
Disclaimer
• I am not an OpenMP expert



• But I’ve learned most of OpenMP
• And have borrowed some slides from the experts

• We’ll cover the basics
• More information available on-line

• Anything I don’t yet know the answer to…
• … we can look it up and find it out



• Hopefully today’s lecture is where “bottom-up” pays off
• Hopefully the OpenMP constructs won’t seem like magic
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Teaser: Easy Loop-Level Parallelism

• Compiler-based parallelism with OpenMP (gcc -fopenmp)
• Runtime system detects number of cores, runs loop in parallel!
• Variables declared inside of loop: “private”; outside of loop: “shared”
• Limitation: loops with known iteration count
• Defaults to static partitioning, want dynamic?  

#pragma omp parallel for schedule (dynamic, 10)
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void compute_one(int num_particles, int* location, 
                 int *weight, int *radius, int *answer) {

  for (int i = 0; i < num_particles; i++) {
    for (int j = 0; j < num_particles; j++) {
      if (distance(location[i], location[j]) < radius[i]) {
        answer[i] += weight[j];
      }
    }
  }
}

#include <omp.h>

  #pragma omp parallel for



OpenMP Intro
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What is OpenMP
• Set of “compiler directives” and runtime library

• Bindings for C/C++ and Fortran
• Standard/portable, implemented by many compilers

• Developed by scientific computing compiler developers
• Observation: if only the programmer could tell us what is parallel
• Rather than doing “automatic parallelization”
• Targets known-iteration parallel loops (“for” loops in C/C++)

• Originated in the mid-1990s
• Motivated by development of “scalable shared memory” machines
• Uses “shared memory” rather than “message passing”

• Uses a lightweight fork/join model of computation
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OpenMP “Hello World”

• Example output on a four-core machine: 
Hello world, thread 0 of 4
Hello world, thread 2 of 4
Hello world, thread 1 of 4
Hello world, thread 3 of 4
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#include <omp.h>
int main()
{
  #pragma omp parallel
  {
    printf("Hello world, thread %d of %d\n", 
           omp_get_thread_num(), 
           omp_get_num_threads());
  }
}

OpenMP include file

Parallel region with default 
number of threads

End of parallel region

Runtime library 
functions
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Parallel Region & Structured Blocks (C/C++)
OpenMP constructs apply to “statements” or 

“structured blocks”
Structured block: a block with one point of entry at the top 

and one point of exit at the bottom
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A structured block Not a structured block

if (go_now()) goto more;
#pragma omp parallel
{
  int id = omp_get_thread_num();
more:  res[id] = do_big_job(id);    
  if (conv (res[id]) goto done;
  goto more;
}
done: if (!really_done()) goto more;

#pragma omp parallel
{
  int id = omp_get_thread_num();
more: res[id] = do_big_job (id);
  if (conv (res[id]) goto more;
}
printf (“All done\n”);
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OpenMP Programming Model
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Fork-Join Parallelism: 
• Master spawns a team of “threads” as needed
• Lightweight (keeps threads alive, avoids 

thread creation) 
• Parallelism is added incrementally: that is, the 

sequential program evolves into a parallel 
program

Parallel Regions

Master 
Thread



OpenMP Fork/Join Parallelism

• Example output on a four-core machine: 
Before Before Before Before  
Sequential  
After After After After  
Sequential
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int main()
{
  #pragma omp parallel
  { 
    printf("Before "); 
  }
  printf("\nSequential\n");
  #pragma omp parallel
  { 
    printf("After "); 
  }
  printf("\nSequential\n");
}

End of parallel region
(implicit barrier)

Not in parallel region

Next parallel region



OpenMP “For” Construct
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OpenMP “for” Construct

• Threads are assigned an 
independent set of 
iterations

• Threads must wait at the 
end of work-sharing 
construct 
(implicit barrier)
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#pragma omp parallel

#pragma omp for

Implicit barrier

i = 0
i = 1
i = 2
i = 3

i = 4
i = 5
i = 6
i = 7

i = 8
i = 9

i = 10
i = 11

// assume N = 12
#pragma omp parallel
#pragma omp for
   for(i = 0; i < N; i++) 
      c[i] = a[i] + b[i];
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Combining constructs

• These two code segments are equivalent

!13

#pragma omp parallel 
{ 
    #pragma omp for
    for (i=0;i< MAX; i++) {

res[i] = huge();
    } 
}

#pragma omp parallel for
    for (i=0;i< MAX; i++) {
         res[i] = huge();
    }
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The schedule clause

The schedule clause affects how loop iterations are mapped onto threads

schedule(static[,chunk])

• Blocks of iterations of size “chunk” to threads
• Round robin distribution
• Low overhead, may cause load imbalance


schedule(dynamic[,chunk])
• Threads grab “chunk” iterations 
• When done with iterations, thread requests next set
• Higher threading overhead, can reduce load imbalance


schedule(guided[,chunk])
• Dynamic schedule starting with large block 
• Size of the blocks shrink; no smaller than “chunk”

!14
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Schedule Clause Example
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#pragma omp parallel for schedule (static, 8)
    for(int i = start; i <= end; i += 2)
    {
       if (TestForPrime(i)) gPrimesFound++;
    }

Iterations are divided into chunks of 8
• If start = 3, then first chunk is i={3,5,7,9,11,13,15,17}



OpenMP Data Scoping
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Data Scoping – What’s shared

• OpenMP uses a shared-memory programming 
model

• Shared variable - a variable whose name 
provides access to a the same block of storage 
for each task region  

– Shared clause can be used to make items explicitly 

shared
– Global variables are shared among tasks

• C/C++: File scope variables, namespace scope 
variables, static variables, variables with const-
qualified type having no mutable member are shared, 
static variables which are declared in a scope inside 
the construct are shared.
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Data Scoping – What’s private

• But, not everything is shared...


• Examples of implicitly determined private variables:
– Stack (local) variables in functions called from parallel 

regions are PRIVATE
– Automatic variables within a statement block are 

PRIVATE
– Loop iteration variables are private

!18
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A Data Environment Example

!19

temp

A, index, count

temp temp

A, index, count

Which variables are shared and 
which variables are private?

float A[10];
main ()
{
   int index[10];
   #pragma omp parallel
   {
    work(index);
   }
 printf (“%d\n”, index[1]);
}

extern float A[10];
void work (int *index)
{
   float temp[10];
   static int count;
   <...>
}

A, index, and count are shared 
by all threads, but temp is local 
to each thread
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The Private Clause

• Reproduces the variable for each task
• Variables are un-initialized; C++ object is default constructed
• Any value external to the parallel region is undefined






• Alternative
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void* work(float* c, int N) {
  float x, y; int i;
 #pragma omp parallel for private(x,y)
     for(i=0; i<N; i++) {
 x = a[i]; y = b[i];
      c[i] = x + y;
     }
}

void* work(float* c, int N) {
 int i;
 #pragma omp parallel for
     for(i=0; i<N; i++) {
 float x = a[i]; float y = b[i];
      c[i] = x + y;
     }
}
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int tmp;
void danger() {

tmp = 0;
#pragma omp parallel private(tmp)

work();
printf(“%d\n”, tmp);

}
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extern int tmp;
void work() {

tmp = 5;
}

unspecified which 
copy of tmp
unspecified which 
copy of tmptmp has unspecified 

value
tmp has unspecified 
value
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tmp: 0 in 3.0, unspecified in 2.5tmp: 0 in 3.0, unspecified in 2.5

void useless() {
int tmp = 0;

#pragma omp for firstprivate(tmp)
for (int j = 0; j < 1000; ++j) 

tmp += j;
printf(“%d\n”, tmp);

}

Each thread gets its own 
tmp with an initial value of 0
Each thread gets its own 
tmp with an initial value of 0
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tmp is defined as its value at the “last 
sequential” iteration (i.e., for j=999)
tmp is defined as its value at the “last 
sequential” iteration (i.e., for j=999)

void closer() {
int tmp = 0;

#pragma omp parallel for firstprivate(tmp) \
lastprivate(tmp)
for (int j = 0; j < 1000; ++j)

tmp += j;
printf(“%d\n”, tmp);

}

Each thread gets its own tmp
with an initial value of 0
Each thread gets its own tmp
with an initial value of 0
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OpenMP Synchronization
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Example: Dot Product
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float dot_prod(float* a, float* b, int N) 
{
  float sum = 0.0;
#pragma omp parallel for
   for(int i=0; i<N; i++) {
     sum += a[i] * b[i];
   }
  return sum;
}

What is Wrong?
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Race Condition

• A race condition is nondeterministic behavior 
caused  by the times at which two or more 
threads access a shared variable

• For example, suppose both Thread A and Thread 
B are executing the statement

 
      area += 4.0 / (1.0 + x*x);

!28
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Two Timings

!29

Value of 
area

Thread A Thread B

11.667

+3.765

15.432

15.432

+ 3.563

18.995

Value of 
area

Thread A Thread B

11.667

+3.765

11.667

15.432

+ 3.563

15.230

Order of thread execution causes 
nondeterminant behavior in a data race
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Protect Shared Data

• Must protect access to shared, modifiable data 
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float dot_prod(float* a, float* b, int N) 
{
  float sum = 0.0;
  #pragma omp parallel for
  for(int i=0; i<N; i++) {
  #pragma omp critical
    sum += a[i] * b[i];
  }
  return sum;
}

• Note: fixes problem, but provides no parallelism in this example  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OpenMP Critical Construct
#pragma omp critical [(lock_name)]
• Defines a critical region on a structured block 

(code locking)
• All critical sections with same name (or “null” name) 

share a lock

!31

float res;
#pragma omp parallel
{ float B; 
#pragma omp for  
  for(int i=0; i<niters; i++){
    B = big_job(i);
#pragma omp critical (res_lock)  
    consum (B, res);
  }  
}

Threads wait their turn – 
only one at a time calls 
consum() thereby 
protecting “res” from race 
conditions
Naming the critical 
construct  “res_lock” is 
optional

Good Practice – Name all critical sections
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Atomic Construct

• Special case of a critical section 
• Applies only to simple update of memory location

!32

#pragma omp parallel for
   for (i = 0; i < n; i++) {
      #pragma omp atomic
        x[index[i]] += work1(i);
      y[i] += work2(i);
   } 



OpenMP Reductions
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double  ave=0.0, A[MAX];    int i;
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OpenMP Reduction Clause

reduction (op : list)
• The variables in “list” must be shared in the 

enclosing parallel region
• Inside parallel or work-sharing construct:

– A PRIVATE copy of each list variable is created and 
initialized depending on the “op” 


– These copies are updated locally by threads 


– At end of construct, local copies are combined through 
“op” into a single value and combined with the value in 
the original SHARED variable

!35
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Reduction Example

• Local copy of sum for each thread
• All local copies of sum added together and stored 

in “global” variable

!36

#pragma omp parallel for reduction(+:sum)
   for(i=0; i<N; i++) {
     sum += a[i] * b[i];
   }
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C/C++ Reduction Operations

• A range of associative operands can be used 
with reduction

• Initial values are the ones that make sense 
mathematically

!37

Operand Initial Value

+ 0

* 1

- 0

^ 0

Operand Initial Value

& ~0

| 0

&& 1

|| 0
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Numerical Integration Example
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4.0

2.0

1.00.0

4.0
(1+x2)

f(x) =

X

∫ 4.0
(1+x2) dx = π

0

1

static long num_steps=100000; 
double step, pi;

void main()
{  int i; 
   double x, sum = 0.0;

   step = 1.0/(double) num_steps;
   for (i=0; i< num_steps; i++){
      x = (i+0.5)*step;
      sum = sum + 4.0/(1.0 + x*x);
   }
   pi = step * sum;
   printf(“Pi = %f\n”,pi);
}
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Numerical Integration Example

• What variables can 
be shared?

• What variables 
need to be 
private?

• What variables 
should be set up 
for reductions?

!39

static long num_steps=100000; 
double step, pi;

void main()
{  int i; 
   double x;  
   double sum = 0.0;
   step = 1.0/(double) num_steps;
 
   for (i=0; i< num_steps; i++){
      x = (i+0.5)*step;
      sum = sum + 4.0/(1.0 + x*x);
   }
   pi = step * sum;
   printf(“Pi = %f\n”,pi);
}



Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

Numerical Integration with OpenMP Reduction
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static long num_steps=100000; 
double step, pi;

void main()
{  int i; 
   double x;  
   double sum = 0.0;
   step = 1.0/(double) num_steps;
#pragma omp parallel for private(x) reduction(+:sum)
   for (i=0; i< num_steps; i++){
      x = (i+0.5)*step;
      sum = sum + 4.0/(1.0 + x*x);
   }
   pi = step * sum;
   printf(“Pi = %f\n”,pi);
}
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Numerical Integration with OpenMP Reduction
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static long num_steps=100000; 
double step, pi;

void main()
{  int i; 
    
   double sum = 0.0;
   step = 1.0/(double) num_steps;
#pragma omp parallel for reduction(+:sum)
   for (i=0; i< num_steps; i++){
      double x = (i+0.5)*step;
      sum = sum + 4.0/(1.0 + x*x);
   }
   pi = step * sum;
   printf(“Pi = %f\n”,pi);
}
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OpenMP Control Constructs
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Recall: OpenMP Fork/Join Parallelism

• Example output on a four-core machine: 
Before Before Before Before  
Sequential  
After After After After  
Sequential
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int main()
{
  #pragma omp parallel
  { 
    printf("Before "); 
  }
  printf("\nSequential\n");
  #pragma omp parallel
  { 
    printf("After "); 
  }
  printf("\nSequential\n");
}

End of parallel region
(implicit barrier)

Not in parallel region

Next parallel region



OpenMP Explicit “Barrier” Directive

• Barrier directive 
• Waits until all threads arrive before any thread continues
• Implicit at end of any “#pragma omp parallel” region
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int main()
{
  #pragma omp parallel
  { 
    printf("Before "); 
  }
  
  printf("\nSequential\n");
  #pragma omp parallel
  { 
    printf("After "); 
  }
  printf("\nSequential\n");
}

int main()
{
  #pragma omp parallel
  { 
    printf("Before "); 
    #pragma omp barrier
    if (omp_get_thread_num() == 0) 
      printf("\nSequential\n");
    #pragma omp barrier
    
    printf("After "); 
  } 
  printf("\nSequential\n");
}



OpenMP “Master” Directive

• Master directive
• No implicit barriers (at either start or end)
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int main()
{
  #pragma omp parallel
  { 
    printf("Before "); 
    #pragma omp barrier
    if (omp_get_thread_num() == 0)
    {
      printf("\nSequential\n");
    }
    #pragma omp barrier 
    printf("After "); 
  }
  printf("\nSequential\n");
}

int main()
{
  #pragma omp parallel
  { 
    printf("Before "); 
    #pragma omp barrier
    #pragma omp master
    { 
      printf("\nSequential\n");
    }
    #pragma omp barrier
    printf("After ");
  }
  printf("\nSequential\n");
}



OpenMP “Single” Directive

• Single directive 
• Executed by first thread to reach (perhaps not the master)
• Implicit barrier at end, but not at start
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int main()
{
  #pragma omp parallel
  { 
    printf("Before "); 
    #pragma omp barrier
    #pragma omp master
    {
      printf("\nSequential\n");
    }
    #pragma omp barrier 
    printf("After "); 
  }
  printf("\nSequential\n");
}

int main()
{
  #pragma omp parallel
  { 
    printf("Before "); 
    #pragma omp barrier
    #pragma omp single
    {  
      printf("\nSequential\n");  
    }
    /* Implicit barrier */ 
    printf("After "); 
  }
  printf("\nSequential\n");
}
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Implicit Barriers

• Several OpenMP constructs have implicit barriers
• Parallel – necessary barrier – cannot be 

removed
• for
• single

• Unnecessary barriers hurt performance and can 
be removed with the nowait clause

• The nowait clause is applicable to:
–For clause
–Single clause

!48
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Nowait Clause

• Use when threads unnecessarily wait between 
independent computations 

!49

#pragma single nowait
{ [...] }

#pragma omp for nowait
   for(...)
     {...};

#pragma omp for schedule(dynamic,1) nowait
 for(int i=0; i<n; i++)
   a[i] = bigFunc1(i);

#pragma omp for schedule(dynamic,1) 
 for(int j=0; j<m; j++)
   b[j] = bigFunc2(j);



OpenMP Runtime Library
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_2$-34#'[3B*.*,'*)2-3$#+
� _2$-34#'#$73*)$4#$-'*)2-3$#+=

– %)630,TZ1#(C'-1#'$24B#*')0'-1*#.6+
– omp_set_num_threads(), omp_get_num_threads(), 

omp_get_thread_num(), omp_get_max_threads()
– N*#'F#'3$'.$'.(-37#'".*.55#5'*#:3)$V

– omp_in_parallel()
– \)',)2'F.$-'-1#'+,+-#4'-)'6,$.43(.55,'7.*,'-1#'$24B#*')0'
-1*#.6+'0*)4')$#'".*.55#5'()$+-*2(-'-)'.$)-1#*V

– omp_set_dynamic,   omp_get_dynamic();
– O)F'4.$,'"*)(#++)*+'3$'-1#'+,+-#4V

– omp_num_procs()

…plus a few less commonly used routines.
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E,$(1*)$3Y.-3)$='[)(C'*)2-3$#+
� E34"5#'[)(C'*)2-3$#+=

�N'+34"5#'5)(C'3+'.7.35.B5#'30'3-'3+'2$+#-8
– omp_init_lock(), omp_set_lock(), 

omp_unset_lock(), omp_test_lock(), 
omp_destroy_lock()

� `#+-#6'[)(C+
�N'$#+-#6'5)(C'3+'.7.35.B5#'30'3-'3+'2$+#-')*'30'3-'3+'+#-'B2-'
)F$#6'B,'-1#'-1*#.6'#/#(2-3$:'-1#'$#+-#6'5)(C'02$(-3)$

– omp_init_nest_lock(), omp_set_nest_lock(), 
omp_unset_nest_lock(), omp_test_nest_lock(), 
omp_destroy_nest_lock()

`)-#='.'-1*#.6'.5F.,+'.((#++#+'-1#'4)+-'*#(#$-'()",')0'-1#'
5)(CM'+)',)2'6)$H-'$##6'-)'2+#'.'052+1')$'-1#'5)(C'7.*3.B5#8

A lock implies a 
memory fence 
(a AflushD) of 

all thread 
visible 

variables
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E,$(1*)$3Y.-3)$='E34"5#'[)(C+
� &*)-#(-'*#+)2*(#+'F3-1'5)(C+8

omp_lock_t lck;
omp_init_lock(&lck);
#pragma omp parallel private (tmp, id)
{

id = omp_get_thread_num();
tmp = do_lots_of_work(id);
omp_set_lock(&lck);

printf(“%d %d”, id, tmp);
omp_unset_lock(&lck);

}  
omp_destroy_lock(&lck);  

Q.3-'1#*#'0)*'
,)2*'-2*$8
Q.3-'1#*#'0)*'
,)2*'-2*$8

_#5#.+#'-1#'5)(C'
+)'-1#'$#/-'-1*#.6'
:#-+'.'-2*$8

_#5#.+#'-1#'5)(C'
+)'-1#'$#/-'-1*#.6'
:#-+'.'-2*$8

<*##S2"'+-)*.:#'F1#$'6)$#8<*##S2"'+-)*.:#'F1#$'6)$#8
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;$73*)$4#$-'P.*3.B5#+

� E#-'-1#'6#0.25-'$24B#*')0'-1*#.6+'-)'2+#8
– OMP_NUM_THREADS int_literal

� Z)$-*)5'1)F'A)4" 0)*'+(1#625#J_X`WG%;KD
5))"'3-#*.-3)$+'.*#'+(1#625#68

– OMP_SCHEDULE “schedule[, chunk_size]”

… Plus several less commonly used environment variables.


