 41 43 53 60 61 38 56 48 59 54 50
49 51 45 62 39 42 40 58 55 57 44 46 63

. 12 29 27 19 20 30 33 31 25 21 11 15 45 47 41 43 50 52 51 54 62
7

17 26 18 16 10 9 23 13 14 8 24 36 46 44 40 38 49 59 56 61 58 55
32 28 22 34 35 42 48 39 57 60 53 63

11 8 14 13
9 10 16 12
17 15

v

30 29 33
36 32 28
31 34 35

Thread 2 gets more work
by stealing from Thread 1

0123456789 1011 12 13 14 15 16 17 18 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

(inteD)
Sottmare SO ARCE: TP AT oAk

Thursday, December 1,

‘fr_r%%isstered trgdemarks of Intel Corporation or its subsidiaries in the United States
SR operty of their respective owners.

Intel® Software College

Quicksort — Step 7

THREAD 3 THREAD 2 THREAD 4

32 44 9 26 31 57 3 19 55 29 27 1 20 5 42 62 25 51 49 15 54 6 18 48 10 2 60 41 14 47 24 36 37 52 22 34 35 11 28 8 13 43 53 23 61 38 56 16 59 17 50 7 21 45 4 39 33 40 58 12 30 0 46 63

v v

37 52 47 41 43 53 60 61 38 56 48 59 54 50
49 51 45 62 39 42 40 58 55 57 44 46 63
|

. 12 29 27 19 20 30 33 31 25 21 11 15 45 47 41 43 50 52 51 54 62

v

17 26 18 16 10 9 23 13 14 8 24 36 46 44 40 38 49 59 56 61 58 55
32 28 22 34 35 42 48 39 57 60 53 63

11 8 14 13
9 10 16 12
17 15

v

30 29 33
36 32 28
31 34 35

Thread 2 sorts the
rest of its data

0123456789 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

DONE
(inteD)
Sottmare SO ARCE: TP AT oAk

Thursday, December 1,

‘fr_r%%isstered trgdemarks of Intel Corporation or its subsidiaries in the United States
SR operty of their respective owners.

Expressing Tasks in Libraries

63

Thursday, December 1,

Expressing Tasks in Libraries

e [unctors

63

Thursday, December 1,

Expressing Tasks in Libraries

e [unctors

e C++ “lambda expressions”
e Coming soon in C++0x standard

63

Thursday, December 1,

Expressing Tasks in Libraries

e [unctors

e C++ “lambda expressions”
e Coming soon in C++0x standard

o "Blocks”
e Apple’s extension to C/C++/0bj-C

63

Thursday, December 1,

