
1

Unit 12: Memory Consistency Models

Includes slides originally developed by Prof. Amir Roth

2

Example #1

•  What outcomes are allowed?

 y = 1;!
 x = 1;!

thread 1 thread 2
 int t1 = x;!
 int t2 = y;!
 print(t1,t2)!

int x = 0;!
int y = 0;!

initialization

3

Example #2 (Somewhat More Real)

•  What outcomes are allowed?

 while (flag == 0) {!
 // do nothing!
 }!
 print(A);!

thread 1 thread 2
 A = 1;!
 flag = 1;!

int A = 0;!
int flag = 0;!

initialization

4

Example #3

•  What outcomes are allowed?

 x = 1;!
 print(y);!

thread 1 thread 2
 y = 1;!
 print(x);!

int x = 0;!
int y = 0;!

initialization

5

Example #4 (Double Checked Locking)

•  What outcomes are allowed?

thread 1
if (ptr == NULL) {!
 acquire(lock);!
 if (ptr == NULL) {!
 val = 1;!
 ptr = &val;!
 }!
 release(lock);!
}!
print(*ptr);!

int* ptr = NULL;!
int val = 0;!

initialization

if (ptr == NULL) {!
 acquire(lock);!
 if (ptr == NULL) {!
 val = 1;!
 ptr = &val;!
 }!
 release(lock);!
}!
print(*ptr);!

thread 2

6

7

Example #4 (Double Checked Locking)

•  What outcomes are allowed?

thread 1
if (ptr == NULL) {!
 acquire(lock);!
 if (ptr == NULL) {!
 val = 1;!
 ptr = &val;!
 }!
 release(lock);!
}!
print(*ptr);!

int* ptr = NULL;!
int val = 0;!

initialization

if (ptr == NULL) {!
 acquire(lock);!
 if (ptr == NULL) {!
 val = 1;!
 ptr = &val;!
 }!
 release(lock);!
}!
print(*ptr);!

thread 2

8

Example #5

•  What outcomes are allowed?

y = 2;!
print(y);!

thread 1 thread 2
if (x != 0) {!
 y = 1;!
}!

int x = 0;!
int y = 0;!

initialization

9

Example #6

•  What outcomes are allowed?

 y = 2;!
 print(y);!

thread 1 thread 2
y = ((x != 0) ? 1 : y)!

int x = 0;!
int y = 0;!

initialization

10

What is Going On?

•  Memory reordering

•  In the compiler
•  Compiler is generally allowed to re-order memory operations to

different addresses
•  Many other compiler optimizations also cause problems

•  In the hardware
•  To tolerate write latency

•  Processes don’t wait for writes to complete
•  And why should they? No reason on a uniprocessors

•  To simplify out-of-order execution

Memory Consistency

•  Memory coherence
•  Creates globally uniform (consistent) view…
•  Of a single memory location (in other words: cache line)
–  Not enough

•  Cache lines A and B can be individually consistent…
•  But inconsistent with respect to each other

•  Memory consistency
•  Creates globally uniform (consistent) view…
•  Of all memory locations relative to each other

•  Who cares? Programmers
–  Globally inconsistent memory creates mystifying behavior

Coherence vs. Consistency

•  Intuition says: P1 prints A=1

•  Coherence says: absolutely nothing
•  P1 can see P0’s write of flag before write of A!!! How?

•  P0 has a coalescing store buffer that reorders writes
•  Or out-of-order execution
•  Or compiler re-orders instructions

•  Imagine trying to figure out why this code sometimes “works” and
sometimes doesn’t

•  Real systems act in this strange manner
•  What is allowed is defined as part of the ISA of the processor

 A=0 flag=0
Processor 0
A=1;
flag=1;

Processor 1
while (!flag); // spin
print A;

Store Buffers & Consistency

•  Consider the following execution:
•  Processor 0’s write to A, misses the cache. Put in store buffer
•  Processor 0 keeps going
•  Processor 0 write “1” to flag hits, completes
•  Processor 1 reads flag… sees the value “1”
•  Processor 1 exits loop
•  Processor 1 prints “0” for A

•  Ramification: store buffers can cause “strange” behavior
•  How strange depends on lots of things

 A=0 flag=0
Processor 0
A=1;
flag=1;

Processor 1
while (!flag); // spin
print A;

Hardware Memory Consistency Models
•  Sequential consistency (SC) (MIPS, PA-RISC)

•  Formal definition of memory view programmers expect
•  Processors see their own loads and stores in program order

+ Provided naturally, even with out-of-order execution
•  But also: processors see others’ loads and stores in program order
•  And finally: all processors see same global load/store ordering

–  Last two conditions not naturally enforced by coherence
•  Corresponds to some sequential interleaving of uniprocessor orders
•  Indistinguishable from multi-programmed uni-processor

•  Processor consistency (PC) (x86, SPARC)
•  Allows a in-order store buffer

•  Stores can be deferred, but must be put into the cache in order

•  Release consistency (RC) (ARM, Itanium, PowerPC)
•  Allows an un-ordered store buffer

•  Stores can be put into cache in any order. Loads re-ordered, too.

15

Reordering Loads and Stores

•  Allowed by some processors today
•  PowerPC, ARM, Itanium

 y = 1;!
 x = 1;!

thread 1 thread 2
 int t1 = x;!
 int t2 = y;!
 print(t1,t2)!

int x = 0;!
int y = 0;!

initialization

16

Delaying Stores (Past Loads)

•  Allowed by most hardware today
•  PowerPC, ARM, Itanium
•  Plus: SPARC TSO, Intel/AMD x86

 x = 1;!
 print(y);!

thread 1 thread 2
 y = 1;!
 print(x);!

int x = 0;!
int y = 0;!

initialization

Restoring Order
•  Sometimes we need ordering (mostly we don’t)

•  Prime example: ordering between “lock” and data

•  How? insert Fences (memory barriers)
•  Special instructions, part of ISA

•  Example
•  Ensure that loads/stores don’t cross lock acquire/release operation

acquire
fence
critical section
fence
release

•  How do fences work?
•  They stall execution until write buffers are empty
•  Makes lock acquisition and release slow(er)

•  Use synchronization library, don’t write your own

