Disclaimer

» | am not an OpenMP expert

 But I've learned most of OpenMP
- And have borrowed some slides from the experts

« We’'ll cover the basics
 More information available on-line

» Anything | don’t yet know the answer to...
... we can look it up and find it out

Hopefully today’s lecture is where “bottom-up” pays off
- Hopefully the OpenMP constructs won’t seem like magic

Acknowledgments

* Includes slides from:
+ “Shared Memory Control Parallelism: OpenMP” UPCRC lllinois
2009 Summer School on

- Clay Breshears (Intel) Multicore Programming
« Presented at UIUC’s UPCRC 2009 Summer School
» With permission, includes some modifications by me

- “A Hands-on Introduction to OpenMP” Blue background slides
- Tim Mattson (Intel) & Larry Meadows (Intel)

- http://openmp.org/mp-documents/omp-hands-on-SCO8.pdf

» Other sources and references:
« “An Overview of OpenMP”
* Ruud van der Pas (Sun Microsystem)
» http://openmp.org/mp-documents/ntu-vanderpas.pdf
LLNL OpenMP: https://computing.linl.gov/tutorials/openMP/

Teaser: Easy Loop-Level Parallelism

#include <omp.h>

void compute one(int num particles, int* location,
int *weight, int *radius, int *answer) {
#pragma omp parallel for
for (int i = 0; i < num particles; i++) {
for (int j = 0; j < num _particles; j++) {
if (distance(location[i], location[j]) < radius[i]) {
answer[i] += weight[j];
}
}
}

Compiler-based parallelism with OpenMP (gcc -fopenmp)
- Runtime system detects number of cores, runs loop in parallel!
 Variables declared inside of loop: “private”; outside of loop: “shared”
» Limitation: loops with known iteration count

- Defaults to static partitioning, want dynamic?
#pragma omp parallel for schedule (dynamic, 10)

?

OpenMP Intro

What is OpenMP

Set of “compiler directives” and runtime library
- Bindings for C/C++ and Fortran
- Standard/portable, implemented by many compilers

» Developed by scientific computing compiler developers

» Observation: if only the programmer could tell us what is parallel
Rather than doing “automatic parallelization”
- Targets known-iteration parallel loops (“for” loops in C/C++)

» Originated in the mid-1990s

- Motivated by development of “scalable shared memory” machines
» Uses “shared memory” rather than “message passing”

» Uses a lightweight fork/join model of computation

OpenMP Overview:
How do threads interact?

e OpenMP is a multi-threading, shared address
model.

— Threads communicate by sharing variables.

e Unintended sharing of data causes race
conditions:

—race condition: when the program’s outcome
changes as the threads are scheduled differently.

e To control race conditions:
— Use synchronization to protect data conflicts.

e Synchronization is expensive so:

— Change how data is accessed to minimize the need

for synchronization. ”

OpenMP “Hello World”

OpenMP include file
#include <omp.h>

int main()

¢ Parallel region with default

#pragma omp parallel number of threads

{
printf("Hello world, thread %d of %d\n",

omp get_thread num(),
omp_get_num_threads());

) Runtime library

functions
} End of parallel region anet

- Example output on a four-core machine:
Hello world, thread O of 4
Hello world, thread 2 of 4
Hello world, thread 1 of 4
Hello world, thread 3 of 4

Parallel Region & Structured Blocks (C/C++)

OpenMP constructs apply to “statements” or

“structured blocks”

Structured block: a block with one point of entry at the top
and one point of exit at the bottom

#pragma omp parallel
{

int id = omp get thread num() ;
more: res[id] = do big job (id);

if (conv (res[id]) goto more;

}
printf (“All done\n”);

A structured block

if (go now()) goto more;

#pragma omp parallel

{
int id = omp get thread num() ;

more: res[id] = do big job(id);
if (conv (res[id]) goto done;
goto more;

}

done: if ('really done()) goto more;

Not a structured block

UPCRQ [ffinois

2009 Summer School on
8 Multicore Programming

OpenMP Programming Model

Fork-Join Parallelism:

* Master spawns a team of “threads” as needed

* Lightweight (keeps threads alive, avoids
thread creation)

* Parallelism Is added incrementally: that Is, the

Master
Thread

Parallel Regions

UPCRQ [ffinois

T 2009 Summer Sehool on
£y 9 Multicore Programming

OpenMP Fork/Join Parallelism

int main()

{
#pragma omp parallel
{ End of parallel region
printf ("Be . (implicit barrier)
}
printf (" \nSequential\n");
ﬁpragma omp parallel Not in parallel region
printf("After ");
} Next parallel region
printf (" \nSequential\n");
}

- Example output on a four-core machine:
Before Before Before Before

Sequential
After After After After

Sequential

10

OpenMP “For” Construct

11

OpenMP “for” Construct

#pragma omp parallel

// assume N = 12
#pragma omp parallel
#pragma omp for

#pragma omp for

for(i = 0; i < N; i++)
c[1] = a[i1] + b[1];

-

N OO O A&

* Threads are assigned an
independent set of
iterations

* Threads must wait at the
end of work-sharing
construct

(implicit barrier) UPCRC lllinois

T 2009 Summer Sehool on
£y 12 Multicore Programming

i

Implicit barrier

Combining constructs

* These two code segments are equivalent

#pragma omp parallel
{

#pragma omp for
for (i=0;i< MAX; i++) {

res[i] = huge()

}

UPCRQ [ffinois

T 2009 Summer Sehool on
£y 13 Multicore Programming

The schedule clause

The schedule clause affects how loop iterations are mapped onto threads

schedule (static[,chunk])

ocks of iterations of size “chunk” to threads
* Round robin distribution
* Low overhead, may cause load imbalance

Iterations
* When done with iterations, thread requests next set
* Higher threading overhead, can reduce load imbalance

schedule (gquided|[,chunk])

1a W

DAViaYts CUUIE
» Size of the blocks shrink; no smaller than “chunk”

UPCRQ [ffinois

2009 Summer School on
14 Multicore Programming

Schedule Clause Example

#pragma omp parallel for schedule (static, 8)
for(int 1 = start; 1 <= end; 1 += 2)

{

if (TestForPrime(i)) gPrimesFound++;

}

Iterations are divided into chunks of 8
e If start = 3, then first chunk is i={3,5,7,9,11,13,15,17}

UPCRQ [ffinois

T 2009 Summer Sehool on
£y 15 Multicore Programming

OpenMP Data Scoping

10

Data Scoping — What’s shared

* OpenMP uses a shared-memory programming
model

 Shared variable - a variable whose name

provides access to a the same block of storage
for each task region

— Shared clause can be used to make items explicitly
shared

— Global variables are shared among tasks

* C/C++: File scope variables, namespace scope
variables, static variables, variables with const-
gualified type having no mutable member are shared,

static variables which are declared in a SCO% Inside
ORC Iﬁlﬂﬂls

the construct are shared.
][2009 Summer School on
17 Multicore Programming

Data Scoping — What’s private

* But, not everything is shared...

* Examples of implicitly determined private variables:

— Stack (local) variables in functions called from parallel
regions are PRIVATE

— Automatic variables within a statement block are
PRIVATE

— Loop iteration variables are private

UPCRQ [ffinois

T 2009 Summer Sehool on
18 Multicore Programming

A Data Environment Example

float A[10];
main ()

{

int index[10];
#pragma omp parallel

{

work(index);

}
printf (“%d\n”, index[1]);
}
A,
A, index, and count are shared
by all threads, but temp is local
to each thread
A,
19

extern float A[10];
void work (int *index)

{
float temp[10];
static int count;
<...>
}
index, count
temp temp temp
index, count
UPCRC lllinois
2009 Summer School on
Multicore Programming

The Private Clause

* Reproduces the variable for each task

* Variables are un-initialized; C++ object is default constructed

* Any value external to the parallel region is undefined
void* work (float* ¢, int N) {
float x, y; int 1;
#pragma omp parallel for private(x,y)
for (i=0; i<N; i++) {

x = a[i]; y = b[i];
c[i] = x + y;

}

* Alternative

UPCRQ [ffinois

T 2009 Summer Sehool on
£y 20 Multicore Programming

Data Sharing: Private Clause
When is the original variable valid?

e The original variable’s value is unspecified in OpenMP 2.5.

e In OpenMP 3.0, if it is referenced outside of the construct

— Implementations may reference the original variable or a copy
A dangerous programming practice!

int tmp;

void danger() { extern int tmp;
tmp = 0O; void work() {

#pragma omp parallel private(tmp) tmp = 5;
work(); }
printf("%d\n”, tmp);

}
\ unspecified which
copy of tmp

51

tmp has unspecified
value

Data Sharing: Firstprivate Clause

e Firstprivate is a special case of private.

— Initializes each private copy with the corresponding
value from the master thread.

void useless() {

int tmp = 0;
#pragma omp for firstprivate(tmp)
for (intj=0;j < 1000; ++j) _
tmp += j; < Each thread gets its own

printf(“%d\n”, tmp); tmp with an initial value of O

tmp: 0 in 3.0, unspecified in 2.5

}

52

Data sharing: Lastprivate Clause

e Lastprivate passes the value of a private from the
last iteration to a global variable.

void closer() {
iInt tmp = O;

#pragma omp parallel for firstprivate(tmp) \
lastprivate(tmp)

for (intj = 0; j < 1000; ++j) Each thread gets its own tmp

tmp +=j; < . rea
printf(*%d\n”, tmp); with an initial value of O

}

tmp is defined as its value at the “last

sequential” iteration (i.e., for |=999)

53

Data Sharing: Default Clause

e Note that the default storage attribute is DEFAULT(SHARED) (so
no need to use it)

¢ Exception: #pragma omp task
e To change default: DEFAULT(PRIVATE)

¢ each variable in the construct is made private as if specified in a
private clause

¢ mostly saves typing

e DEFAULT(NONE): no default for variables in static extent. Must
list storage attribute for each variable in static extent. Good
programming practice!

Only the Fortran API supports default(private).

C/C++ only has default(shared) or default(none).

95

Data sharing: Threadprivate

e Makes global data private to a thread
¢ Fortran: COMMON blocks
¢ C: File scope and static variables, static class members

e Different from making them PRIVATE
¢ with PRIVATE global variables are masked.

¢ THREADPRIVATE preserves global scope within each
thread

e Threadprivate variables can be initialized using
COPYIN or at time of definition (using language-
defined initialization capabilities).

58

OpenMP Synchronization

20

Example: Dot Product

float dot prod(float* a, float* b, int N)
{
float sum = 0.0;
#pragma omp parallel for
for(int i=0; i<N; 1i++) {
sum += a[i] * b[1];
}

return sum;

}

What is Wrong?

UPCRQ [ffinois

T 2009 Summer Sehool on
£y 07 Multicore Programming

Race Condition

* A race condition is nondeterministic behavior
caused by the times at which two or more
threads access a shared variable

* For example, suppose both Thread A and Thread
B are executing the statement

area += 4.0 / (1.0 + x*x);

UPCRQ [ffinois

I 2009 Summer Sehool on
28 Multicore Programming

Two Timings

Value of Thread A Thread B

area

11.667 m—p

Value of Thread A Thread B

area
11.667_"

+3.765 +3.765
15.432 15.432
+ 3.563 + 3.563
18.995 15.230
Order of thread execution causes llinois
1 nondeterminant behavior in a data race e

Multicore Programming

Protect Shared Data

* Must protect access to shared, modifiable data

float dot prod(float* a, float* b, int N)
{

float sum = 0.0;
#pragma omp parallel for
for (int i1=0; i<N; i++) {

#pragma omp critical
sum += a[i] * b[1i];
}

return sum;

* Note: fixes problem, but provides no parallelism in this example

UPCRQ [ffinois

T 2009 Summer Sehool on
£y 30 Multicore Programming

OpenMP Critical Construct

#ipragma omp critical [(lock name)]

* Defines a critical region on a structured block
(code locking)
* All critical sections wis -

float res;

Threads wait their turn - #pragma omp parallel

only one at a time calls { float B;

consum () thereby #pragma omp for

protecting “res” from race for (int i=0; i<niters; i++) {

conditions B = big job (i) ;

Naming the critical #pragma omp critical (res_lock)
construct “res_lock” consum (B, res);

optional }

}

Good Practice — Name all critical sections

UPCRQ [ffinois

2009 Summer School on
31 Multicore Programming

Atomic Construct

* Special case of a critical section
* Applies only to simple update of memory location

#pragma omp parallel for
for (i = 0; i < n; i++) {
#pragma omp atomic

x[index[i]] += workl (i) ;
y[i] += work2 (i) ;
}

UPCRQ [ffinois

T 2009 Summer Sehool on
£y 32 Multicore Programming

OpenMP Reductions

33

Reduction

e How do we handle this case?

double ave=0.0, A|MAX]; inti;
for (i=0;i< MAX; i++) {
ave + = A[i];

h
ave = ave/MAX;

e We are combining values into a single accumulation
variable (ave) ... there is a true dependence between
loop iterations that can’t be trivially removed

e This Is a very common situation ... it is called a
“reduction”.

e Support for reduction operations is included in most
parallel programming environments.

32

OpenMP Reduction Clause

reduction (op : 1list)

 The variables in “/isf’ must be shared in the
enclosing parallel region

* Inside parallel or work-sharing construct:

— A PRIVATE copy of each list variable is created and
initialized depending on the “op”

— These copies are updated locally by threads

— At end of construct, local copies are combined through
“op” into a single value and combined with the value in
the original SHARED variable

UPCRQ [ffinois

’ 1 2009 Summer School on
35 Multicore Programming

Reduction Example

#pragma omp parallel for reduction (+:sum)
for (i=0; i<N; i++) {

sum += a[i] * b[1];

}

* Local copy of sum for each thread

* All local copies of sum added together and stored
in “global” variable

UPCRQ [ffinois

T 2009 Summer Sehool on
£y 36 Multicore Programming

C/C++ Reduction Operations

* Arange of associative operands can be used
with reduction

* |nitial values are the ones that make sense

UPCRC lllinois

I 2009 Summer School on
37 =744 | Multicore Programming

Numerical Integration Example

static long num steps=100000;
double step, pi;

void main ()
{ int 1i;
double x, sum = 0.0;

step = 1.0/ (double) num steps;
for (i=0; i< num steps; i++) {

x = (1+0.5) *step;

sum = sum + 4.0/(1.0 + x*x);
}
pl = step * sum;
printf (“Pi = %£f\n”,pi);

MulGicore Programming

Numerical Integration Example

static long num steps=100000;
double step, pi;

 \What variables can

be shared?
void main|()]
{ int i; * What variables
double x;
double sum = 0.0; need to be
step = 1.0/ (double) num steps; private?
for (i=0; i< num steps; i++) { * \WWhat variables
x = (1+0.5) *step;
sum = sum + 4.0/(1.0 + x*x); ShOUId be set Up

}
pi = step * sum;
printf (“Pi = $£f\n”,pi);

for reductions?

UPCRQ [ffinois

2009 Summer School on
39 Multicore Programming

Numerical Integration with OpenMP Reduction

static long num steps=100000;
double step, pi;

void main ()
{ int 1i;
double x;
double sum = 0.0;
step = 1.0/ (double) num steps;
#pragma omp parallel for private (x) reduction (+:sum)
for (1=0; i< num steps; i++) {
x = (1+0.5) *step;
sum = sum + 4.0/(1.0 + x*x);

}
p1i = step * sum;
printf (“Pi = $f\n”,pi);

UPCRQ [ffinois

2009 Summer School on
Multicore Programming

Numerical Integration with OpenMP Reduction

static long num steps=100000;
double step, pi;

void main ()
{ 1int 1i;

double sum = 0.0;
step = 1.0/ (double) num steps;
#pragma omp parallel for reduction (+:sum)
for (1=0; i< num steps; i++) {
double x = (i+0.5) *step;
sum = sum + 4.0/(1.0 + x*x);

}
p1i = step * sum;
printf (“Pi = $f\n”,pi);

UPCRQ [ffinois

2009 Summer School on
Multicore Programming

Synchronization: ordered

e The ordered region executes in the sequential
order.

#pragma omp parallel private (tmp)
#pragma omp for ordered reduction(+:res)

for (I=0;I<N;l++){
tmp = NEAT_STUFF(l);
#pragma ordered
res += consum(tmp);

}

40

OpenMP Control Constructs

43

Recall: OpenMP Fork/Join Parallelism

int main()

{
#pragma omp parallel
{ End of parallel region
printf ("Be . (implicit barrier)
}
printf (" \nSequential\n");
ﬁpragma omp parallel Not in parallel region
printf("After ");
} Next parallel region
printf (" \nSequential\n");
}

- Example output on a four-core machine:
Before Before Before Before

Sequential
After After After After

Sequential

44

OpenMP Explicit “Barrier” Directive

int main() int main()
{ {
#pragma omp parallel #tpragma omp parallel
{ {
printf ("Before "); printf ("Before ");
} #pragma omp barrier
if (omp get thread num() == 0)
printf ("\nSequential\n"); printf ("\nSequential\n");
#pragma omp parallel #pragma omp barrier
{
printf ("After "); printf ("After ");
} }
printf ("\nSequential\n"); printf ("\nSequential\n");
} }

 Barrier directive
- Waits until all threads arrive before any thread continues
- Implicit at end of any “#pragma omp parallel” region

45

OpenMP “Master” Directive

int main() int main()
{ {
tpragma omp parallel #pragma omp parallel
{ {
printf ("Before "); printf ("Before ");
#pragma omp barrier #pragma omp barrier
if (omp get thread num() == 0) #pragma omp master
{ {
printf ("\nSequential\n"); printf ("\nSequential\n");
} }
#pragma omp barrier #pragma omp barrier
printf("After "); printf("After ");
} }
printf ("\nSequential\n"); printf ("\nSequential\n");
} }

» Master directive
- No implicit barriers (at either start or end)

46

OpenMP “Single” Directive

int main() int main()
{ {
#pragma omp parallel #pragma omp parallel
{ {
printf ("Before "); printf ("Before ");
#pragma omp barrier #pragma omp barrier
#pragma omp master #pragma omp single
{ {
printf ("\nSequential\n"); printf ("\nSequential\n");
} }
#pragma omp barrier /* Implicit barrier */
printf("After "); printf("After ");
} }
printf ("\nSequential\n"); printf ("\nSequential\n");
} }

» Single directive
- Executed by first thread to reach (perhaps not the master)
 Implicit barrier at end, but not at start
47

Implicit Barriers

* Several OpenMP constructs have implicit barriers

* Parallel — necessary barrier — cannot be
removed

* for
* single
* Unnecessary barriers hurt performance and can
be removed with the nowait clause
* The nowait clause is applicable to:
—For clause
—Single clause

UPCRQ [ffinois

I 2009 Summer Sehool on
48 Multicore Programming

Nowait Clause

#pragma single nowait

#pragma omp for nowait

for(...) { [...1}

{...};

* Use when threads unnecessarily wait between
iIndependent computations

#pragma omp for schedule (dynamic,l) nowait
for (int i=0; i<n; i++)
a[i] = bigFuncl (i) ;

#pragma omp for schedule (dynamic, 1)
for (int j=0; j<m; J++)
b[j] = bigFunc2(j) ;

UPCRQ [ffinois

T 2009 Summer Sehool on
£y 49 Multicore Programming

OpenMP Runtime Library

50

Runtime Library routines

e Runtime environment routines:
— Modify/Check the number of threads

—omp set num threads(), omp get num threads(),

omp get thread num(), omp get max threads()
— Are we in an active parallel region?
—omp 1n parallel()

— Do you want the system to dynamically vary the number of
threads from one parallel construct to another?

—omp_set dynamic, omp get dynamic();
— How many processors in the system?
—omp num_procs()

..plus a few less commonly used routines.

43

Synchronization: Lock routines

e Simple Lock routines: A lock implies a
¢ A simple lock is available if it is unset. "(1: E}furzhf?)"sf
—omp_1nit_lock(), omp_set lock(), all thread
unse 5 ter visible

omp unset lock(), omp test lock(),
omp destroy lock()

e Nested Locks

¢ A nested lock is available if it is unset or if it is set but
owned by the thread executing the nested lock function

variables

—omp 1nit nest lock(), omp set nest lock(),
omp unset nest lock(), omp test nest lock(),
omp destroy nest lock()

Note: a thread always accesses the most recent copy of the
lock, so you don’t need to use a flush on the lock variable. 4

Synchronization: Simple Locks
e Protect resources with locks.

omp lock tlck;

omp 1nit lock(&lck);

#pragma omp parallel private (tmp, 1d)

d
id = omp get thread num(); Wait here for
tmp = do_lots_of work(id); your turn.

omp_set lock(&lck); Release the lock

printf(**%d %d”, 1d, tmp); so the next thread
omp unset lock(&lck); gets a turn.

j

omp destroy lock(&lck); Free-up storage when done.

Environment Variables

e Set the default number of threads to use.
— OMP NUM THREADS int literal

e Control how “omp for schedule(RUNTIME)”
loop Iterations are scheduled.

— OMP_ SCHEDULE “schedule[, chunk size]”

.. Plus several less commonly used environment variables.

45

