
Disclaimer
• I am not an OpenMP expert

• But I’ve learned most of OpenMP
• And have borrowed some slides from the experts

• We’ll cover the basics
• More information available on-line

• Anything I don’t yet know the answer to…
• … we can look it up and find it out

• Hopefully today’s lecture is where “bottom-up” pays off
• Hopefully the OpenMP constructs won’t seem like magic

!1

Acknowledgments

!2

• Includes slides from:
• “Shared Memory Control Parallelism: OpenMP”

• Clay Breshears (Intel)
• Presented at UIUC’s UPCRC 2009 Summer School
• With permission, includes some modifications by me

• “A Hands-on Introduction to OpenMP” Blue background slides
• Tim Mattson (Intel) & Larry Meadows (Intel)
• http://openmp.org/mp-documents/omp-hands-on-SC08.pdf

• Other sources and references:
• “An Overview of OpenMP”

• Ruud van der Pas (Sun Microsystem)
• http://openmp.org/mp-documents/ntu-vanderpas.pdf

• LLNL OpenMP: https://computing.llnl.gov/tutorials/openMP/

Teaser: Easy Loop-Level Parallelism

• Compiler-based parallelism with OpenMP (gcc -fopenmp)
• Runtime system detects number of cores, runs loop in parallel!
• Variables declared inside of loop: “private”; outside of loop: “shared”
• Limitation: loops with known iteration count
• Defaults to static partitioning, want dynamic?  

#pragma omp parallel for schedule (dynamic, 10)

!3

void compute_one(int num_particles, int* location,
 int *weight, int *radius, int *answer) {

 for (int i = 0; i < num_particles; i++) {
 for (int j = 0; j < num_particles; j++) {
 if (distance(location[i], location[j]) < radius[i]) {
 answer[i] += weight[j];
 }
 }
 }
}

#include <omp.h>

 #pragma omp parallel for

OpenMP Intro

!4

What is OpenMP
• Set of “compiler directives” and runtime library

• Bindings for C/C++ and Fortran
• Standard/portable, implemented by many compilers

• Developed by scientific computing compiler developers
• Observation: if only the programmer could tell us what is parallel
• Rather than doing “automatic parallelization”
• Targets known-iteration parallel loops (“for” loops in C/C++)

• Originated in the mid-1990s
• Motivated by development of “scalable shared memory” machines
• Uses “shared memory” rather than “message passing”

• Uses a lightweight fork/join model of computation

!5

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.
!6 12

!"#$%&'!(#)(*#+,
-.+'/.'01)#2/3'*$0#)2405

� !"#$%&'*3'2'6780*901)#2/*$:;'312)#/'2//)#33'
6./#8<

– =1)#2/3'4.667$*420#'>?'312)*$:'(2)*2>8#3<
� @$*$0#$/#/'312)*$:'.A'/202'4273#3')24#'
4.$/*0*.$3,

–)24#'4.$/*0*.$,'+1#$'01#'").:)26B3'.704.6#'
412$:#3'23'01#'01)#2/3'2)#'341#/78#/'/*AA#)#$08?<

� =.'4.$0).8')24#'4.$/*0*.$3,
–@3#'3?$41).$*C20*.$'0.'").0#40'/202'4.$A8*403<

� D?$41).$*C20*.$'*3'#E"#$3*(#'3.,
–F12$:#'1.+'/202'*3'244#33#/'0.'6*$*6*C#'01#'$##/'
A.)'3?$41).$*C20*.$<'

OpenMP “Hello World”

• Example output on a four-core machine: 
Hello world, thread 0 of 4
Hello world, thread 2 of 4
Hello world, thread 1 of 4
Hello world, thread 3 of 4

!7

#include <omp.h>
int main()
{
 #pragma omp parallel
 {
 printf("Hello world, thread %d of %d\n",
 omp_get_thread_num(),
 omp_get_num_threads());
 }
}

OpenMP include file

Parallel region with default
number of threads

End of parallel region

Runtime library
functions

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

Parallel Region & Structured Blocks (C/C++)
OpenMP constructs apply to “statements” or

“structured blocks”
Structured block: a block with one point of entry at the top

and one point of exit at the bottom

!8

A structured block Not a structured block

if (go_now()) goto more;
#pragma omp parallel
{
 int id = omp_get_thread_num();
more: res[id] = do_big_job(id);
 if (conv (res[id]) goto done;
 goto more;
}
done: if (!really_done()) goto more;

#pragma omp parallel
{
 int id = omp_get_thread_num();
more: res[id] = do_big_job (id);
 if (conv (res[id]) goto more;
}
printf (“All done\n”);

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

OpenMP Programming Model

!9

Fork-Join Parallelism:
• Master spawns a team of “threads” as needed
• Lightweight (keeps threads alive, avoids

thread creation)
• Parallelism is added incrementally: that is, the

sequential program evolves into a parallel
program

Parallel Regions

Master
Thread

OpenMP Fork/Join Parallelism

• Example output on a four-core machine: 
Before Before Before Before  
Sequential  
After After After After  
Sequential

!10

int main()
{
 #pragma omp parallel
 {
 printf("Before ");
 }
 printf("\nSequential\n");
 #pragma omp parallel
 {
 printf("After ");
 }
 printf("\nSequential\n");
}

End of parallel region
(implicit barrier)

Not in parallel region

Next parallel region

OpenMP “For” Construct

!11

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

OpenMP “for” Construct

• Threads are assigned an
independent set of
iterations

• Threads must wait at the
end of work-sharing
construct 
(implicit barrier)

!12

#pragma omp parallel

#pragma omp for

Implicit barrier

i = 0
i = 1
i = 2
i = 3

i = 4
i = 5
i = 6
i = 7

i = 8
i = 9

i = 10
i = 11

// assume N = 12
#pragma omp parallel
#pragma omp for
 for(i = 0; i < N; i++)
 c[i] = a[i] + b[i];

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

Combining constructs

• These two code segments are equivalent

!13

#pragma omp parallel
{
 #pragma omp for
 for (i=0;i< MAX; i++) {

res[i] = huge();
 }
}

#pragma omp parallel for
 for (i=0;i< MAX; i++) {
 res[i] = huge();
 }

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

The schedule clause

The schedule clause affects how loop iterations are mapped onto threads

schedule(static[,chunk])

• Blocks of iterations of size “chunk” to threads
• Round robin distribution
• Low overhead, may cause load imbalance

schedule(dynamic[,chunk])
• Threads grab “chunk” iterations
• When done with iterations, thread requests next set
• Higher threading overhead, can reduce load imbalance

schedule(guided[,chunk])
• Dynamic schedule starting with large block
• Size of the blocks shrink; no smaller than “chunk”

!14

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

Schedule Clause Example

!15

#pragma omp parallel for schedule (static, 8)
 for(int i = start; i <= end; i += 2)
 {
 if (TestForPrime(i)) gPrimesFound++;
 }

Iterations are divided into chunks of 8
• If start = 3, then first chunk is i={3,5,7,9,11,13,15,17}

OpenMP Data Scoping

!16

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

Data Scoping – What’s shared

• OpenMP uses a shared-memory programming
model

• Shared variable - a variable whose name
provides access to a the same block of storage
for each task region  

– Shared clause can be used to make items explicitly

shared
– Global variables are shared among tasks

• C/C++: File scope variables, namespace scope
variables, static variables, variables with const-
qualified type having no mutable member are shared,
static variables which are declared in a scope inside
the construct are shared.

!17

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

Data Scoping – What’s private

• But, not everything is shared...

• Examples of implicitly determined private variables:
– Stack (local) variables in functions called from parallel

regions are PRIVATE
– Automatic variables within a statement block are

PRIVATE
– Loop iteration variables are private

!18

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

A Data Environment Example

!19

temp

A, index, count

temp temp

A, index, count

Which variables are shared and
which variables are private?

float A[10];
main ()
{
 int index[10];
 #pragma omp parallel
 {
 work(index);
 }
 printf (“%d\n”, index[1]);
}

extern float A[10];
void work (int *index)
{
 float temp[10];
 static int count;
 <...>
}

A, index, and count are shared
by all threads, but temp is local
to each thread

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

The Private Clause

• Reproduces the variable for each task
• Variables are un-initialized; C++ object is default constructed
• Any value external to the parallel region is undefined

• Alternative

!20

void* work(float* c, int N) {
 float x, y; int i;
 #pragma omp parallel for private(x,y)
 for(i=0; i<N; i++) {
 x = a[i]; y = b[i];
 c[i] = x + y;
 }
}

void* work(float* c, int N) {
 int i;
 #pragma omp parallel for
 for(i=0; i<N; i++) {
 float x = a[i]; float y = b[i];
 c[i] = x + y;
 }
}

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.
!21 51

L202'D12)*$:,'&)*(20#'F8273#

W1#$'*3'01#'.)*:*$28'(2)*2>8#'(28*/5

int tmp;
void danger() {

tmp = 0;
#pragma omp parallel private(tmp)

work();
printf(“%d\n”, tmp);

}

� =1#'.)*:*$28'(2)*2>8#B3'(287#'*3'7$3"#4*A*#/'*$'!"#$%&'X<Y<

� N$'!"#$%&'Z<[;'*A'*0'*3')#A#)#$4#/'.703*/#'.A'01#'4.$30)740

– N6"8#6#$020*.$3'62?')#A#)#$4#'01#'.)*:*$28'(2)*2>8#'.)'2'4."?'\<<'
I'/2$:#).73'").:)266*$:'")240*4#]

extern int tmp;
void work() {

tmp = 5;
}

unspecified which
copy of tmp
unspecified which
copy of tmptmp has unspecified

value
tmp has unspecified
value

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.
!22 52

L202'D12)*$:,'P*)30")*(20# F8273#

� P*)30")*(20# *3'2'3"#4*28'423#'.A'")*(20#<
– N$*0*28*C#3'#241'")*(20#'4."?'+*01'01#'4.))#3".$/*$:'
(287#'A).6'01#'6230#)'01)#2/<

tmp: 0 in 3.0, unspecified in 2.5tmp: 0 in 3.0, unspecified in 2.5

void useless() {
int tmp = 0;

#pragma omp for firstprivate(tmp)
for (int j = 0; j < 1000; ++j)

tmp += j;
printf(“%d\n”, tmp);

}

Each thread gets its own
tmp with an initial value of 0
Each thread gets its own
tmp with an initial value of 0

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.
!23 53

L202'312)*$:,'Q230")*(20# F8273#

� Q230")*(20# "233#3'01#'(287#'.A'2''")*(20#'A).6'01#'
8230'*0#)20*.$''0.'2':8.>28'(2)*2>8#<

tmp is defined as its value at the “last
sequential” iteration (i.e., for j=999)
tmp is defined as its value at the “last
sequential” iteration (i.e., for j=999)

void closer() {
int tmp = 0;

#pragma omp parallel for firstprivate(tmp) \
lastprivate(tmp)
for (int j = 0; j < 1000; ++j)

tmp += j;
printf(“%d\n”, tmp);

}

Each thread gets its own tmp
with an initial value of 0
Each thread gets its own tmp
with an initial value of 0

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.
!24 55

L202'D12)*$:,'L#A2780'F8273#

� S.0#'0120'01#'/#A2780'30.)2:#'200)*>70#'*3'DEFAULT(SHARED) J3.'
$.'$##/'0.'73#'*0K
� HE4#"0*.$,'b")2:62 .6" 023T

� =.'412$:#'/#A2780,'DEFAULT(PRIVATE)
� each (2)*2>8#'*$'01#'4.$30)740'*3'62/#'")*(20#'23'*A'3"#4*A*#/'*$'2'
")*(20#'48273#

�6.308?'32(#3'0?"*$:''
� DEFAULT(NONE): no /#A2780'A.)'(2)*2>8#3'*$'3020*4'#E0#$0< %730'
8*30'30.)2:#'200)*>70#'A.)'#241'(2)*2>8#'*$'3020*4'#E0#$0<'c../'
").:)266*$:'")240*4#]

!$8?'01#'P.)0)2$'I&N'37"".)03'/#A2780J")*(20#K<''

FdFee'.$8?'123'/#A2780J312)#/K'.)'/#A2780J$.$#K<

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.
!25 58

!"#"$%&"'()*+$,&'-"./'(0"#-

� 1"2-%$*345"3$."#"$/'(0"#-$#4$"$#&'-".
�64'#'")+$COMMON 53472%
�8+$6(3-$%74/-$").$%#"#(7$0"'("53-%9$%#"#(7$73"%%$:-:5-'%

� !(;;-'-)#$;'4:$:"2()*$#&-:$PRIVATE
�<(#&$PRIVATE *345"3$0"'("53-%$"'-$:"%2-.=$
� THREADPRIVATE /'-%-'0-%$*345"3$%74/-$<(#&()$-"7&$
#&'-".

� ,&'-"./'(0"#- 0"'("53-%$7")$5-$()(#("3(>-.$?%()*
COPYIN 4'$"#$#(:-$4;$.-;()(#(4)$@?%()*$3")*?"*-A
.-;()-.$()(#("3(>"#(4)$7"/"5(3(#(-%B=

OpenMP Synchronization

!26

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

Example: Dot Product

!27

float dot_prod(float* a, float* b, int N)
{
 float sum = 0.0;
#pragma omp parallel for
 for(int i=0; i<N; i++) {
 sum += a[i] * b[i];
 }
 return sum;
}

What is Wrong?

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

Race Condition

• A race condition is nondeterministic behavior
caused by the times at which two or more
threads access a shared variable

• For example, suppose both Thread A and Thread
B are executing the statement

 area += 4.0 / (1.0 + x*x);

!28

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

Two Timings

!29

Value of
area

Thread A Thread B

11.667

+3.765

15.432

15.432

+ 3.563

18.995

Value of
area

Thread A Thread B

11.667

+3.765

11.667

15.432

+ 3.563

15.230

Order of thread execution causes
nondeterminant behavior in a data race

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

Protect Shared Data

• Must protect access to shared, modifiable data

!30

float dot_prod(float* a, float* b, int N)
{
 float sum = 0.0;
 #pragma omp parallel for
 for(int i=0; i<N; i++) {
 #pragma omp critical
 sum += a[i] * b[i];
 }
 return sum;
}

• Note: fixes problem, but provides no parallelism in this example  

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

OpenMP Critical Construct
#pragma omp critical [(lock_name)]
• Defines a critical region on a structured block

(code locking)
• All critical sections with same name (or “null” name)

share a lock

!31

float res;
#pragma omp parallel
{ float B;
#pragma omp for  
 for(int i=0; i<niters; i++){
 B = big_job(i);
#pragma omp critical (res_lock)  
 consum (B, res);
 }  
}

Threads wait their turn –
only one at a time calls
consum() thereby
protecting “res” from race
conditions
Naming the critical
construct “res_lock” is
optional

Good Practice – Name all critical sections

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

Atomic Construct

• Special case of a critical section
• Applies only to simple update of memory location

!32

#pragma omp parallel for
 for (i = 0; i < n; i++) {
 #pragma omp atomic
 x[index[i]] += work1(i);
 y[i] += work2(i);
 }

OpenMP Reductions

!33

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.
!34 32

_#62(-3)$

� Q#'.*#'()4B3$3$:'7.52#+'3$-)'.'+3$:5#'.((2425.-3)$'
7.*3.B5#'J.7#K'l -1#*#'3+'.'-*2#'6#"#$6#$(#'B#-F##$'
5))"'3-#*.-3)$+'-1.-'(.$H-'B#'-*373.55,'*#4)7#6

� W13+'3+'.'7#*,'()44)$'+3-2.-3)$'l 3-'3+'(.55#6'.'
A*#62(-3)$D8

� E2"")*-'0)*'*#62(-3)$')"#*.-3)$+'3+'3$(526#6'3$'4)+-'
".*.55#5'"*):*.443$:'#$73*)$4#$-+8

double ave=0.0, A[MAX]; int i;
for (i=0;i< MAX; i++) {

ave + = A[i];
}

ave = ave/MAX;

� O)F'6)'F#'1.$65#'-13+'(.+#V

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

OpenMP Reduction Clause

reduction (op : list)
• The variables in “list” must be shared in the

enclosing parallel region
• Inside parallel or work-sharing construct:

– A PRIVATE copy of each list variable is created and
initialized depending on the “op” 

– These copies are updated locally by threads 

– At end of construct, local copies are combined through
“op” into a single value and combined with the value in
the original SHARED variable

!35

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

Reduction Example

• Local copy of sum for each thread
• All local copies of sum added together and stored

in “global” variable

!36

#pragma omp parallel for reduction(+:sum)
 for(i=0; i<N; i++) {
 sum += a[i] * b[i];
 }

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

C/C++ Reduction Operations

• A range of associative operands can be used
with reduction

• Initial values are the ones that make sense
mathematically

!37

Operand Initial Value

+ 0

* 1

- 0

^ 0

Operand Initial Value

& ~0

| 0

&& 1

|| 0

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

Numerical Integration Example

!38

4.0

2.0

1.00.0

4.0
(1+x2)

f(x) =

X

∫ 4.0
(1+x2) dx = π

0

1

static long num_steps=100000;
double step, pi;

void main()
{ int i;
 double x, sum = 0.0;

 step = 1.0/(double) num_steps;
 for (i=0; i< num_steps; i++){
 x = (i+0.5)*step;
 sum = sum + 4.0/(1.0 + x*x);
 }
 pi = step * sum;
 printf(“Pi = %f\n”,pi);
}

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

Numerical Integration Example

• What variables can
be shared?

• What variables
need to be
private?

• What variables
should be set up
for reductions?

!39

static long num_steps=100000;
double step, pi;

void main()
{ int i;
 double x;  
 double sum = 0.0;
 step = 1.0/(double) num_steps;
 
 for (i=0; i< num_steps; i++){
 x = (i+0.5)*step;
 sum = sum + 4.0/(1.0 + x*x);
 }
 pi = step * sum;
 printf(“Pi = %f\n”,pi);
}

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

Numerical Integration with OpenMP Reduction

!40

static long num_steps=100000;
double step, pi;

void main()
{ int i;
 double x;  
 double sum = 0.0;
 step = 1.0/(double) num_steps;
#pragma omp parallel for private(x) reduction(+:sum)
 for (i=0; i< num_steps; i++){
 x = (i+0.5)*step;
 sum = sum + 4.0/(1.0 + x*x);
 }
 pi = step * sum;
 printf(“Pi = %f\n”,pi);
}

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

Numerical Integration with OpenMP Reduction

!41

static long num_steps=100000;
double step, pi;

void main()
{ int i;
  
 double sum = 0.0;
 step = 1.0/(double) num_steps;
#pragma omp parallel for reduction(+:sum)
 for (i=0; i< num_steps; i++){
 double x = (i+0.5)*step;
 sum = sum + 4.0/(1.0 + x*x);
 }
 pi = step * sum;
 printf(“Pi = %f\n”,pi);
}

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.
!42 40

E,$(1*)$3Y.-3)$=')*6#*#6

� W1#')*6#*#6 *#:3)$'#/#(2-#+'3$'-1#'+#m2#$-3.5'
)*6#*8

9"*.:4.)4" ".*.55#5'"*37.-#'J-4"K
9"*.:4.)4" 0)*')*6#*#6 *#62(-3)$Jg=*#+K

0)*'JGc^dG>`dGggKe
-4" c'`;NWfEWX<<JGKd

9"*.:4.)*6#*#6
*#+'gc'()$+24J-4"Kd

i

OpenMP Control Constructs

!43

Recall: OpenMP Fork/Join Parallelism

• Example output on a four-core machine: 
Before Before Before Before  
Sequential  
After After After After  
Sequential

!44

int main()
{
 #pragma omp parallel
 {
 printf("Before ");
 }
 printf("\nSequential\n");
 #pragma omp parallel
 {
 printf("After ");
 }
 printf("\nSequential\n");
}

End of parallel region
(implicit barrier)

Not in parallel region

Next parallel region

OpenMP Explicit “Barrier” Directive

• Barrier directive
• Waits until all threads arrive before any thread continues
• Implicit at end of any “#pragma omp parallel” region

!45

int main()
{
 #pragma omp parallel
 {
 printf("Before ");
 }

 printf("\nSequential\n");
 #pragma omp parallel
 {
 printf("After ");
 }
 printf("\nSequential\n");
}

int main()
{
 #pragma omp parallel
 {
 printf("Before ");
 #pragma omp barrier
 if (omp_get_thread_num() == 0)
 printf("\nSequential\n");
 #pragma omp barrier

 printf("After ");
 }
 printf("\nSequential\n");
}

OpenMP “Master” Directive

• Master directive
• No implicit barriers (at either start or end)

!46

int main()
{
 #pragma omp parallel
 {
 printf("Before ");
 #pragma omp barrier
 if (omp_get_thread_num() == 0)
 {
 printf("\nSequential\n");
 }
 #pragma omp barrier
 printf("After ");
 }
 printf("\nSequential\n");
}

int main()
{
 #pragma omp parallel
 {
 printf("Before ");
 #pragma omp barrier
 #pragma omp master
 {
 printf("\nSequential\n");
 }
 #pragma omp barrier
 printf("After ");
 }
 printf("\nSequential\n");
}

OpenMP “Single” Directive

• Single directive
• Executed by first thread to reach (perhaps not the master)
• Implicit barrier at end, but not at start

!47

int main()
{
 #pragma omp parallel
 {
 printf("Before ");
 #pragma omp barrier
 #pragma omp master
 {
 printf("\nSequential\n");
 }
 #pragma omp barrier
 printf("After ");
 }
 printf("\nSequential\n");
}

int main()
{
 #pragma omp parallel
 {
 printf("Before ");
 #pragma omp barrier
 #pragma omp single
 {
 printf("\nSequential\n");  
 }
 /* Implicit barrier */
 printf("After ");
 }
 printf("\nSequential\n");
}

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

Implicit Barriers

• Several OpenMP constructs have implicit barriers
• Parallel – necessary barrier – cannot be

removed
• for
• single

• Unnecessary barriers hurt performance and can
be removed with the nowait clause

• The nowait clause is applicable to:
–For clause
–Single clause

!48

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

Nowait Clause

• Use when threads unnecessarily wait between
independent computations

!49

#pragma single nowait
{ [...] }

#pragma omp for nowait
 for(...)
 {...};

#pragma omp for schedule(dynamic,1) nowait
 for(int i=0; i<n; i++)
 a[i] = bigFunc1(i);

#pragma omp for schedule(dynamic,1)
 for(int j=0; j<m; j++)
 b[j] = bigFunc2(j);

OpenMP Runtime Library

!50

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.
!51 43

_2$-34#'[3B*.*,'*)2-3$#+
� _2$-34#'#$73*)$4#$-'*)2-3$#+=

– %)630,TZ1#(C'-1#'$24B#*')0'-1*#.6+
– omp_set_num_threads(), omp_get_num_threads(),

omp_get_thread_num(), omp_get_max_threads()
– N*#'F#'3$'.$'.(-37#'".*.55#5'*#:3)$V

– omp_in_parallel()
– \)',)2'F.$-'-1#'+,+-#4'-)'6,$.43(.55,'7.*,'-1#'$24B#*')0'
-1*#.6+'0*)4')$#'".*.55#5'()$+-*2(-'-)'.$)-1#*V

– omp_set_dynamic, omp_get_dynamic();
– O)F'4.$,'"*)(#++)*+'3$'-1#'+,+-#4V

– omp_num_procs()

…plus a few less commonly used routines.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.
!52 41

E,$(1*)$3Y.-3)$='[)(C'*)2-3$#+
� E34"5#'[)(C'*)2-3$#+=

�N'+34"5#'5)(C'3+'.7.35.B5#'30'3-'3+'2$+#-8
– omp_init_lock(), omp_set_lock(),

omp_unset_lock(), omp_test_lock(),
omp_destroy_lock()

� `#+-#6'[)(C+
�N'$#+-#6'5)(C'3+'.7.35.B5#'30'3-'3+'2$+#-')*'30'3-'3+'+#-'B2-'
)F$#6'B,'-1#'-1*#.6'#/#(2-3$:'-1#'$#+-#6'5)(C'02$(-3)$

– omp_init_nest_lock(), omp_set_nest_lock(),
omp_unset_nest_lock(), omp_test_nest_lock(),
omp_destroy_nest_lock()

`)-#='.'-1*#.6'.5F.,+'.((#++#+'-1#'4)+-'*#(#$-'()",')0'-1#'
5)(CM'+)',)2'6)$H-'$##6'-)'2+#'.'052+1')$'-1#'5)(C'7.*3.B5#8

A lock implies a
memory fence
(a AflushD) of

all thread
visible

variables

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.
!53 42

E,$(1*)$3Y.-3)$='E34"5#'[)(C+
� &*)-#(-'*#+)2*(#+'F3-1'5)(C+8

omp_lock_t lck;
omp_init_lock(&lck);
#pragma omp parallel private (tmp, id)
{

id = omp_get_thread_num();
tmp = do_lots_of_work(id);
omp_set_lock(&lck);

printf(“%d %d”, id, tmp);
omp_unset_lock(&lck);

}
omp_destroy_lock(&lck);

Q.3-'1#*#'0)*'
,)2*'-2*$8
Q.3-'1#*#'0)*'
,)2*'-2*$8

_#5#.+#'-1#'5)(C'
+)'-1#'$#/-'-1*#.6'
:#-+'.'-2*$8

_#5#.+#'-1#'5)(C'
+)'-1#'$#/-'-1*#.6'
:#-+'.'-2*$8

<*##S2"'+-)*.:#'F1#$'6)$#8<*##S2"'+-)*.:#'F1#$'6)$#8

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.
!54 45

;$73*)$4#$-'P.*3.B5#+

� E#-'-1#'6#0.25-'$24B#*')0'-1*#.6+'-)'2+#8
– OMP_NUM_THREADS int_literal

� Z)$-*)5'1)F'A)4" 0)*'+(1#625#J_X`WG%;KD
5))"'3-#*.-3)$+'.*#'+(1#625#68

– OMP_SCHEDULE “schedule[, chunk_size]”

… Plus several less commonly used environment variables.

