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One more thing...
OpenMP has tasks
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New Dynamic of Parallel Computing

PCs are parallel computers
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e I'm a big fan of task-based parallelism

e Seems like most attractive multicore programming paradigm

e Captures loop-level parallelism of OpenMP + more irregular
parallelism
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e Several variants of task-based parallelism
e Cilk (language extension)
e Intel’s Threaded Building Blocks (C++ library)
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Disclaimer

e I'm a big fan of task-based parallelism

e Seems like most attractive multicore programming paradigm

e Captures loop-level parallelism of OpenMP + more irregular
parallelism

e Several variants of task-based parallelism
e Cilk (language extension)
e Intel’s Threaded Building Blocks (C++ library)
e Java’s JSR-166y (for potential inclusion in Java 7)
e Microsoft's Parallel Patterns Library (PPL)

e All variants have some basic idea...
e But many differences in interface, implementation, etc.
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Irregular Parallelism

e Beyond OpenMP’s “Loop-level” parallelism

e Primary focus on parallel loops
e \With known iteration counts

e What if the parallelism is more irregular?
e Walking a tree or graph

n

e (Can often express this irregular parallelism as “tasks
e Tasks are bundles of (mostly) independent computation

e Generalization of work-list algorithm
e Task may or may not have dependencies
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Case Study: The N Queens Problem

Is there a way to place
N queens on an N-by-N
chessboard such that
no queen threatens
another queen?

Implementing Task Decompositions H t I
3 thie )
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A Solution to the 4 Queens Problem
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Exhaustive Search
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Design #1 for Parallel Search

Create threads to explore different parts of the
search tree simultaneously

If a node has children
The thread creates child nodes

The thread explores one child node itself

Thread creates a new thread for every other
child node

intel) - Implementing Task Decompositions in tel »
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Design #1 for Parallel Search
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Pros and Cons of Design #1

Pros
Simple design, easy to implement
Balances work among threads
Cons
Too many threads created
Lifetime of threads too short

Overhead costs too high

intel) Implementing Task Decompositions
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Design #2 for Parallel Search

One thread created for each subtree rooted at a
particular depth

Each thread sequentially explores its subtree

intel) - Implementing Task Decompositions in tel »
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Design #2 in Action
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Pros and Cons of Design #2

Pros

Thread creation/termination time minimized

Cons
Subtree sizes may vary dramatically

Some threads may finish long before others

Imbalanced workloads lower efficiency

intel) - Implementing Task Decompositions in tel »
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Design #3 for Parallel Search

Main thread creates work pool—Ilist of subtrees to explore
Main thread creates finite number of co-worker threads
Each subtree exploration is done by a single thread

Inactive threads go to pool to get more work

intel) 5 Implementing Task Decompositions (i n tel »
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Design #3 in Action
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Pros and Cons of Strategy #3

Pros
Thread creation/termination time minimized
Good workload balance

Cons

Threads need exclusive access to data structure
containing work to be done

intel) ic Implementing Task Decompositions (i n tel »
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Implementing Strategy #3 for N Queens

Work pool consists of N boards representing N
possible placements of queen on first row

{8

Implementing Task Decompositions H t I >
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Parallel Program Design

One thread creates list of partially filled-in boards
Fork: Create one thread per CPU

Each thread repeatedly gets board from list, searches
for solutions, and adds to solution count, until
no more board on list

Join: Occurs when list is empty

One thread prints number of solutions found

intel) o Implementing Task Decompositions in tel »
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N Queens Recap
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e Unlike dynamic loop scheduling in OpenMP
e Amount of work not known at the start
e “context” of the task is more than just an iteration count
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N Queens Recap

e Unlike dynamic loop scheduling in OpenMP
e Amount of work not known at the start
e “context” of the task is more than just an iteration count

e Encapsulate data and computation into a task
e Number of queens placed thus far (how many rows processed)
e State of the board
e “execute” method

e Execute method of task
e if (number of queens placed thus far > threshold):
e Complete search sequentially
e Atomic increment of global counter of found solutions

e Else:
e Enqueue a sub-task for each valid placement of queen on next row

23
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N Queens Recap

e Unlike dynamic loop scheduling in OpenMP

e Amount of work not known at the start
e “context” of the task is more than just an iteration count

e Encapsulate data and computation into a task
e Number of queens placed thus far (how many rows processed)
e State of the board
e “execute” method

o Execute method of task
e if (number of queens placed thus far > threshold):
e Complete search sequentially
e Atomic increment of global counter of found solutions

e Else:
e Enqueue a sub-task for each valid placement of queen on next row

o Work-list scheduling of computation, no explicit dependencies

23
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Task Decomposition & Dependencies
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e In more general task-based models...
e Tasks can have dependencies (implicit or explicit)
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e In more general task-based models...
e Tasks can have dependencies (implicit or explicit)

e Task Decomposition
o Identify “tasks”
e Bundles of mostly independent work
e Identify dependencies between tasks
e Creates a direct acyclic graph (DAG) of computation
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Task Decomposition and Dependencies

e In more general task-based models...
e Tasks can have dependencies (implicit or explicit)

e Task Decomposition
o Identify “tasks”
e Bundles of mostly independent work
e Identify dependencies between tasks
e Creates a direct acyclic graph (DAG) of computation

e Task scheduling
e Static: if all tasks know at start

e Dynamic: worker threads executes tasks from a task pool
e Allows tasks to create sub-tasks

25
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Task Dependencies

f()

Total work: 6
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Task Dependencies

Total work: 6  Critical path: 4

('n‘le?l 27 Recognizing Potential Parallelism (intel »

Copyright © 2006, Intel Corporation. All rights reserved.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

Thursday, December 1,




Intel® Software College

Task Dependencies

CPU 1 CPU 2 0 CPUO

g()

I
4 r()

h() q()
AN

Total work: 6  Critical path: 4  Max speedup: 1.5
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Task Dependencies
CPU 1 CPUO

g()
|

v

a()
h() \ /

Total work: 6  Critical path: 4  Max speedup: 1.5
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Recursive Task-Based Parallelism
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Recursive Task-Based Parallelism

e Dynamic
e Tasks can create more tasks
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Recursive Task-Based Parallelism

e Dynamic
e Tasks can create more tasks

e Recursive fork/join
e Parent task “spawns” sub-tasks
e “Join” operation waits until all sub-tasks complete
e But not all tasks
e Impact: need some way to track which sub-tasks have completed
e Reference counting of live (non-completed) sub-tasks
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e Dynamic
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o Recursive fork/join
e Parent task “spawns” sub-tasks
e “Join” operation waits until all sub-tasks complete

e But not all tasks
e Impact: need some way to track which sub-tasks have completed
e Reference counting of live (non-completed) sub-tasks

e In essence, creates a implicit task dependency
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Recursive Task-Based Parallelism

e Dynamic
e Tasks can create more tasks

e Recursive fork/join
e Parent task “spawns” sub-tasks
e “Join” operation waits until all sub-tasks complete
e But not all tasks
e Impact: need some way to track which sub-tasks have completed
e Reference counting of live (non-completed) sub-tasks

e In essence, creates a implicit task dependency

e On “Join”:
e Option #1: continue with code at join point (“spawn and wait”)

e Option #2: call an explicit continuation (no “wait”)
31
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Tasks in OpenMP 3.0
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New Addition to OpenMP

* Tasks — Main change for OpenMP 3.0

» Allows parallelization of irregular problems
* unbounded loops
* recursive algorithms
« producer/consumer

33
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What are tasks?

* Tasks are independent units of work
— Threads are assigned to perform the work of each task
* Tasks may be deferred
— Tasks may be executed immediately
* The runtime system decides which of the above

— Tasks are composed of:
 code to execute
* data environment
* internal control variables (ICV)

y

Serial

-

Parallel

UPCRC lllinois

2009 Summer School on
Multicore Programming
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Task Construct — Explicit Task View

» Ateam of threads is created at the
omp parallel construct #pragma omp parallel

* Asingle thread, TO0, is chosen to {
execute the while loop

» TO operates the while loop, creates
tasks, and fetches next pointers

« Each time TO crosses the omp
task construct it generates a new

#pragma omp single
{ /l block 1
node * p = head;

#pragma omp task
process(p);

task o p = p->next; //block 3
e Each task runs in its own thread }
* All tasks complete at the barrier at } Il tasks done

the end of the parallel region’s single )

construct

while (p) { //block 2

5

UPCRC lllinois

2009 Summer School on
Multicore Programming
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Why are tasks useful?

Have potential to parallelize irregular patterns and recursive function calls

#pragma omp parallel
{
#pragma omp single
{ /| block 1
node * p = head;
while (p) { //block 2
#pragma omp task
process(p);
p = p->next; //block 3

}

36
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Why are tasks useful?
Have potential to parallelize irregular patterns and recursive function calls

Single
Threaded
Block 1
#pragma omp parallel
{ Block 2
#pragma omp single faskct
{ /| block 1 —
node * p = head; N
while (p) { //block 2
#pragma omp task g:;f(kzz
process(p); —
p = p->next; //block 3 3
} ®
} } Block 3
UPCRE lllinois
4 2009 Summer School on

MulGicore Programming
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Why are tasks useful?
Have potential to parallelize irregular patterns and recursive function calls

Single Thri  Thr2 Thr3 Thr4
Threaded
#pragmaompuparallel | | cEwSsm7s »  ~ -~ T
{ /ﬁv —-— e -
#pragma omp single Block s |
{ /I block 1 Task 2 | | Block 2
node * p = head; Task 3
while (p) { //block 2 -
#pragma omp task o
process(p); — | pmm S - '
p = p->next; //block 3
}
} |
} » Time Saved

Block 2

Task 3 UPCRC lllinois

J 2009 Summer School on
= Multicore Programming
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When are tasks guaranteed to be complete?

Tasks are guaranteed to be complete:

e At thread or task barriers

e At the directive: #pragma omp barrier

e At the directive: #pragma omp taskwait

UPCRC lllinois

2009 Summer School on
37 Multicore Programming
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General task characteristics

e A task has

¢ Code to execute
¢ A data environment (it owns its data)

¢ An assigned thread that executes the code and
uses the data

e Two activities: packaging and execution

¢ Each encountering thread packages a new instance
of a task (code and data)

¢ Some thread in the team executes the task at some
later time

Thursday, December 1,
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Definitions

e Task construct — task directive plus structured
block

e Task — the package of code and instructions
for allocating data created when a thread
encounters a task construct

e Task region — the dynamic sequence of
instructions produced by the execution of a
task by a thread
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Tasks and OpenMP

e Tasks have been fully integrated into OpenMP

e Key concept: OpenMP has always had tasks, we just
never called them that.

¢ Thread encountering parallel construct packages
up a set of implicit tasks, one per thread.

¢ Team of threads is created.

¢Each thread in team is assigned to one of the tasks
(and tied to it).

¢Barrier holds original master thread until all implicit
tasks are finished.

e We have simply added a way to create a task explicitly
for the team to execute.

e Every part of an OpenMP program is part of one task or
another!
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task Construct

#pragma omp task [clause[[,]clause]
structured-block

where clause can be one of:

if (expression)

untied

shared (list)

private (list)
firstprivate (list)
default( shared | none )
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The if clause

e When the if clause argument is false

¢ The task is executed immediately by the encountering
thread.

¢ The data environment is still local to the new task...

¢ ...and it’s still a different task with respect to
synchronization.

e It’s a user directed optimization

¢ when the cost of deferring the task is too great
compared to the cost of executing the task code

# to control cache and memory affinity

Thursday, December 1,
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When/where are tasks complete?

e At thread barriers, explicit or implicit

¢ applies to all tasks generated in the current paraliel
region up to the barrier

¢ matches user expectation

e At task barriers

¢ i.e. Wait until all tasks defined in the current task have
completed.

#pragma omp taskwait

¢ Note: applies only to tasks generated in the current task,
not to “descendants” .

Thursday, December 1,



Example — parallel pointer chasing
using tasks

#pragma omp parallel
{
#pragma omp single private (p)
{
p = listhead ; p is firstprivate inside
while (p) { ///tmsumk
#fpragma omp task
process (p)
p=next (p) ;

Thursday, December 1,



OpenMP 3.0
Example — parallel pointer chasing on
multiple lists using tasks

#pragma omp parallel
{
#pragma omp for private (p)
for ( int 1 =0; i <numlists ; i++) {
p = listheads [ i ] ;
while (p ) {
#pragma omp task
process (p)
p=next (p ) ;

Thursday, December 1,
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Example: postorder tree traversal

void postorder (node *p) {
if (p->left)
#pragma omp task
postorder (p->left) ;
if (p->right)
#fpragma omp task
postorder (p->right) ;
#pragma omp taskwait // wait for descendants

->data) ; <\\\\\\\\\\\\\
} process(® ) Task scheduling point

e Parent task suspended until children tasks complete
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Task switching

e Certain constructs have task scheduling points
at defined locations within them

e When a thread encounters a task scheduling
point, it is allowed to suspend the current task
and execute another (called task switching)

e It can then return to the original task and
resume

Thursday, December 1,
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Task switching example

#pragma omp single
{
for (i=0; i<ONEZILLION; i++)
#pragma omp task
process (item[i]) ;

}

e Too many tasks generated in an eye-blink
e Generating task will have to suspend for a while
e With task switching, the executing thread can:

¢execute an already generated task (draining the
“task pool”)

+dive into the encountered task (could be very
cache-friendly)
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Thread switching

#pragma omp single
{
#pragma omp task untied
for (i=0; i<ONEZILLION; i++)
#pragma omp task
process (item[i]) ;

e Eventually, too many tasks are generated

Generating task is suspended and executing thread switches to a
long and boring task

Other threads get rid of all already generated tasks, and start
starving...

With thread switching, the generating task can be resumed by a
different thread, and starvation is over

Too strange to be the default: the programmer is responsible!
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Dealing with taskprivate data

e The Taskprivate directive was removed from
OpenMP 3.0

¢Too expensive to implement

e Restrictions on task scheduling allow
threadprivate data to be used
¢User can avoid thread switching with tied tasks

¢ Task scheduling points are well defined

Thursday, December 1,



Data Sharing: tasks (OpenMP 3.0)

e The default for tasks is usually firstprivate, because the task may
not be executed until later (and variables may have gone out of

scope).
e Variables that are shared in all constructs starting from the

innermost enclosing parallel construct are shared, because the
barrier guarantees task completion.

#pragma omp parallel shared(A) private(B) :
{ A is shared

B is firstprivate
#pragma omp task / C is private
{

int C;
compute(A, B, C);
}
}

57
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Parallel Sort Example
(with work stealing)
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Quicksort — Step 1

tbb::parallel_sort (color, color+64);

32 44 9 26 31 57 3 19 55 29 27 1 20 5 42 62 25 51 49 15 54 6 18 48 10 2 60 41 14 47 24 36 37 52 22 34 35 11 28 8 13 43 53 23 61 38 56 16 59 17 50 7 21 45 4 39 33 40 58 12 30 0 46 63
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Quicksort — Step 2

32 44 9 26 31 57 3 19 55 29 27 1 20 5 42 62 25 51 49 15 54 6 18 48 10 2 60 41 14 47 24 36 37 52 22 34 35 11 28 8 13 43 53 23 61 38 56 16 59 17 50 7 21 45 4 39 33 40 58 12 30 0 46 63
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Quicksort — Step 2

THREAD 2

24 36 37 52 22 34 35 11 28 8 13 43 53 23 61 38 56 16 59 17 50 7 21 45 4 39 33 40 58 12 30 0 46 63

v

37 52 47 41 43 53 60 61 38 56 48 59 54 50
49 51 45 62 39 42 40 58 55 57 44 46 63

Thread 2 gets work by
stealing from Thread 1

32 44 9 26 31 57 3 19 55 29 27 1 20 5 42 62 25 51 49 15 54 6 18 48 10 2 60 41 14 47

Intel and t are trademark demarks of Intel Corporation or its subsidiaries in the United States
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Quicksort — Step 3

THREAD 2

32 44 9 26 31 57 3 19 55 29 27 1 20 5 42 62 25 51 49 15 54 6 18 48 10 2 60 41 14 47 24 36 37 52 22 34 35 11 28 8 13 43 53 23 61 38 56 16 59 17 50 7 21 45 4 39 33 40 58 12 30 0 46 63

\ y v

52 47 41 43 53 60 61 38 56 48 59 54 50
49 51 45 62 39 42 40 58 55 57 44 46 63

|
v v v
45 47 41 43 50 52 51 54 62

46 44 40 38 49 59 56 61 58 55
42 48 39 57 60 53 63

Thread 2 partitions/
splits its data
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Quicksort — Step 3

32 44 9 26 31 57 3 19 55 29 27 1 20 5 42 62 25 51 49 15 54 6 18 48 10 2 60 41 14 47

24 36 37

THREAD 4

THREAD 2

52 22 34 35 11 28 8 13 43 53 23 61 38 56 16 59 17 50 7 21 45 4 39 33 40 58 12 30 0 46 63

\

11 0 9 26 31 30 3 19 12 29 27 1 20 5 33 4 25 21 7
15 17 6 18 16 10 2 23 13 14 8 24 36 32 28 22 34 35

12 29 27 19 20 30 33 31 25 21 11 15
17 26 18 16 10 9 23 13 14 8 24 36
32 28 22 34 35

Thread 3 gets work by
stealing from Thread 1

¥

37

v

52 47 41 43 53 60 61 38 56 48 59 54 50
49 51 45 62 39 42 40 58 55 57 44 46 63

\ v v
45 47 41 43 50 52 51 54 62

46 44 40 38 49 59 56 61 58 55
42 48 39 57 60 53 63

Thread 4 gets work by
stealing from Thread 2
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Quicksort — Step 4

_ THREAD 3 THREAD 2 THREAD 4

32 44 9 26 31 57 3 19 55 29 27 1 20 5 42 62 25 51 49 15 54 6 18 48 10 2 60 41 14 47 24 36 37 52 22 34 35 11 28 8 13 43 53 23 61 38 56 16 59 17 50 7 21 45 4 39 33 40 58 12 30 0 46 63

\ y v

37 52 47 41 43 53 60 61 38 56 48 59 54 50
49 51 45 62 39 42 40 58 55 57 44 46 63

. 12 29 27 19 20 30 33 31 25 21 11 15 45 47 41 43 50 52 51 54 62

17 26 18 16 10 9 23 13 14 8 24 36 46 44 40 38 49 59 56 61 58 55
32 28 22 34 35 42 48 39 57 60 53 63

11 8 14 13 21 25 26 31 33 30
9 10 16 12 20 23 19 27 29 24
17 15 36 32 28 22 34 35

Thread 3 partitions/splits Thread 2 sorts the Thread 4 sorts the
its data rest its data rest of its data
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Quicksort — Step 5

THREAD 3 THREAD 2 THREAD 4

32 44 9 26 31 57 3 19 55 29 27 1 20 5 42 62 25 51 49 15 54 6 18 48 10 2 60 41 14 47 24 36 37 52 22 34 35 11 28 8 13 43 53 23 61 38 56 16 59 17 50 7 21 45 4 39 33 40 58 12 30 0 46 63

v v

52 47 41 43 53 60 61 38 56 48 59 54 50
49 51 45 62 39 42 40 58 55 57 44 46 63

12 29 27 19 20 30 33 31 25 21 11 15 45 47 41 43 50 52 51 54 62

17 26 18 16 10 9 23 13 14 8 24 36 46 44 40 38 59 56 61 58 55
32 28 22 34 35 42 48 39 57 60 53 63

11 8 14 13
9 10 16 12
17 15

Thread 3 sorts the
rest of its data
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Quicksort — Step 6

THREAD 3 THREAD 2 THREAD 4

32 44 9 26 31 57 3 19 55 29 27 1 20 5 42 62 25 51 49 15 54 6 18 48 10 2 60 41 14 47 24 36 37 52 22 34 35 11 28 8 13 43 53 23 61 38 56 16 59 17 50 7 21 45 4 39 33 40 58 12 30 0 46 63

\ y v

37 52 47 41 43 53 60 61 38 56 48 59 54 50
49 51 45 62 39 42 40 58 55 57 44 46 63
|

. 12 29 27 19 20 30 33 31 25 21 11 15 45 47 41 43 50 52 51 54 62

v

17 26 18 16 10 9 23 13 14 8 24 36 46 44 40 38 59 56 61 58 55
32 28 22 34 35 42 48 39 57 60 53 63

11 8 14 13
9 10 16 12
17 15
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Quicksort — Step 6

THREAD 3 THREAD 2 THREAD 4

32 44 9 26 31 57 3 19 55 29 27 1 20 5 42 62 25 51 49 15 54 6 18 48 10 2 60 41 14 47 24 36 37 52 22 34 35 11 28 8 13 43 53 23 61 38 56 16 59 17 50 7 21 45 4 39 33 40 58 12 30 0 46 63

\ y v

37 52 47 41 43 53 60 61 38 56 48 59 54 50
49 51 45 62 39 42 40 58 55 57 44 46 63

. 12 29 27 19 20 30 33 31 25 21 11 15 45 47 41 43 50 52 51 54 62
7

17 26 18 16 10 9 23 13 14 8 24 36 46 44 40 38 49 59 56 61 58 55
32 28 22 34 35 42 48 39 57 60 53 63

11 8 14 13
9 10 16 12
17 15

v

30 29 33
36 32 28
31 34 35

Thread 2 gets more work
by stealing from Thread 1
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Quicksort — Step 7

THREAD 3 THREAD 2 THREAD 4

32 44 9 26 31 57 3 19 55 29 27 1 20 5 42 62 25 51 49 15 54 6 18 48 10 2 60 41 14 47 24 36 37 52 22 34 35 11 28 8 13 43 53 23 61 38 56 16 59 17 50 7 21 45 4 39 33 40 58 12 30 0 46 63

v v

37 52 47 41 43 53 60 61 38 56 48 59 54 50
49 51 45 62 39 42 40 58 55 57 44 46 63
|

. 12 29 27 19 20 30 33 31 25 21 11 15 45 47 41 43 50 52 51 54 62

v

17 26 18 16 10 9 23 13 14 8 24 36 46 44 40 38 49 59 56 61 58 55
32 28 22 34 35 42 48 39 57 60 53 63

11 8 14 13
9 10 16 12
17 15

v

30 29 33
36 32 28
31 34 35

Thread 2 sorts the
rest of its data
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Expressing Tasks in Libraries

e [unctors

e C++ “lambda expressions”
e Coming soon in C++0x standard

o "Blocks”
e Apple’s extension to C/C++/0bj-C
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