
Thursday, December 1,

One more thing…
OpenMP has tasks

Thursday, December 1,

Multicore Programming
and Architecture

 Task-Based Parallelism

2

Thursday, December 1,

Copyright © 2006, Intel Corporation. All rights reserved.

Recognizing Potential Parallelism

Intel® Software College

3

Old Dynamic of Parallel Computing

Parallel computers
are expensive

There are not many
parallel computers

Most people do not learn
parallel programming

Parallel computing
not mainstream

Parallel programming
is difficult

Parallel programming
environments are inadequate

Thursday, December 1,

Copyright © 2006, Intel Corporation. All rights reserved.

Recognizing Potential Parallelism

Intel® Software College

4

New Dynamic of Parallel Computing

PCs are parallel computers

Everyone has a
parallel computer

More people learning
parallel programming

Parallel programming
considered mainstream

Parallel programming
gets easier

Parallel programming
environments improve

Thursday, December 1,

Disclaimer

5

Thursday, December 1,

Disclaimer

• I’m a big fan of task-based parallelism
• Seems like most attractive multicore programming paradigm
• Captures loop-level parallelism of OpenMP + more irregular

parallelism

5

Thursday, December 1,

Disclaimer

• I’m a big fan of task-based parallelism
• Seems like most attractive multicore programming paradigm
• Captures loop-level parallelism of OpenMP + more irregular

parallelism

• Several variants of task-based parallelism
• Cilk (language extension)
• Intel’s Threaded Building Blocks (C++ library)
• Java’s JSR-166y (for potential inclusion in Java 7)
• Microsoft’s Parallel Patterns Library (PPL)

5

Thursday, December 1,

Disclaimer

• I’m a big fan of task-based parallelism
• Seems like most attractive multicore programming paradigm
• Captures loop-level parallelism of OpenMP + more irregular

parallelism

• Several variants of task-based parallelism
• Cilk (language extension)
• Intel’s Threaded Building Blocks (C++ library)
• Java’s JSR-166y (for potential inclusion in Java 7)
• Microsoft’s Parallel Patterns Library (PPL)

• All variants have some basic idea…
• But many differences in interface, implementation, etc.

5

Thursday, December 1,

Acknowledgments

6

• Includes slides from:
• “Shared Memory Control Programming

Intel Threading Building Blocks”
• Clay Breshears (Intel)
• Presented at UIUC’s UPCRC 2009 Summer School
• With permission, includes some modifications by me

• Various “Intel Software College” slides Blue background slides
• “Threading for Performance with Intel Threading Building Blocks”
• “Recognizing Potential Parallelism”
• “Implementing Task Decompositions”

• Other sources and references:
• “Intel Threading Building Blocks” by James Reinders, O’Reilly
• TBB documentation

Thursday, December 1,

Irregular Parallelism

7

Thursday, December 1,

Irregular Parallelism

• Beyond OpenMP’s “Loop-level” parallelism
• Primary focus on parallel loops
• With known iteration counts

7

Thursday, December 1,

Irregular Parallelism

• Beyond OpenMP’s “Loop-level” parallelism
• Primary focus on parallel loops
• With known iteration counts

• What if the parallelism is more irregular?
• Walking a tree or graph

7

Thursday, December 1,

Irregular Parallelism

• Beyond OpenMP’s “Loop-level” parallelism
• Primary focus on parallel loops
• With known iteration counts

• What if the parallelism is more irregular?
• Walking a tree or graph

• Can often express this irregular parallelism as “tasks”
• Tasks are bundles of (mostly) independent computation

7

Thursday, December 1,

Irregular Parallelism

• Beyond OpenMP’s “Loop-level” parallelism
• Primary focus on parallel loops
• With known iteration counts

• What if the parallelism is more irregular?
• Walking a tree or graph

• Can often express this irregular parallelism as “tasks”
• Tasks are bundles of (mostly) independent computation

• Generalization of work-list algorithm
• Task may or may not have dependencies

7

Thursday, December 1,

Case Study: N Queens

8

Thursday, December 1,

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

Intel® Software College

3
Implementing Task Decompositions

Case Study: The N Queens Problem

Is there a way to place
N queens on an N-by-N
chessboard such that
no queen threatens

another queen?

Thursday, December 1,

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

Intel® Software College

4
Implementing Task Decompositions

A Solution to the 4 Queens Problem

Thursday, December 1,

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

Intel® Software College

5
Implementing Task Decompositions

Exhaustive Search

Thursday, December 1,

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

Intel® Software College

6
Implementing Task Decompositions

Design #1 for Parallel Search

Create threads to explore different parts of the
	
 search tree simultaneously

If a node has children

	
 The thread creates child nodes

	
 The thread explores one child node itself

	
 Thread creates a new thread for every other
	
 	
 	
 child node

Thursday, December 1,

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

Intel® Software College

7
Implementing Task Decompositions

Design #1 for Parallel Search

Thread W

Thread W New
Thread X

New
Thread Y

New
Thread Z

Thursday, December 1,

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

Intel® Software College

8
Implementing Task Decompositions

Pros and Cons of Design #1

Pros

	
 Simple design, easy to implement

	
 Balances work among threads

Cons

	
 Too many threads created

	
 Lifetime of threads too short

	
 Overhead costs too high

Thursday, December 1,

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

Intel® Software College

9
Implementing Task Decompositions

Design #2 for Parallel Search

One thread created for each subtree rooted at a
	
 particular depth

Each thread sequentially explores its subtree

Thursday, December 1,

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

Intel® Software College

10
Implementing Task Decompositions

Design #2 in Action

Thread
1

Thread
2

Thread
3

Thursday, December 1,

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

Intel® Software College

11
Implementing Task Decompositions

Pros and Cons of Design #2

Pros

	
 Thread creation/termination time minimized

Cons

	
 Subtree sizes may vary dramatically

	
 Some threads may finish long before others

	
 Imbalanced workloads lower efficiency

Thursday, December 1,

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

Intel® Software College

12
Implementing Task Decompositions

Design #3 for Parallel Search

Main thread creates work pool—list of subtrees to explore

Main thread creates finite number of co-worker threads

Each subtree exploration is done by a single thread

Inactive threads go to pool to get more work

Thursday, December 1,

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

Intel® Software College

14
Implementing Task Decompositions

Design #3 in Action

Thread
1

Thread
2

Thread
3

Thread
3

Thread
1

Thursday, December 1,

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

Intel® Software College

15
Implementing Task Decompositions

Pros and Cons of Strategy #3
Pros

	
 Thread creation/termination time minimized

	
 Good workload balance

Cons

	
 Threads need exclusive access to data structure
 containing work to be done

	

Thursday, December 1,

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

Intel® Software College

16
Implementing Task Decompositions

Implementing Strategy #3 for N Queens

Work pool consists of N boards representing N
	
 possible placements of queen on first row

Thursday, December 1,

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

Intel® Software College

17
Implementing Task Decompositions

Parallel Program Design

One thread creates list of partially filled-in boards

Fork: Create one thread per CPU

Each thread repeatedly gets board from list, searches
	
 for solutions, and adds to solution count, until
	
 no more board on list

Join: Occurs when list is empty

One thread prints number of solutions found

Thursday, December 1,

N Queens Recap

23

Thursday, December 1,

N Queens Recap
• Unlike dynamic loop scheduling in OpenMP

• Amount of work not known at the start
• “context” of the task is more than just an iteration count

23

Thursday, December 1,

N Queens Recap
• Unlike dynamic loop scheduling in OpenMP

• Amount of work not known at the start
• “context” of the task is more than just an iteration count

• Encapsulate data and computation into a task
• Number of queens placed thus far (how many rows processed)
• State of the board
• “execute” method

23

Thursday, December 1,

N Queens Recap
• Unlike dynamic loop scheduling in OpenMP

• Amount of work not known at the start
• “context” of the task is more than just an iteration count

• Encapsulate data and computation into a task
• Number of queens placed thus far (how many rows processed)
• State of the board
• “execute” method

• Execute method of task
• if (number of queens placed thus far > threshold):

• Complete search sequentially
• Atomic increment of global counter of found solutions

• Else:
• Enqueue a sub-task for each valid placement of queen on next row

23

Thursday, December 1,

N Queens Recap
• Unlike dynamic loop scheduling in OpenMP

• Amount of work not known at the start
• “context” of the task is more than just an iteration count

• Encapsulate data and computation into a task
• Number of queens placed thus far (how many rows processed)
• State of the board
• “execute” method

• Execute method of task
• if (number of queens placed thus far > threshold):

• Complete search sequentially
• Atomic increment of global counter of found solutions

• Else:
• Enqueue a sub-task for each valid placement of queen on next row

• Work-list scheduling of computation, no explicit dependencies
23

Thursday, December 1,

Task Decomposition & Dependencies

24

Thursday, December 1,

Task Decomposition and Dependencies

25

Thursday, December 1,

Task Decomposition and Dependencies

• In more general task-based models...
• Tasks can have dependencies (implicit or explicit)

25

Thursday, December 1,

Task Decomposition and Dependencies

• In more general task-based models...
• Tasks can have dependencies (implicit or explicit)

• Task Decomposition
• Identify “tasks”

• Bundles of mostly independent work
• Identify dependencies between tasks

• Creates a direct acyclic graph (DAG) of computation

25

Thursday, December 1,

Task Decomposition and Dependencies

• In more general task-based models...
• Tasks can have dependencies (implicit or explicit)

• Task Decomposition
• Identify “tasks”

• Bundles of mostly independent work
• Identify dependencies between tasks

• Creates a direct acyclic graph (DAG) of computation

• Task scheduling
• Static: if all tasks know at start
• Dynamic: worker threads executes tasks from a task pool

• Allows tasks to create sub-tasks

25

Thursday, December 1,

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

Recognizing Potential Parallelism

Intel® Software College

26

Task Dependencies

f()

s()

r()
q()h()

g()

Total work: 6

Thursday, December 1,

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

Recognizing Potential Parallelism

Intel® Software College

27

Task Dependencies

f()

s()

r()
q()h()

g()

Total work: 6 Critical path: 4

Thursday, December 1,

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

Recognizing Potential Parallelism

Intel® Software College

28

Task Dependencies

f()

s()

r()
q()h()

g()

CPU 0CPU 2CPU 1

Total work: 6 Critical path: 4 Max speedup: 1.5

Thursday, December 1,

Copyright © 2006, Intel Corporation. All rights reserved.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

Recognizing Potential Parallelism

Intel® Software College

29

Task Dependencies

f()

s()

r()
q()h()

g()

CPU 0CPU 1

Total work: 6 Critical path: 4 Max speedup: 1.5

Thursday, December 1,

Recursive Task-Based Parallelism

30

Thursday, December 1,

Recursive Task-Based Parallelism

31

Thursday, December 1,

Recursive Task-Based Parallelism

• Dynamic
• Tasks can create more tasks

31

Thursday, December 1,

Recursive Task-Based Parallelism

• Dynamic
• Tasks can create more tasks

• Recursive fork/join
• Parent task “spawns” sub-tasks
• “Join” operation waits until all sub-tasks complete

• But not all tasks
• Impact: need some way to track which sub-tasks have completed

• Reference counting of live (non-completed) sub-tasks

31

Thursday, December 1,

Recursive Task-Based Parallelism

• Dynamic
• Tasks can create more tasks

• Recursive fork/join
• Parent task “spawns” sub-tasks
• “Join” operation waits until all sub-tasks complete

• But not all tasks
• Impact: need some way to track which sub-tasks have completed

• Reference counting of live (non-completed) sub-tasks

• In essence, creates a implicit task dependency

31

Thursday, December 1,

Recursive Task-Based Parallelism

• Dynamic
• Tasks can create more tasks

• Recursive fork/join
• Parent task “spawns” sub-tasks
• “Join” operation waits until all sub-tasks complete

• But not all tasks
• Impact: need some way to track which sub-tasks have completed

• Reference counting of live (non-completed) sub-tasks

• In essence, creates a implicit task dependency

• On “Join”:
• Option #1: continue with code at join point (“spawn and wait”)
• Option #2: call an explicit continuation (no “wait”)

31

Thursday, December 1,

Tasks in OpenMP 3.0

32

Thursday, December 1,

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

New Addition to OpenMP

• Tasks – Main change for OpenMP 3.0
• Allows parallelization of irregular problems

• unbounded loops
• recursive algorithms
• producer/consumer

33

Thursday, December 1,

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

What are tasks?

• Tasks are independent units of work

– Threads are assigned to perform the work of each task
• Tasks may be deferred

– Tasks may be executed immediately
• The runtime system decides which of the above

– Tasks are composed of:
• code to execute
• data environment
• internal control variables (ICV)

34

Serial Parallel

Thursday, December 1,

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

Task Construct – Explicit Task View

• A team of threads is created at the
omp parallel construct

• A single thread, T0, is chosen to
execute the while loop

• T0 operates the while loop, creates
tasks, and fetches next pointers

• Each time T0 crosses the omp
task construct it generates a new
task

• Each task runs in its own thread
• All tasks complete at the barrier at

the end of the parallel region’s single
construct

35

#pragma omp parallel
{
 #pragma omp single
 { // block 1
 node * p = head;
 while (p) { //block 2
 #pragma omp task
 process(p);
 p = p->next; //block 3
 }
 } // tasks done
}

Thursday, December 1,

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

Why are tasks useful?

36

#pragma omp parallel
{
 #pragma omp single
 { // block 1
 node * p = head;
 while (p) { //block 2
 #pragma omp task
 process(p);
 p = p->next; //block 3
 }
 }
}

Have potential to parallelize irregular patterns and recursive function calls

Thursday, December 1,

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

Why are tasks useful?

36

#pragma omp parallel
{
 #pragma omp single
 { // block 1
 node * p = head;
 while (p) { //block 2
 #pragma omp task
 process(p);
 p = p->next; //block 3
 }
 }
}

Have potential to parallelize irregular patterns and recursive function calls

Block 1

Block 2
Task 1

Block 2
Task 2

Block 2
Task 3

Block 3

Block 3

Tim
e

Single
Threaded

Thursday, December 1,

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

Why are tasks useful?

36

#pragma omp parallel
{
 #pragma omp single
 { // block 1
 node * p = head;
 while (p) { //block 2
 #pragma omp task
 process(p);
 p = p->next; //block 3
 }
 }
}

Have potential to parallelize irregular patterns and recursive function calls

Block 1

Block 2
Task 1

Block 2
Task 2

Block 2
Task 3

Block 3

Block 3

Tim
e

Single
Threaded

Block 1

Block 3

Block 3

Thr1 Thr2 Thr3 Thr4

Block 2
Task 2

Block 2
Task 1

Block 2
Task 3

Time Saved

Idle

Idle

Thursday, December 1,

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

When are tasks guaranteed to be complete?

37

Tasks are guaranteed to be complete:

• At thread or task barriers

• At the directive: #pragma omp barrier

• At the directive: #pragma omp taskwait

Thursday, December 1,

86

!"#"$%&'(%)*'+,%$%+("$-)(-+)

.'(%)*',%)
/01"'(0'"2"+3("
.'1%(%'"#4-$0#5"#('6-('owns -()'1%(%7
.#'%))-8#"1'(,$"%1'(,%('"2"+3(")'(,"'+01"'%#1'
3)")'(,"'1%(%

9:0'%+(-4-(-");'<%+*%8-#8'%#1'"2"+3(-0#
=%+,'"#+03#("$-#8'(,$"%1'<%+*%8")'%'#":'-#)(%#+"'
0>'%'(%)*'6+01"'%#1'1%(%7
?05"'(,$"%1'-#'(,"'("%5'"2"+3(")'(,"'(%)*'%(')05"'
&%("$'(-5"

3.0

Thursday, December 1,

87

!"#$%$&$'%(
Task construct) task *$+",&$-"./01(.(&+1,&1+"*.
20',3
Task) &4"./5,356".'#.,'*".5%*.$%(&+1,&$'%(.
#'+.500',5&$%6.*5&5.,+"5&"*.74"%.5.&4+"5*.
"%,'1%&"+(.5.&5(3.,'%(&+1,&
Task region) &4".*8%59$,.(":1"%,".'#.
$%(&+1,&$'%(./+'*1,"*.28.&4".";",1&$'%.'#.5.
&5(3.28.5.&4+"5*

3.0

Thursday, December 1,

88

!"#$#%"&'%()*&+,
!"#$#%-".*%/**&%01223%4&5*67"5*'%4&58%()*&+,
9*3%:8&:*)5;%()*&+,%-"#%"2<"3#%-"'%5"#$#=%<*%>1#5%
&*.*7%:"22*'%5-*?%5-"5@
!-7*"'%*&:81&5*74&6%parallel :8Ȼ:5%)":$"6*#%
1)%"%#*5%80%implicit 5"#$#=%8&*%)*7%5-7*"'@
!*"?%80%5-7*"'#%4#%:7*"5*'@
A":-%5-7*"'%4&%5*"?%4#%"##46&*'%58%8&*%80%5-*%5"#$#%
B"&'%tied 58%45C@
D"774*7%-82'#%87464&"2%?"#5*7%5-7*"'%1&542%"22%4?)24:45%
5"#$#%"7*%04&4#-*'@

E*%-".*%#4?)23%"''*'%"%<"3%58%:7*"5*%"%5"#$%*F)24:4523%
087%5-*%5*"?%58%*F*:15*@
A.*73%)"75%80%"&%()*&+,%)7867"?%4#%)"75%80%8&*%5"#$%87%
"&85-*7G

3.0

Thursday, December 1,

89

task !"#$%&'(%

#pragma omp task [clause[[,]clause] ...]
structured-block

if (expression)
untied
shared (list)
private (list)
firstprivate (list)
default(shared | none)

)*+&+,clause (-#,.+,"#+,"/0

3.0

Thursday, December 1,

90

!"#$if %&'()#

*"#+$,"#$if %&'()#$'-.(/#+,$0)$1'&)#
!"#$,')2$0)$#3#%(,#4$0//#40',#&5$65$,"#$#+%7(+,#-0+.$
,"-#'48
!"#$4','$#+90-7+/#+,$0)$),0&&$&7%'&$,7$,"#$+#:$,')2888
888'+4$0,;)$),0&&$'$4011#-#+,$,')2$:0,"$-#)<#%,$,7$
)5+%"-7+0=',07+8

>,;)$'$()#-$40-#%,#4$7<,0/0=',07+
:"#+$,"#$%7),$71$4#1#--0+.$,"#$,')2$0)$,77$.-#',$
%7/<'-#4$,7$,"#$%7),$71$#3#%(,0+.$,"#$,')2$%74#
,7$%7+,-7&$%'%"#$'+4$/#/7-5$'110+0,5

3.0

Thursday, December 1,

91

!"#$%&"#'#()'#(*)+,+(-./01#*#2

3*(*"'#)4(5)''6#'+7(#8016-6*(.'(6/016-6*
)0016#+(*.()11(*)+,+(9#$#')*#4(6$(*"#(-:''#$*(0)')11#1(
'#96.$(:0(*.(*"#(5)''6#'
/)*-"#+(:+#'(#80#-*)*6.$

3*(*)+,(5)''6#'+
6;#;(!)6*(:$*61()11(*)+,+(4#<6$#4(6$(*"#(-:''#$*(*)+,(")=#(
-./01#*#4;((
#pragma omp taskwait

>.*#?()0016#+(.$1@(*.(*)+,+(9#$#')*#4(6$(*"#(-:''#$*(*)+,7(
$.*(*.(A4#+-#$4)$*+B ;

3.0

Thursday, December 1,

92

!"#$%&'() %#*#&&'&(%+,-.'*(/0#1,-2(
31,-2(.#141

#pragma omp parallel
{

#pragma omp single private(p)
{
p = listhead ;
while (p) {

#pragma omp task
process (p)

p=next (p) ;
}

}
}

p is firstprivate inside
this task

3.0

Thursday, December 1,

93

!"#$%&'() %#*#&&'&(%+,-.'*(/0#1,-2(+-(
$3&.,%&'(&,1.1(31,-2(.#141

#pragma omp parallel
{

#pragma omp for private(p)
for (int i =0; i <numlists ; i++) {

p = listheads [i] ;
while (p) {
#pragma omp task

process (p)
p=next (p) ;
}

}
}

3.0

Thursday, December 1,

94

!"#$%&'()%*+,*-.'-),-''),-#/'-+#&

void postorder(node *p) {
if (p->left)

#pragma omp task
postorder(p->left);

if (p->right)
#pragma omp task

postorder(p->right);
#pragma omp taskwait // wait for descendants

process(p->data);
}

0#-'1,),#+2)+3+%'1.'.)31,4&)564&.-'1),#+2+)5*$%&','

Task scheduling point

3.0

Thursday, December 1,

95

!"#$%#&'()*'+,

-./("'+%)0+#(/1)(#%*"2.%("#$%#)*.314'+,%50'+(#%
"(%3.6'+.3%40)"('0+#%&'(*'+%(*.7
8*.+%"%(*/."3%.+)01+(./#%"%("#$%#)*.314'+,%
50'+(9%'(%'#%"440&.3%(0%#1#5.+3%(*.%)1//.+(%("#$%
"+3%.:.)1(.%"+0(*./%;)"44.3%task switching<
=(%)"+%(*.+%/.(1/+%(0%(*.%0/','+"4%("#$%"+3%
/.#17.%

3.0

Thursday, December 1,

96

!"#$%#&'()*'+,%-."/01-

#pragma omp single
{

for (i=0; i<ONEZILLION; i++)
#pragma omp task

process(item[i]);
}

!22%/"+3%("#$#%,-+-4"(-5%'+%"+%-3-671'+$
8-+-4"('+,%("#$%&'11%*"9-%(2%#:#0-+5%;24%"%&*'1-
<'(*%("#$%#&'()*'+,=%(*-%-.-):('+,%(*4-"5%)"+>
-.-):(-%"+%"14-"53%,-+-4"(-5%("#$%?54"'+'+,%(*-%
@task poolAB
5'9-%'+(2%(*-%-+)2:+(-4-5%("#$%?)2:15%7-%9-43%
)")*-6;4'-+513B

3.0

Thursday, December 1,

97

!"#$%&'()*+,"*-.
#pragma omp single
{

#pragma omp task
for (i=0; i<ONEZILLION; i++)

#pragma omp task
process(item[i]);

}

/0$-+1%2234'+55'6%-3'+%(7('%#$'.$-$#%+$&
8$-$#%+*-.'+%(7'*('(1(9$-&$&'%-&'$:$,1+*-.'+"#$%&'()*+,"$('+5'%'
25-.'%-&';5#*-.'+%(7
<+"$#'+"#$%&('.$+'#*&'5='%22'%2#$%&3'.$-$#%+$&'+%(7(4'%-&'(+%#+'
(+%#0*-.>

?*+"'+"#$%&'()*+,"*-.4'+"$'.$-$#%+*-.'+%(7',%-';$'#$(16$&';3'%'
&*==$#$-+'+"#$%&4'%-&'(+%#0%+*5-'*('50$#
!55'(+#%-.$'+5';$'+"$'&$=%12+@'+"$'9#5.#%66$#'*('#$(95-(*;2$A

untied

3.0

Thursday, December 1,

98

Dealing with taskprivate data

!"#$!%&'()*+%,# -*)#.,*+#$/%&$)#01+#-$2)10$
3(#456$789
!11$#:(#4&*+#$,1$*0(;#0#4,

<#&,)*.,*14&14,%&'$&."#-=;*4>$%;;1/$
,")#%-()*+%,# -%,%$,1$?#$=&#-
@&#)$.%4$%+1*-$,")#%-$&/*,."*4>$/*,"$,*#-$,%&'&
!%&'$&."#-=;*4>$(1*4,&$%)#$/#;;$-#2*4#-

3.0

Thursday, December 1,

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.
51 57

!"#"$%&"'()*+$#",-,$./01)23$4567
8&1$91:";<#$:='$#",-,$(,$;,;"<<>$:(',#0'(?"#1@$A1B";,1$#&1$#",-$C">$
)=#$A1$1D1B;#19$;)#(<$<"#1'$.")9$?"'("A<1,$C">$&"?1$*=)1$=;#$=:$
,B=0175
E"'("A<1,$#&"#$"'1$,&"'19$()$"<<$B=),#';B#,$,#"'#()*$:'=C$#&1$
())1'C=,#$1)B<=,()*$0"'"<<1<$B=),#';B#$"'1$,&"'19@$A1B";,1$#&1$
A"''(1'$*;"'")#11,$#",-$B=C0<1#(=)5

#pragma omp parallel shared(A) private(B)
{

...
#pragma omp task

{
int C;
compute(A, B, C);

}
}

F$(,$,&"'19
G$(,$:(',#0'(?"#1
H$(,$0'(?"#1

3.0

Thursday, December 1,

INTEL CONFIDENTIAL

Parallel Sort Example
(with work stealing)

Thursday, December 1,

Intel® Software College

Copyright © 2008, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
or other countries. * Other brands and names are the property of their respective owners.

53

Quicksort – Step 1

THREAD 1
32 44 9 26 31 57 3 19 55 29 27 1 20 5 42 62 25 51 49 15 54 6 18 48 10 2 60 41 14 47 24 36 37 52 22 34 35 11 28 8 13 43 53 23 61 38 56 16 59 17 50 7 21 45 4 39 33 40 58 12 30 0 46 63

Thread 1 starts with
the initial data

tbb::parallel_sort (color, color+64);

Thursday, December 1,

Intel® Software College

Copyright © 2008, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
or other countries. * Other brands and names are the property of their respective owners.

54

 37

Quicksort – Step 2

11 0 9 26 31 30 3 19 12 29 27 1 20 5 33 4 25 21 7
15 17 6 18 16 10 2 23 13 14 8 24 36 32 28 22 34 35

52 47 41 43 53 60 61 38 56 48 59 54 50
49 51 45 62 39 42 40 58 55 57 44 46 6337

THREAD 1
32 44 9 26 31 57 3 19 55 29 27 1 20 5 42 62 25 51 49 15 54 6 18 48 10 2 60 41 14 47 24 36 37 52 22 34 35 11 28 8 13 43 53 23 61 38 56 16 59 17 50 7 21 45 4 39 33 40 58 12 30 0 46 63

THREAD 2THREAD 3 THREAD 4

Thread 1 partitions/splits
its data

Thursday, December 1,

Intel® Software College

Copyright © 2008, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
or other countries. * Other brands and names are the property of their respective owners.

55

 37

11 0 9 26 31 30 3 19 12 29 27 1 20 5 33 4 25 21 7
15 17 6 18 16 10 2 23 13 14 8 24 36 32 28 22 34 35

52 47 41 43 53 60 61 38 56 48 59 54 50
49 51 45 62 39 42 40 58 55 57 44 46 6337

THREAD 1 THREAD 2
32 44 9 26 31 57 3 19 55 29 27 1 20 5 42 62 25 51 49 15 54 6 18 48 10 2 60 41 14 47 24 36 37 52 22 34 35 11 28 8 13 43 53 23 61 38 56 16 59 17 50 7 21 45 4 39 33 40 58 12 30 0 46 63

Thread 2 gets work by
stealing from Thread 1

THREAD 3 THREAD 4

Quicksort – Step 2

Thursday, December 1,

Intel® Software College

Copyright © 2008, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
or other countries. * Other brands and names are the property of their respective owners.

56

 7 37 49

11 0 9 26 31 30 3 19 12 29 27 1 20 5 33 4 25 21 7
15 17 6 18 16 10 2 23 13 14 8 24 36 32 28 22 34 35

52 47 41 43 53 60 61 38 56 48 59 54 50
49 51 45 62 39 42 40 58 55 57 44 46 6337

THREAD 1

1 0 2 6
4 5 3 7

12 29 27 19 20 30 33 31 25 21 11 15
17 26 18 16 10 9 23 13 14 8 24 36

32 28 22 34 35

45 47 41 43
46 44 40 38
42 48 39

49
50 52 51 54 62
59 56 61 58 55
57 60 53 63

THREAD 2
32 44 9 26 31 57 3 19 55 29 27 1 20 5 42 62 25 51 49 15 54 6 18 48 10 2 60 41 14 47 24 36 37 52 22 34 35 11 28 8 13 43 53 23 61 38 56 16 59 17 50 7 21 45 4 39 33 40 58 12 30 0 46 63

Thread 1 partitions/
splits its data

Quicksort – Step 3

Thread 2 partitions/
splits its data

Thursday, December 1,

Intel® Software College

Copyright © 2008, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
or other countries. * Other brands and names are the property of their respective owners.

57

 7 37 49

11 0 9 26 31 30 3 19 12 29 27 1 20 5 33 4 25 21 7
15 17 6 18 16 10 2 23 13 14 8 24 36 32 28 22 34 35

52 47 41 43 53 60 61 38 56 48 59 54 50
49 51 45 62 39 42 40 58 55 57 44 46 6337

THREAD 1

1 0 2 6
4 5 3 7

12 29 27 19 20 30 33 31 25 21 11 15
17 26 18 16 10 9 23 13 14 8 24 36

32 28 22 34 35

45 47 41 43
46 44 40 38
42 48 39

49
50 52 51 54 62
59 56 61 58 55
57 60 53 63

THREAD 2THREAD 3 THREAD 4
32 44 9 26 31 57 3 19 55 29 27 1 20 5 42 62 25 51 49 15 54 6 18 48 10 2 60 41 14 47 24 36 37 52 22 34 35 11 28 8 13 43 53 23 61 38 56 16 59 17 50 7 21 45 4 39 33 40 58 12 30 0 46 63

Thread 3 gets work by
stealing from Thread 1

Thread 4 gets work by
stealing from Thread 2

Quicksort – Step 3

Thursday, December 1,

Intel® Software College

Copyright © 2008, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
or other countries. * Other brands and names are the property of their respective owners.

58

11 0 9 26 31 30 3 19 12 29 27 1 20 5 33 4 25 21 7
15 17 6 18 16 10 2 23 13 14 8 24 36 32 28 22 34 35

52 47 41 43 53 60 61 38 56 48 59 54 50
49 51 45 62 39 42 40 58 55 57 44 46 6337

1 0 2 6
4 5 3 7

12 29 27 19 20 30 33 31 25 21 11 15
17 26 18 16 10 9 23 13 14 8 24 36

32 28 22 34 35

45 47 41 43
46 44 40 38
42 48 39

49
50 52 51 54 62
59 56 61 58 55
57 60 53 63

11 8 14 13
9 10 16 12

17 15
18

21 25 26 31 33 30
20 23 19 27 29 24
36 32 28 22 34 35

Quicksort – Step 4

THREAD 1 THREAD 2THREAD 3 THREAD 4
32 44 9 26 31 57 3 19 55 29 27 1 20 5 42 62 25 51 49 15 54 6 18 48 10 2 60 41 14 47 24 36 37 52 22 34 35 11 28 8 13 43 53 23 61 38 56 16 59 17 50 7 21 45 4 39 33 40 58 12 30 0 46 63

Thread 1 sorts the
rest of its data

0 1 2 3 4 5 6 7 18 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Thread 4 sorts the
rest of its data

Thread 2 sorts the
rest its data

Thread 3 partitions/splits
its data

Thursday, December 1,

Intel® Software College

Copyright © 2008, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
or other countries. * Other brands and names are the property of their respective owners.

59

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

11 0 9 26 31 30 3 19 12 29 27 1 20 5 33 4 25 21 7
15 17 6 18 16 10 2 23 13 14 8 24 36 32 28 22 34 35

52 47 41 43 53 60 61 38 56 48 59 54 50
49 51 45 62 39 42 40 58 55 57 44 46 6337

THREAD 1

1 0 2 6
4 5 3 7

12 29 27 19 20 30 33 31 25 21 11 15
17 26 18 16 10 9 23 13 14 8 24 36

32 28 22 34 35

45 47 41 43
46 44 40 38
42 48 39

49
50 52 51 54 62
59 56 61 58 55
57 60 53 63

THREAD 2THREAD 3 THREAD 4

11 8 14 13
9 10 16 12

17 15
18

21 25 26 31 33 30
20 23 19 27 29 24
36 32 28 22 34 35

32 44 9 26 31 57 3 19 55 29 27 1 20 5 42 62 25 51 49 15 54 6 18 48 10 2 60 41 14 47 24 36 37 52 22 34 35 11 28 8 13 43 53 23 61 38 56 16 59 17 50 7 21 45 4 39 33 40 58 12 30 0 46 63

Quicksort – Step 5

Thread 1 gets more
work by stealing from

Thread 3

Thread 3 sorts the
rest of its data

Thursday, December 1,

Intel® Software College

Copyright © 2008, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
or other countries. * Other brands and names are the property of their respective owners.

60

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 27 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

11 0 9 26 31 30 3 19 12 29 27 1 20 5 33 4 25 21 7
15 17 6 18 16 10 2 23 13 14 8 24 36 32 28 22 34 35

52 47 41 43 53 60 61 38 56 48 59 54 50
49 51 45 62 39 42 40 58 55 57 44 46 6337

THREAD 1

1 0 2 6
4 5 3 7

12 29 27 19 20 30 33 31 25 21 11 15
17 26 18 16 10 9 23 13 14 8 24 36

32 28 22 34 35

45 47 41 43
46 44 40 38
42 48 39

49
50 52 51 54 62
59 56 61 58 55
57 60 53 63

THREAD 2THREAD 3 THREAD 4

11 8 14 13
9 10 16 12

17 15
18

21 25 26 31 33 30
20 23 19 27 29 24
36 32 28 22 34 35

19 25 26
22 24 21
20 23

27
30 29 33
36 32 28
31 34 35

32 44 9 26 31 57 3 19 55 29 27 1 20 5 42 62 25 51 49 15 54 6 18 48 10 2 60 41 14 47 24 36 37 52 22 34 35 11 28 8 13 43 53 23 61 38 56 16 59 17 50 7 21 45 4 39 33 40 58 12 30 0 46 63

Thread 1 partitions/splits
its data

Quicksort – Step 6

Thursday, December 1,

Intel® Software College

Copyright © 2008, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
or other countries. * Other brands and names are the property of their respective owners.

61

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 27 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

11 0 9 26 31 30 3 19 12 29 27 1 20 5 33 4 25 21 7
15 17 6 18 16 10 2 23 13 14 8 24 36 32 28 22 34 35

52 47 41 43 53 60 61 38 56 48 59 54 50
49 51 45 62 39 42 40 58 55 57 44 46 6337

THREAD 1

1 0 2 6
4 5 3 7

12 29 27 19 20 30 33 31 25 21 11 15
17 26 18 16 10 9 23 13 14 8 24 36

32 28 22 34 35

45 47 41 43
46 44 40 38
42 48 39

49
50 52 51 54 62
59 56 61 58 55
57 60 53 63

THREAD 2THREAD 3 THREAD 4

11 8 14 13
9 10 16 12

17 15
18

21 25 26 31 33 30
20 23 19 27 29 24
36 32 28 22 34 35

19 25 26
22 24 21
20 23

27
30 29 33
36 32 28
31 34 35

32 44 9 26 31 57 3 19 55 29 27 1 20 5 42 62 25 51 49 15 54 6 18 48 10 2 60 41 14 47 24 36 37 52 22 34 35 11 28 8 13 43 53 23 61 38 56 16 59 17 50 7 21 45 4 39 33 40 58 12 30 0 46 63

Thread 2 gets more work
by stealing from Thread 1

Thread 1 sorts the
rest of its data

Quicksort – Step 6

Thursday, December 1,

Intel® Software College

Copyright © 2008, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
or other countries. * Other brands and names are the property of their respective owners.

62

11 0 9 26 31 30 3 19 12 29 27 1 20 5 33 4 25 21 7
15 17 6 18 16 10 2 23 13 14 8 24 36 32 28 22 34 35

52 47 41 43 53 60 61 38 56 48 59 54 50
49 51 45 62 39 42 40 58 55 57 44 46 6337

THREAD 1

1 0 2 6
4 5 3 7

12 29 27 19 20 30 33 31 25 21 11 15
17 26 18 16 10 9 23 13 14 8 24 36

32 28 22 34 35

45 47 41 43
46 44 40 38
42 48 39

49
50 52 51 54 62
59 56 61 58 55
57 60 53 63

THREAD 2THREAD 3 THREAD 4

11 8 14 13
9 10 16 12

17 15
18

21 25 26 31 33 30
20 23 19 27 29 24
36 32 28 22 34 35

19 25 26
22 24 21
20 23

27
30 29 33
36 32 28
31 34 35

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

32 44 9 26 31 57 3 19 55 29 27 1 20 5 42 62 25 51 49 15 54 6 18 48 10 2 60 41 14 47 24 36 37 52 22 34 35 11 28 8 13 43 53 23 61 38 56 16 59 17 50 7 21 45 4 39 33 40 58 12 30 0 46 63

Thread 2 sorts the
rest of its data

DONE

Quicksort – Step 7

Thursday, December 1,

Expressing Tasks in Libraries

63

Thursday, December 1,

Expressing Tasks in Libraries

• Functors

63

Thursday, December 1,

Expressing Tasks in Libraries

• Functors

• C++ “lambda expressions”
• Coming soon in C++0x standard

63

Thursday, December 1,

Expressing Tasks in Libraries

• Functors

• C++ “lambda expressions”
• Coming soon in C++0x standard

• “Blocks”
• Apple’s extension to C/C++/Obj-C

63

Thursday, December 1,

