
INTEL CONFIDENTIAL

Threading for Performance with
Intel® Threading Building Blocks

Thursday, December 1,

4

Acknowledgments for today’s lecture

• Thread Building Blocks, Arch Robinson, HPCC 2007 tutorial

—http://www.tlc2.uh.edu/hpcc07/Schedule/tbBlocks

• “Threading for Performance with Intel Thread Building Blocks:

Thinking Parallel”, Victoria Gromova

—http://softwaredispatch.intel.com/?lid=1861&t=1

• Intel Threading Building Blocks: Outfitting C++ for
Multi-core Processor Parallelism”, James Reinders,
O’Reily, First Edition, July 2007

—http://www.oreilly.com/catalog/9780596514808/

Thursday, December 1,

52

Summary of Intel® Threading Building Blocks

• It is a library

• You specify task patterns, not threads

• Targets threading for robust performance

• Does well with nested parallelism

• Compatible with other threading packages

• Emphasizes scalable, data parallel

programming

• Generic programming enables distribution of

broadly-useful high-quality algorithms and

data structures.

• Available in GPL-ed version, as well as

commercially licensed.

Thursday, December 1,

Intel® Software College

Copyright © 2008, Intel Corporation. All rights reserved.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
or other countries. * Other brands and names are the property of their respective owners.

4

Intel® Threading Building Blocks (TBB) - Key Features

You specify tasks (what can run concurrently) instead of threads
• Library maps your logical tasks onto physical threads, efficiently using

cache and balancing load
• Full support for nested parallelism

Targets threading for scalable performance
• Portable across Linux*, Mac OS*, Windows*, and Solaris*

Emphasizes scalable data parallel programming
• Loop parallelism tasks are more scalable than a fixed number of separate

tasks

Compatible with other threading packages
• Can be used in concert with native threads and OpenMP

Open source and licensed versions available

Thursday, December 1,

32

Family Tree

Chare Kernel
small tasks

Cilk
space efficient scheduler

cache-oblivious algorithms

OpenMP*
fork/join

tasks
JSR-166
(FJTask)

containers

OpenMP taskqueue
while & recursion

Intel® TBB

STL
generic

programming

STAPL
recursive ranges

Threaded-C
 continuation tasks

task stealing

ECMA .NET*
parallel iteration classes

Libraries

1988

2001

2006

1995

Languages

Pragmas

*Other names and brands may be claimed as the property of others

Thursday, December 1,

Intel® Software College

Copyright © 2008, Intel Corporation. All rights reserved.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
or other countries. * Other brands and names are the property of their respective owners.

6

Components of TBB (version 2.1)

Synchronization primitives
atomic operations

various flavors of mutexes (improved)

Parallel algorithms
parallel_for (improved)

parallel_reduce (improved)
parallel_do (new)

pipeline (improved)
parallel_sort
parallel_scan

Concurrent containers
concurrent_hash_map

concurrent_queue
concurrent_vector

(all improved)

Task scheduler
With new functionality

Memory allocators
tbb_allocator (new), cache_aligned_allocator, scalable_allocator

Utilities
tick_count

tbb_thread (new)

Thursday, December 1,

Intel® Software College

Copyright © 2008, Intel Corporation. All rights reserved.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
or other countries. * Other brands and names are the property of their respective owners.

7

Task-based Programming with Intel® TBB

Tasks are light-weight entities at user-level
• Intel® TBB parallel algorithms map tasks onto threads automatically
• Task scheduler manages the thread pool

– Scheduler is unfair to favor tasks that have been most recent in the
cache

• Oversubscription and undersubscription of core resources is prevented
by task-stealing technique of TBB scheduler

Thursday, December 1,

INTEL CONFIDENTIAL

Generic Parallel Algorithms

Thursday, December 1,

Intel® Software College

Copyright © 2008, Intel Corporation. All rights reserved.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
or other countries. * Other brands and names are the property of their respective owners.

9

Intel® Threading Building Blocks Patterns

Task scheduler powers high level parallel patterns that are pre-
packaged, tested, and tuned for scalability
• parallel_for: load-balanced parallel execution of loop iterations where

iterations are independent
• parallel_reduce: load-balanced parallel execution of independent loop

iterations that perform reduction (e.g. summation of array elements)
• parallel_while: load-balanced parallel execution of independent loop

iterations with unknown or dynamically changing bounds (e.g. applying
function to the element of linked list)

• parallel_scan: template function that computes parallel prefix
• pipeline: data-flow pipeline pattern
• parallel_sort: parallel sort

Thursday, December 1,

Intel® Software College

Copyright © 2008, Intel Corporation. All rights reserved.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
or other countries. * Other brands and names are the property of their respective owners.

10

Grain Size

OpenMP has similar parameter
Part of parallel_for, not underlying task scheduler

• Grain size exists to amortize overhead, not balance load
• Units of granularity are loop iterations

Typically only need to get it right within an order of magnitude

Thursday, December 1,

Intel® Software College

Copyright © 2008, Intel Corporation. All rights reserved.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
or other countries. * Other brands and names are the property of their respective owners.

11

Tuning Grain Size

• Tune by examining single-processor performance
• When in doubt, err on the side of making it a little too large, so that

performance is not hurt when only one core is available.

too fine ⇒
scheduling overhead dominates

too coarse ⇒
lose potential parallelism

Thursday, December 1,

Intel® Software College

Copyright © 2008, Intel Corporation. All rights reserved.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
or other countries. * Other brands and names are the property of their respective owners.

12

The parallel_for Template

Requires definition of:
• A range type to iterate over

– Must define a copy constructor and a destructor
– Defines is_empty()
– Defines is_divisible()
– Defines a splitting constructor, R(R &r, split)

• A body type that operates on the range (or a subrange)
– Must define a copy constructor and a destructor
– Defines operator()

 template <typename Range, typename Body>
 void parallel_for(const Range& range, const Body &body);

Thursday, December 1,

Intel® Software College

Copyright © 2008, Intel Corporation. All rights reserved.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
or other countries. * Other brands and names are the property of their respective owners.

13

Body is Generic

Requirements for parallel_for Body

parallel_for partitions original range into subranges, and deals out
subranges to worker threads in a way that:
• Balances load
• Uses cache efficiently
• Scales

Body::Body(const Body&) Copy constructor

Body::~Body() Destructor

void Body::operator() (Range& subrange) const Apply the body to
subrange.

Thursday, December 1,

Intel® Software College

Copyright © 2008, Intel Corporation. All rights reserved.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
or other countries. * Other brands and names are the property of their respective owners.

14

Range is Generic

Requirements for parallel_for Range

Library provides predefined ranges
• blocked_range and blocked_range2d

You can define your own ranges

R::R (const R&) Copy constructor

R::~R() Destructor

bool R::is_empty() const True if range is empty

bool R::is_divisible() const True if range can be partitioned

R::R (R& r, split) Splitting constructor; splits r into
two subranges

Thursday, December 1,

Intel® Software College

Copyright © 2008, Intel Corporation. All rights reserved.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
or other countries. * Other brands and names are the property of their respective owners.

15

tasks available to be
scheduled to other threads

(thieves)

How splitting works on blocked_range2d

Thursday, December 1,

Intel® Software College

Copyright © 2008, Intel Corporation. All rights reserved.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
or other countries. * Other brands and names are the property of their respective owners.

15

tasks available to be
scheduled to other threads

(thieves)

How splitting works on blocked_range2d

Split range...

Thursday, December 1,

Intel® Software College

Copyright © 2008, Intel Corporation. All rights reserved.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
or other countries. * Other brands and names are the property of their respective owners.

15

tasks available to be
scheduled to other threads

(thieves)

How splitting works on blocked_range2d

Split range...

.. recursively...

Thursday, December 1,

Intel® Software College

Copyright © 2008, Intel Corporation. All rights reserved.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
or other countries. * Other brands and names are the property of their respective owners.

15

tasks available to be
scheduled to other threads

(thieves)

How splitting works on blocked_range2d

Split range...

.. recursively...

...until ≤ grainsize.

Thursday, December 1,

Intel® Software College

Copyright © 2008, Intel Corporation. All rights reserved.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
or other countries. * Other brands and names are the property of their respective owners.

16

const int N = 100000;

void change_array(float array, int M) {
 for (int i = 0; i < M; i++){
 array[i] *= 2;
 }
}

int main (){
 float A[N];
 initialize_array(A);
 change_array(A, N);
 return 0;
}

An Example using parallel_for

Independent iterations and fixed/known bounds

Thursday, December 1,

Intel® Software College

Copyright © 2008, Intel Corporation. All rights reserved.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
or other countries. * Other brands and names are the property of their respective owners.

17

An Example using parallel_for

Include and initialize the library

Thursday, December 1,

Intel® Software College

Copyright © 2008, Intel Corporation. All rights reserved.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
or other countries. * Other brands and names are the property of their respective owners.

17

#include “tbb/task_scheduler_init.h”
#include “tbb/blocked_range.h”
#include “tbb/parallel_for.h”

using namespace tbb;

int main (){
 task_scheduler_init init;
 float A[N];
 initialize_array(A);
 parallel_change_array(A, N);
 return 0;
}

An Example using parallel_for

Include Library Headers

Use namespace

Include and initialize the library

Initialize scheduler blue = original code
green = provided by TBB
red = boilerplate for library

Thursday, December 1,

Intel® Software College

Copyright © 2008, Intel Corporation. All rights reserved.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
or other countries. * Other brands and names are the property of their respective owners.

17

#include “tbb/task_scheduler_init.h”
#include “tbb/blocked_range.h”
#include “tbb/parallel_for.h”

using namespace tbb;

int main (){
 task_scheduler_init init;
 float A[N];
 initialize_array(A);
 parallel_change_array(A, N);
 return 0;
}

An Example using parallel_for

Include and initialize the library

blue = original code
green = provided by TBB
red = boilerplate for library

Thursday, December 1,

Intel® Software College

Copyright © 2008, Intel Corporation. All rights reserved.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
or other countries. * Other brands and names are the property of their respective owners.

18

An Example using parallel_for

Use the parallel_for pattern
blue = original code
green = provided by TBB
red = boilerplate for library

Thursday, December 1,

Intel® Software College

Copyright © 2008, Intel Corporation. All rights reserved.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
or other countries. * Other brands and names are the property of their respective owners.

18

class ChangeArrayBody {
 float *array;
public:
 ChangeArrayBody (float *a): array(a) {}
 void operator()(const blocked_range <int>& r) const{
 for (int i = r.begin(); i != r.end(); i++){
 array[i] *= 2;
 }
 }
};

void parallel_change_array(float *array, int M) {
 parallel_for (blocked_range <int>(0, M, IdealGrainSize),
 ChangeArrayBody(array));
}

An Example using parallel_for

Use the parallel_for pattern
blue = original code
green = provided by TBB
red = boilerplate for library

Thursday, December 1,

Intel® Software College

Copyright © 2008, Intel Corporation. All rights reserved.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
or other countries. * Other brands and names are the property of their respective owners.

18

class ChangeArrayBody {
 float *array;
public:
 ChangeArrayBody (float *a): array(a) {}
 void operator()(const blocked_range <int>& r) const{
 for (int i = r.begin(); i != r.end(); i++){
 array[i] *= 2;
 }
 }
};

void parallel_change_array(float *array, int M) {
 parallel_for (blocked_range <int>(0, M, IdealGrainSize),
 ChangeArrayBody(array));
}

An Example using parallel_for

Define Task

Use Pattern Establish grain size

Use the parallel_for pattern
blue = original code
green = provided by TBB
red = boilerplate for library

Thursday, December 1,

Intel® Software College

Copyright © 2008, Intel Corporation. All rights reserved.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
or other countries. * Other brands and names are the property of their respective owners.

19

The parallel_reduce Template

Requirements for parallel_reduce Body

Reuses Range concept from parallel_for

Body::Body(const Body&, split) Splitting constructor

Body::~Body() Destructor

void Body::operator() (Range& subrange) const Accumulate results from
subrange

void Body::join(Body& rhs); Merge result of rhs into
the result of this.

 template <typename Range, typename Body>
 void parallel_reduce (const Range& range, Body &body);

Thursday, December 1,

Intel® Software College

Copyright © 2008, Intel Corporation. All rights reserved.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
or other countries. * Other brands and names are the property of their respective owners.

20

Numerical Integration Example - Serial

static long num_steps=100000;
double step, pi;

void main(int argc, char* argv[])
{ int i;
 double x, sum = 0.0;

 step = 1.0/(double) num_steps;
 for (i=0; i< num_steps; i++){
 x = (i+0.5)*step;
 sum = sum + 4.0/(1.0 + x*x);
 }
 pi = step * sum;
 printf(“Pi = %f\n”,pi);
}

4.0

2.0

1.00.0 X

Thursday, December 1,

Intel® Software College

Copyright © 2008, Intel Corporation. All rights reserved.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
or other countries. * Other brands and names are the property of their respective owners.

21

Parallel Version (1 of 2)

#include "tbb/parallel_reduce.h"
#include "tbb/task_scheduler_init.h"
#include "tbb/blocked_range.h"

using namespace tbb;

int main(int argc, char* argv[])
{
 double pi;
 double width = 1./(double)num_steps;
 MyPi step((double *const)&width);

 parallel_reduce(blocked_range<size_t>(0,num_steps), step);
 pi = step.sum*width;

 printf("The value of PI is %15.12f\n",pi);
 return 0;
}

blue = original code
green = provided by TBB
red = boilerplate for library

Thursday, December 1,

Intel® Software College

Copyright © 2008, Intel Corporation. All rights reserved.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
or other countries. * Other brands and names are the property of their respective owners.

22

Parallel Version (2 of 2)

class MyPi {
 double *const my_step;
public:
 double sum;
 void operator()(const blocked_range<size_t>& r) {
 double step = *my_step;
 double x;
 for (size_t i=r.begin(); i!=r.end(); ++i)
 {
 x = (i + .5)*step;
 sum = sum + 4.0/(1.+ x*x);
 }
 }

 MyPi(MyPi& x, split) : my_step(x.my_step), sum(0) {}

 void join(const MyPi& y) {sum += y.sum;}

 MyPi(double *const step) : my_step(step), sum(0) {}

};

perform computation

blue = original code
green = provided by TBB
red = boilerplate for library

join

split

init

Thursday, December 1,

16

Parallel pipeline

•Linear pipeline of stages

—You specify maximum number of items that can be in flight

—Handle arbitrary DAG by mapping onto linear pipeline

•Each stage can be serial or parallel

—Serial stage processes one item at a time, in order.

—Parallel stage can process multiple items at a time, out of order.

•Uses cache efficiently

—Each worker thread carries an item through as many stages as
possible

—Biases towards finishing old items before tackling new ones

Thursday, December 1,

17

Parallel stage scales because

it can process items in parallel

or out of order.

Serial stage processes items

one at a time in order. Another serial stage.

Items wait for turn

in serial stage

Controls excessive parallelism

by limiting total number of items

flowing through pipeline.

Uses sequence

numbers recover

order for serial stage.

Tag incoming items with

sequence numbers

13

2

4

5

6

7

8

9

101112

Throughput limited by throughput
of slowest serial stage.

Parallel
pipeline

Thursday, December 1,

INTEL CONFIDENTIAL

Task Scheduler

Thursday, December 1,

Intel® Software College

Copyright © 2008, Intel Corporation. All rights reserved.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
or other countries. * Other brands and names are the property of their respective owners.

26

Task Based Approach

Intel® TBB provides C++ constructs that allow you to express parallel solutions
in terms of task objects
• Task scheduler manages thread pool
• Task scheduler avoids common performance problems of programming with threads

Problem Intel® TBB Approach

Oversubscription One scheduler thread per hardware thread

Fair scheduling Non-preemptive unfair scheduling

High overhead Programmer specifies tasks, not threads

Load imbalance Work-stealing balances load

Thursday, December 1,

Intel® Software College

Copyright © 2008, Intel Corporation. All rights reserved.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
or other countries. * Other brands and names are the property of their respective owners.

27

Example: Naive Fibonacci Calculation

Recursion typically used to calculate Fibonacci number
Widely used as toy benchmark

• Easy to code
• Has unbalanced task graph

long SerialFib(long n) {
 if(n<2)
 return n;
 else
 return SerialFib(n-1) + SerialFib(n-2);
}

Thursday, December 1,

Intel® Software College

Copyright © 2008, Intel Corporation. All rights reserved.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
or other countries. * Other brands and names are the property of their respective owners.

28

Example: Naive Fibonacci Calculation

Can envision Fibonacci computation as a task graph

SerialFib(4)

SerialFib(3) SerialFib(2)

SerialFib(1)

SerialFib(2)

SerialFib(1) SerialFib(0)

SerialFib(2)

SerialFib(1) SerialFib(0)

SerialFib(3)

SerialFib(2) SerialFib(1)

SerialFib(1)

SerialFib(0)SerialFib(1)

SerialFib(0)

Thursday, December 1,

Intel® Software College

Copyright © 2008, Intel Corporation. All rights reserved.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
or other countries. * Other brands and names are the property of their respective owners.

29

Fibonacci - Task Spawning Solution

Use TBB tasks to thread creation and execution of task graph

Create new root task
• Allocate task object
• Construct task

Spawn (execute) task, wait for completion

long ParallelFib(long n) {
 long sum;
 FibTask& a = *new(Task::allocate_root()) FibTask(n,&sum);
 Task::spawn_root_and_wait(a);
 return sum;
}

Thursday, December 1,

Intel® Software College

Copyright © 2008, Intel Corporation. All rights reserved.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
or other countries. * Other brands and names are the property of their respective owners.

30

class FibTask: public task {
public:
 const long n;
 long* const sum;
 FibTask(long n_, long* sum_) :
 n(n_), sum(sum_)
 {}
 task* execute() { // Overrides virtual function task::execute
 if(n<CutOff) {
 *sum = SerialFib(n);
 } else {
 long x, y;
 FibTask& a = *new(allocate_child()) FibTask(n-1,&x);
 FibTask& b = *new(allocate_child()) FibTask(n-2,&y);
 set_ref_count(3); // 3 = 2 children + 1 for wait
 spawn(b);
 spawn_and_wait_for_all(a);
 *sum = x+y;
 }
 return NULL;
 }
};

Fibonacci - Task Spawning Solution

Thursday, December 1,

Intel® Software College

Copyright © 2008, Intel Corporation. All rights reserved.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
or other countries. * Other brands and names are the property of their respective owners.

31

Fibonacci - Task Spawning Solution

class FibTask: public task {
public:
 const long n;
 long* const sum;
 FibTask(long n_, long* sum_) :
 n(n_), sum(sum_)
 {}
 task* execute() { // Overrides virtual function task::execute
 if(n<CutOff) {
 *sum = SerialFib(n);
 } else {
 long x, y;
 FibTask& a = *new(allocate_child()) FibTask(n-1,&x);
 FibTask& b = *new(allocate_child()) FibTask(n-2,&y);
 set_ref_count(3); // 3 = 2 children + 1 for wait
 spawn(b);
 spawn_and_wait_for_all(a);
 *sum = x+y;
 }
 return NULL;
 }
};

Thursday, December 1,

Intel® Software College

Copyright © 2008, Intel Corporation. All rights reserved.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
or other countries. * Other brands and names are the property of their respective owners.

31

Fibonacci - Task Spawning Solution

Derived from TBB task class
class FibTask: public task {
public:
 const long n;
 long* const sum;
 FibTask(long n_, long* sum_) :
 n(n_), sum(sum_)
 {}
 task* execute() { // Overrides virtual function task::execute
 if(n<CutOff) {
 *sum = SerialFib(n);
 } else {
 long x, y;
 FibTask& a = *new(allocate_child()) FibTask(n-1,&x);
 FibTask& b = *new(allocate_child()) FibTask(n-2,&y);
 set_ref_count(3); // 3 = 2 children + 1 for wait
 spawn(b);
 spawn_and_wait_for_all(a);
 *sum = x+y;
 }
 return NULL;
 }
};

Thursday, December 1,

Intel® Software College

Copyright © 2008, Intel Corporation. All rights reserved.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
or other countries. * Other brands and names are the property of their respective owners.

31

Fibonacci - Task Spawning Solution

The execute method does
the computation of a task

class FibTask: public task {
public:
 const long n;
 long* const sum;
 FibTask(long n_, long* sum_) :
 n(n_), sum(sum_)
 {}
 task* execute() { // Overrides virtual function task::execute
 if(n<CutOff) {
 *sum = SerialFib(n);
 } else {
 long x, y;
 FibTask& a = *new(allocate_child()) FibTask(n-1,&x);
 FibTask& b = *new(allocate_child()) FibTask(n-2,&y);
 set_ref_count(3); // 3 = 2 children + 1 for wait
 spawn(b);
 spawn_and_wait_for_all(a);
 *sum = x+y;
 }
 return NULL;
 }
};

Thursday, December 1,

Intel® Software College

Copyright © 2008, Intel Corporation. All rights reserved.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
or other countries. * Other brands and names are the property of their respective owners.

31

Fibonacci - Task Spawning Solution

Create new child tasks to compute (n-1)th
and (n-2)th Fibonacci numbers

class FibTask: public task {
public:
 const long n;
 long* const sum;
 FibTask(long n_, long* sum_) :
 n(n_), sum(sum_)
 {}
 task* execute() { // Overrides virtual function task::execute
 if(n<CutOff) {
 *sum = SerialFib(n);
 } else {
 long x, y;
 FibTask& a = *new(allocate_child()) FibTask(n-1,&x);
 FibTask& b = *new(allocate_child()) FibTask(n-2,&y);
 set_ref_count(3); // 3 = 2 children + 1 for wait
 spawn(b);
 spawn_and_wait_for_all(a);
 *sum = x+y;
 }
 return NULL;
 }
};

Thursday, December 1,

Intel® Software College

Copyright © 2008, Intel Corporation. All rights reserved.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
or other countries. * Other brands and names are the property of their respective owners.

31

Fibonacci - Task Spawning Solution

Reference count is used to know when
spawned tasks have completed

Set before spawning any children

class FibTask: public task {
public:
 const long n;
 long* const sum;
 FibTask(long n_, long* sum_) :
 n(n_), sum(sum_)
 {}
 task* execute() { // Overrides virtual function task::execute
 if(n<CutOff) {
 *sum = SerialFib(n);
 } else {
 long x, y;
 FibTask& a = *new(allocate_child()) FibTask(n-1,&x);
 FibTask& b = *new(allocate_child()) FibTask(n-2,&y);
 set_ref_count(3); // 3 = 2 children + 1 for wait
 spawn(b);
 spawn_and_wait_for_all(a);
 *sum = x+y;
 }
 return NULL;
 }
};

Thursday, December 1,

Intel® Software College

Copyright © 2008, Intel Corporation. All rights reserved.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
or other countries. * Other brands and names are the property of their respective owners.

31

Fibonacci - Task Spawning Solution

Spawn task; return immediately

Can be scheduled at any time

class FibTask: public task {
public:
 const long n;
 long* const sum;
 FibTask(long n_, long* sum_) :
 n(n_), sum(sum_)
 {}
 task* execute() { // Overrides virtual function task::execute
 if(n<CutOff) {
 *sum = SerialFib(n);
 } else {
 long x, y;
 FibTask& a = *new(allocate_child()) FibTask(n-1,&x);
 FibTask& b = *new(allocate_child()) FibTask(n-2,&y);
 set_ref_count(3); // 3 = 2 children + 1 for wait
 spawn(b);
 spawn_and_wait_for_all(a);
 *sum = x+y;
 }
 return NULL;
 }
};

Thursday, December 1,

Intel® Software College

Copyright © 2008, Intel Corporation. All rights reserved.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
or other countries. * Other brands and names are the property of their respective owners.

31

Fibonacci - Task Spawning Solution

Spawn task; block until all children
have completed execution

class FibTask: public task {
public:
 const long n;
 long* const sum;
 FibTask(long n_, long* sum_) :
 n(n_), sum(sum_)
 {}
 task* execute() { // Overrides virtual function task::execute
 if(n<CutOff) {
 *sum = SerialFib(n);
 } else {
 long x, y;
 FibTask& a = *new(allocate_child()) FibTask(n-1,&x);
 FibTask& b = *new(allocate_child()) FibTask(n-2,&y);
 set_ref_count(3); // 3 = 2 children + 1 for wait
 spawn(b);
 spawn_and_wait_for_all(a);
 *sum = x+y;
 }
 return NULL;
 }
};

Thursday, December 1,

Intel® Software College

Copyright © 2008, Intel Corporation. All rights reserved.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
or other countries. * Other brands and names are the property of their respective owners.

31

Fibonacci - Task Spawning Solution

class FibTask: public task {
public:
 const long n;
 long* const sum;
 FibTask(long n_, long* sum_) :
 n(n_), sum(sum_)
 {}
 task* execute() { // Overrides virtual function task::execute
 if(n<CutOff) {
 *sum = SerialFib(n);
 } else {
 long x, y;
 FibTask& a = *new(allocate_child()) FibTask(n-1,&x);
 FibTask& b = *new(allocate_child()) FibTask(n-2,&y);
 set_ref_count(3); // 3 = 2 children + 1 for wait
 spawn(b);
 spawn_and_wait_for_all(a);
 *sum = x+y;
 }
 return NULL;
 }
};

Thursday, December 1,

Intel® Software College

Copyright © 2008, Intel Corporation. All rights reserved.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
or other countries. * Other brands and names are the property of their respective owners.

32

Further Optimizations Enabled by Scheduler

Recycle tasks
• Avoid overhead of allocating/freeing Task
• Avoid copying data and rerunning constructors/destructors

Continuation passing
• Instead of blocking, parent specifies another Task that will continue its

work when children are done.
• Further reduces stack space and enables bypassing scheduler

Bypassing scheduler
• Task can return pointer to next Task to execute

– For example, parent returns pointer to its left child
– See include/tbb/parallel_for.h for example

• Saves push/pop on deque (and locking/unlocking it)

Thursday, December 1,

INTEL CONFIDENTIAL

Low-Level Synchronization
Primitives

Thursday, December 1,

Intel® Software College

Copyright © 2008, Intel Corporation. All rights reserved.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
or other countries. * Other brands and names are the property of their respective owners.

34

Intel® TBB: Synchronization Primitives

Parallel tasks must sometimes touch shared data
• When data updates might overlap, use mutual exclusion to avoid race

High-level generic abstraction for HW atomic operations
• Atomically protect update of single variable

Critical regions of code are protected by scoped locks
• The range of the lock is determined by its lifetime (scope)

– Can’t forget to unlock it due to “return” or “break” statement
• Leaving lock scope calls the destructor, making it exception safe
• Minimizing lock lifetime avoids possible contention
• Several mutex behaviors are available

– Spin vs. queued
– “are we there yet” vs. “wake me when we get there”

– Writer vs. reader/writer (supports multiple readers/single writer)
– Scoped wrapper of native mutual exclusion function

Thursday, December 1,

Intel® Software College

Copyright © 2008, Intel Corporation. All rights reserved.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
or other countries. * Other brands and names are the property of their respective owners.

35

Atomic Execution

atomic<T>
• T should be integral type or pointer type
• Full type-safe support for 8, 16, 32, and 64-bit integers
Operations

atomic <int> i;
. . .
int z = i.fetch_and_add(2);

‘= x’ and ‘x = ’ read/write value of x

x.fetch_and_store (y) z = x, y = x, return z

x.fetch_and_add (y) z = x, x += y, return z

x.compare_and_swap (y,p) z = x, if (x==p) x=y; return z

Thursday, December 1,

Intel® Software College

Copyright © 2008, Intel Corporation. All rights reserved.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
or other countries. * Other brands and names are the property of their respective owners.

36

Mutex Concepts

Mutexes are C++ objects based on scoped locking pattern
Combined with locks, provide mutual exclusion

M() Construct unlocked mutex

~M() Destroy unlocked mutex

typename M::scoped_lock Corresponding scoped_lock type

M::scoped_lock() Construct lock w/out acquiring a mutex

M::scoped_lock(M&) Construct lock and acquire lock on mutex

M::~scoped_lock() Release lock if acquired

M::scoped_lock::acquire(M&) Acquire lock on mutex

M::scoped_lock::release() Release lock

Thursday, December 1,

Intel® Software College

Copyright © 2008, Intel Corporation. All rights reserved.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
or other countries. * Other brands and names are the property of their respective owners.

37

Mutex Flavors

spin_mutex
• Non-reentrant, unfair, spins in the user space
• VERY FAST in lightly contended situations; use if you need to protect very few

instructions

queuing_mutex
• Non-reentrant, fair, spins in the user space
• Use Queuing_Mutex when scalability and fairness are important

queuing_rw_mutex
• Non-reentrant, fair, spins in the user space

spin_rw_mutex
• Non-reentrant, fair, spins in the user space
• Use ReaderWriterMutex to allow non-blocking read for multiple threads

Thursday, December 1,

Intel® Software College

Copyright © 2008, Intel Corporation. All rights reserved.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
or other countries. * Other brands and names are the property of their respective owners.

38

spin_mutex Example

#include "tbb/spin_mutex.h“
Node* FreeList;
typedef spin_mutex FreeListMutexType;
FreelistMutexType FreelistMutex;

Node* AllocateNode (){
 Node* n;
 {
 FreelistMutexType::scoped_lock mylock(FreeListMutex);
 n = FreeList;
 if (n) FreeList = n->next;
 }
 if (!n) n = new Node();
 return n;
}

void FreeNode(Node* n) {
 FreelistMutexType::scoped_lock mylock(FreeListMutex);
 n->next = FreeList;
 FreeList = n;
}

blue = original code
green = provided by TBB
red = boilerplate for library

Thursday, December 1,

INTEL CONFIDENTIAL

Generic Highly Concurrent
Containers

Thursday, December 1,

Intel® Software College

Copyright © 2008, Intel Corporation. All rights reserved.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
or other countries. * Other brands and names are the property of their respective owners.

40

Concurrent Containers

TBB Library provides highly concurrent containers
• STL containers are not concurrency-friendly: attempt to modify them

concurrently can corrupt container
• Standard practice is to wrap a lock around STL containers

– Turns container into serial bottleneck

Library provides fine-grained locking or lockless implementations
• Worse single-thread performance, but better scalability.
• Can be used with the library, OpenMP, or native threads.

Thursday, December 1,

Intel® Software College

Copyright © 2008, Intel Corporation. All rights reserved.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
or other countries. * Other brands and names are the property of their respective owners.

41

Concurrency-Friendly Interfaces

Some STL interfaces are inherently not concurrency-friendly

For example, suppose two threads each execute:

Solution: concurrent_queue has pop_if_present

extern std::queue q;

if(!q.empty()) {

 item=q.front();

 q.pop();

}

At this instant, another thread
might pop last element.

Thursday, December 1,

Intel® Software College

Copyright © 2008, Intel Corporation. All rights reserved.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
or other countries. * Other brands and names are the property of their respective owners.

42

Concurrent Queue Container

concurrent_queue<T>
• Preserves local FIFO order

– If thread pushes and another thread pops two values, they come out
in the same order that they went in

• Method push(const T&) places copy of item on back of queue
• Two kinds of pops

– Blocking – pop(T&)
– non-blocking – pop_if_present(T&)

• Method size() returns signed integer
– If size() returns –n, it means n pops await corresponding pushes

• Method empty() returns size() == 0
– Difference between pushes and pops
– May return true if queue is empty, but there are pending pop()

Thursday, December 1,

Intel® Software College

Copyright © 2008, Intel Corporation. All rights reserved.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
or other countries. * Other brands and names are the property of their respective owners.

43

Concurrent Queue Container Example

Simple example to enqueue and print
integers

Constructor for queue

Push items onto queue

While more things on queue
• Pop item off
• Print item

#include “tbb/concurrent_queue.h”
#include <stdio.h>
using namespace tbb;

int main ()
{
 concurrent_queue<int> queue;
 int j;

 for (int i = 0; i < 10; i++)
 queue.push(i);

 while (!queue.empty()) {
 queue.pop(&j);
 printf(“from queue: %d\n”, j);
 }
 return 0;
}

Thursday, December 1,

Intel® Software College

Copyright © 2008, Intel Corporation. All rights reserved.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
or other countries. * Other brands and names are the property of their respective owners.

44

Concurrent Vector Container

concurrent_vector<T>
• Dynamically growable array of T

– Method grow_by(size_type delta) appends delta elements to end of
vector

– Method grow_to_at_least(size_type n) adds elements until vector
has at least n elements

– Method size() returns the number of elements in the vector
– Method empty() returns size() == 0

• Never moves elements until cleared
– Can concurrently access and grow
– Method clear() is not thread-safe with respect to access/resizing

Thursday, December 1,

Intel® Software College

Copyright © 2008, Intel Corporation. All rights reserved.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
or other countries. * Other brands and names are the property of their respective owners.

45

Concurrent Vector Container Example

Append a string to the array of characters held in concurrent_vector
Grow the vector to accommodate new string

• grow_by() returns old size of vector (first index of new element)

Copy string into vector

void Append(concurrent_vector<char>& V, const char* string)
{
 size_type n = strlen(string)+1;
 memcpy(&V[V.grow_by(n)], string, n+1);
}

Thursday, December 1,

Intel® Software College

Copyright © 2008, Intel Corporation. All rights reserved.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
or other countries. * Other brands and names are the property of their respective owners.

46

Concurrent Hash Table Container

concurrent_hash_map<Key,T,HashCompare>
• Maps Key to element of type T
• You define class HashCompare with two methods

– hash() maps Key to hashcode of type size_t
– equal() returns true if two Keys are equal

• Enables concurrent find(), insert(), and erase() operations
– find() and insert() set “smart pointer” that acts as lock on item

– accessor grants read-write access
– const_accessor grants read-only access

– lock released when smart pointer is destroyed

Thursday, December 1,

Intel® Software College

Copyright © 2008, Intel Corporation. All rights reserved.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
or other countries. * Other brands and names are the property of their respective owners.

47

Concurrent Hash Table Container Example MyHashCompare methods

User-defined method hash() takes a string as a key and maps to an
integer

User-defined method equal() returns true if two strings are equal

struct MyHashCompare {
 static size_t hash(const string& x) {
 size_t h = 0;
 for(const char* s = x.c_str(); *s; s++)
 h = (h*157)^*s;
 return h;
 }
 static bool equal(const string& x, const string& y) {
 return strcmp(x, y) == 0;
 }
};

Thursday, December 1,

Intel® Software College

Copyright © 2008, Intel Corporation. All rights reserved.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
or other countries. * Other brands and names are the property of their respective owners.

48

Concurrent Hash Table Container Example Key Insert

If insert() returns true, new string insertion
• Value is key’s place within sequence of strings from getNextString()

Otherwise, string has been previously seen

typedef concurrent_hash_map<string,int,MyHashCompare> myHash;
myHash table;
string newstring;
int place = 0;
…
 while (getNextString(&newString)) {
 myHash::accessor a;
 if (table.insert(a, newString)) // new string inserted
 a->second = ++place;
 }

Thursday, December 1,

Intel® Software College

Copyright © 2008, Intel Corporation. All rights reserved.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
or other countries. * Other brands and names are the property of their respective owners.

49

Concurrent Hash Table Container Example Key Find

If find() returns true, key was found within hash table

myHash table;
string s1, s2;
int p1, p2;
…
 { myHash::const_accessor a; // read_lock
 myHash::const_accessor b;
 if (table.find(a,s1) && table.find(b,s2)) { // find strings
 p1 = a->second; p2 = b->second;
 if (p1 < p2)
 printf(“%s came before %s\n”,s1,s2);
 else
 printf(“%s came before %s\n”,s2,s1);
 }
 else printf(“One or both strings not seen before\n”);
 }

Thursday, December 1,

INTEL CONFIDENTIAL

Scalable Memory Allocation

Thursday, December 1,

Intel® Software College

Copyright © 2008, Intel Corporation. All rights reserved.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
or other countries. * Other brands and names are the property of their respective owners.

51

Scalable Memory Allocators

Serial memory allocation can easily become a bottleneck in
multithreaded applications
• Threads require mutual exclusion into shared heap

False sharing - threads accessing the same cache line
• Even accessing distinct locations, cache line can ping-pong

Intel® Threading Building Blocks offers two choices for scalable
memory allocation
• Similar to the STL template class std::allocator
• scalable_allocator

– Offers scalability, but not protection from false sharing
– Memory is returned to each thread from a separate pool

• cache_aligned_allocator
– Offers both scalability and false sharing protection

Thursday, December 1,

Intel® Software College

Copyright © 2008, Intel Corporation. All rights reserved.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
or other countries. * Other brands and names are the property of their respective owners.

52

Methods for scalable_allocator

#include “tbb/scalable_allocator.h”
template<typename T> class scalable_allocator;

Scalable versions of malloc, free, realloc, calloc
• void *scalable_malloc(size_t size);
• void scalable_free(void *ptr);
• void *scalable_realloc(void *ptr, size_t size);
• void *scalable_calloc(size_t nobj, size_t size);

STL allocator functionality
• T* A::allocate(size_type n, void* hint=0)

– Allocate space for n values
• void A::deallocate(T* p, size_t n)

– Deallocate n values from p
• void A::construct(T* p, const T& value)
• void A::destroy(T* p)

Thursday, December 1,

Intel® Software College

Copyright © 2008, Intel Corporation. All rights reserved.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
or other countries. * Other brands and names are the property of their respective owners.

53

Scalable Allocators Example

#include “tbb/scalable_allocator.h”
typedef char _Elem;
typedef std::basic_string<_Elem,
 std::char_traits<_Elem>,
 tbb::scalable_allocator<_Elem>> MyString;
. . .
{
. . .
 int *p;
 MyString str1 = "qwertyuiopasdfghjkl";
 MyString str2 = "asdfghjklasdfghjkl";
 p = tbb::scalable_allocator<int>().allocate(24);
. . .
}

Thursday, December 1,

Intel® Software College

Copyright © 2008, Intel Corporation. All rights reserved.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
or other countries. * Other brands and names are the property of their respective owners.

53

Scalable Allocators Example

#include “tbb/scalable_allocator.h”
typedef char _Elem;
typedef std::basic_string<_Elem,
 std::char_traits<_Elem>,
 tbb::scalable_allocator<_Elem>> MyString;
. . .
{
. . .
 int *p;
 MyString str1 = "qwertyuiopasdfghjkl";
 MyString str2 = "asdfghjklasdfghjkl";
 p = tbb::scalable_allocator<int>().allocate(24);
. . .
}

Use TBB scalable allocator
for STL basic_string class

Thursday, December 1,

Intel® Software College

Copyright © 2008, Intel Corporation. All rights reserved.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
or other countries. * Other brands and names are the property of their respective owners.

53

Scalable Allocators Example

#include “tbb/scalable_allocator.h”
typedef char _Elem;
typedef std::basic_string<_Elem,
 std::char_traits<_Elem>,
 tbb::scalable_allocator<_Elem>> MyString;
. . .
{
. . .
 int *p;
 MyString str1 = "qwertyuiopasdfghjkl";
 MyString str2 = "asdfghjklasdfghjkl";
 p = tbb::scalable_allocator<int>().allocate(24);
. . .
}

Use TBB scalable allocator
to allocate 24 integers

Thursday, December 1,

INTEL CONFIDENTIAL

Wrapup

Thursday, December 1,

Intel® Software College

Copyright © 2008, Intel Corporation. All rights reserved.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
or other countries. * Other brands and names are the property of their respective owners.

55

One last question…

Thursday, December 1,

Intel® Software College

Copyright © 2008, Intel Corporation. All rights reserved.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
or other countries. * Other brands and names are the property of their respective owners.

55

One last question…

How do I know how many threads are available?

Thursday, December 1,

Intel® Software College

Copyright © 2008, Intel Corporation. All rights reserved.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
or other countries. * Other brands and names are the property of their respective owners.

55

One last question…

Do not ask!
• Not even the scheduler knows how many threads really are available

– There may be other processes running on the machine
• Routine may be nested inside other parallel routines

Focus on dividing your program into tasks of sufficient size
• Task should be big enough to amortize scheduler overhead
• Choose decompositions with good depth-first cache locality and potential

breadth-first parallelism

Let the scheduler do the mapping

How do I know how many threads are available?

Thursday, December 1,

Intel® Software College

Copyright © 2008, Intel Corporation. All rights reserved.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
or other countries. * Other brands and names are the property of their respective owners.

56

Review

Intel® Threading Building Blocks
is a parallel programming model for C++ applications

– Used for computationally intense code
– A focus on data parallel programming
– Uses generic programming

• Intel® Threading Building Blocks provides
– Generic parallel algorithms
– Highly concurrent containers
– Low-level synchronization primitives
– A task scheduler that can be used directly

Thursday, December 1,

