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Unit 12: Memory Consistency Models 

Includes slides originally developed by Prof. Amir Roth 
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Example #1 

•  What outcomes are allowed? 

    y = 1;!
    x = 1;!

thread 1 thread 2 
 int t1 = x;!
 int t2 = y;!
 print(t1,t2)!

int x = 0;!
int y = 0;!

initialization 
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Example #2 (Somewhat More Real) 

•  What outcomes are allowed? 

  while (flag == 0) {!
    // do nothing!
  }!
  print(A);!

thread 1 thread 2 
 A = 1;!
 flag = 1;!

int A = 0;!
int flag = 0;!

initialization 
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Example #3 

•  What outcomes are allowed? 

   x = 1;!
   print(y);!

thread 1 thread 2 
   y = 1;!
   print(x);!

int x = 0;!
int y = 0;!

initialization 
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Example #4 (Double Checked Locking) 

•  What outcomes are allowed? 

thread 1 
if (ptr == NULL) {!
  acquire(lock);!
  if (ptr == NULL) {!
    val = 1;!
    ptr = &val;!
  }!
  release(lock);!
}!
print(*ptr);!

int* ptr = NULL;!
int val = 0;!

initialization 

if (ptr == NULL) {!
  acquire(lock);!
  if (ptr == NULL) {!
    val = 1;!
    ptr = &val;!
  }!
  release(lock);!
}!
print(*ptr);!

thread 2 
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Example #4 (Double Checked Locking) 

•  What outcomes are allowed? 

thread 1 
if (ptr == NULL) {!
  acquire(lock);!
  if (ptr == NULL) {!
    val = 1;!
    ptr = &val;!
  }!
  release(lock);!
}!
print(*ptr);!

int* ptr = NULL;!
int val = 0;!

initialization 

if (ptr == NULL) {!
  acquire(lock);!
  if (ptr == NULL) {!
    val = 1;!
    ptr = &val;!
  }!
  release(lock);!
}!
print(*ptr);!

thread 2 
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Example #5 

•  What outcomes are allowed? 

y = 2;!
print(y);!

thread 1 thread 2 
if (x != 0) {!
  y = 1;!
}!

int x = 0;!
int y = 0;!

initialization 
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Example #6 

•  What outcomes are allowed? 

   y = 2;!
   print(y);!

thread 1 thread 2 
y = ((x != 0) ? 1 : y)!

int x = 0;!
int y = 0;!

initialization 
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What is Going On? 

•  Memory reordering 

•  In the compiler 
•  Compiler is generally allowed to re-order memory operations to 

different addresses 
•  Many other compiler optimizations also cause problems 

•  In the hardware 
•  To tolerate write latency 

•  Processes don’t wait for writes to complete 
•  And why should they?  No reason on a uniprocessors 

•  To simplify out-of-order execution 



Memory Consistency 

•  Memory coherence 
•  Creates globally uniform (consistent) view… 
•  Of a single memory location (in other words: cache line) 
–  Not enough 

•  Cache lines A and B can be individually consistent… 
•  But inconsistent with respect to each other 

•  Memory consistency 
•  Creates globally uniform (consistent) view… 
•  Of all memory locations relative to each other 

•  Who cares? Programmers 
–  Globally inconsistent memory creates mystifying behavior 



Coherence vs. Consistency 

•  Intuition says: P1 prints A=1 

•  Coherence says: absolutely nothing 
•  P1 can see P0’s write of flag before write of A!!! How? 

•  P0 has a coalescing store buffer that reorders writes 
•  Or out-of-order execution 
•  Or compiler re-orders instructions 

•  Imagine trying to figure out why this code sometimes “works” and 
sometimes doesn’t 

•  Real systems act in this strange manner 
•  What is allowed is defined as part of the ISA of the processor 

          A=0  flag=0 
Processor 0 
A=1; 
flag=1; 

 
Processor 1 
while (!flag); // spin 
print A; 



Store Buffers & Consistency 

•  Consider the following execution: 
•  Processor 0’s write to A, misses the cache.  Put in store buffer 
•  Processor 0 keeps going 
•  Processor 0 write “1” to flag hits, completes 
•  Processor 1 reads flag… sees the value “1” 
•  Processor 1 exits loop 
•  Processor 1 prints “0” for A 

•  Ramification: store buffers can cause “strange” behavior 
•  How strange depends on lots of things 

          A=0  flag=0 
Processor 0 
A=1; 
flag=1; 

 
Processor 1 
while (!flag); // spin 
print A; 



Hardware Memory Consistency Models 
•  Sequential consistency (SC)  (MIPS, PA-RISC) 

•  Formal definition of memory view programmers expect 
•  Processors see their own loads and stores in program order 

+ Provided naturally, even with out-of-order execution 
•  But also: processors see others’ loads and stores in program order 
•  And finally: all processors see same global load/store ordering 

–  Last two conditions not naturally enforced by coherence 
•  Corresponds to some sequential interleaving of uniprocessor orders 
•  Indistinguishable from multi-programmed uni-processor 

•  Processor consistency (PC)  (x86, SPARC) 
•  Allows a in-order store buffer 

•  Stores can be deferred, but must be put into the cache in order 

•  Release consistency (RC) (ARM, Itanium, PowerPC)  
•  Allows an un-ordered store buffer 

•  Stores can be put into cache in any order.  Loads re-ordered, too. 
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Reordering Loads and Stores 

•  Allowed by some processors today 
•  PowerPC, ARM, Itanium 

    y = 1;!
    x = 1;!

thread 1 thread 2 
 int t1 = x;!
 int t2 = y;!
 print(t1,t2)!

int x = 0;!
int y = 0;!

initialization 
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Delaying Stores (Past Loads) 

•  Allowed by most hardware today 
•  PowerPC, ARM, Itanium  
•  Plus: SPARC TSO, Intel/AMD x86 

   x = 1;!
   print(y);!

thread 1 thread 2 
   y = 1;!
   print(x);!

int x = 0;!
int y = 0;!

initialization 



Restoring Order 
•  Sometimes we need ordering (mostly we don’t) 

•  Prime example: ordering between “lock” and data 

•  How?  insert Fences (memory barriers) 
•  Special instructions, part of ISA 

•  Example 
•  Ensure that loads/stores don’t cross lock acquire/release operation 

acquire 
fence 
critical section 
fence 
release 

•  How do fences work?  
•  They stall execution until write buffers are empty 
•  Makes lock acquisition and release slow(er) 

•  Use synchronization library, don’t write your own 


