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Why focus on caches and memory ?
CPU can only compute as fast as memory

Add operation takes 0.5ns; Memory is >100ns away
Data access dominates computing (Memory Wall)

Occupies 2/3rds of total chip budget

Design Goals
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Cost Power Capacity

Bandwidth Latency

Cache or 
Memory



Market Forces
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What Computing      What Computing      
Customers Care AboutCustomers Care About

What is Most Important?

Mobile/Laptop Desktop Server

Quality

Cost

Power

Bandwidth

Density

Latency



Memory Evolution
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Types of Memory 
•  Static RAM (SRAM) 

•  6 0r 8 transistors per bit 
•  Two inverters (4 transistors) + transistors for reading/writing 

•  Optimized for speed (first) and density (second) 
•  Fast (sub-nanosecond latencies for small SRAM) 

•  Speed roughly proportional to its area 
•  Mixes well with standard processor logic 

•  Dynamic RAM (DRAM) 
•  1 transistor + 1 capacitor per bit 
•  Optimized for density (in terms of cost per bit) 
•  Slow (>40ns internal access, ~100ns pin-to-pin)  
•  Different fabrication steps (does not mix well with logic) 

•  Nonvolatile storage: Magnetic disk, Flash RAM 
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SRAM Circuit Implementation 

•  SRAM:  
•  Six transistors (6T) cells 
•  4 for the cross-coupled 

inverters 
•  2 access transistors 

•  “Static” 
•  Cross-coupled inverters 

hold state 

•  To read 
•  Equalize, swing, amplify 

•  To write 
•  Overwhelm 

ad
dr

es
s 

data0 ~data0 data1 ~data1 
sense amp. 
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Memory & Storage Technologies 
•  Cost - what can $200 buy today (2009)? 

•  SRAM: 16MB 
•  DRAM: 4,000MB (4GB) – 250x cheaper than SRAM 
•  Flash: 64,000MB (64GB) – 16x cheaper than DRAM 
•  Disk: 2,000,000MB (2TB) – 32x vs. Flash (512x vs. DRAM)  

•  Latency  
•  SRAM: <1 to 2ns (on chip) 
•  DRAM: ~50ns – 100x or more slower than SRAM 
•  Flash: 75,000ns (75 microseconds) – 1500x vs. DRAM  
•  Disk: 10,000,000ns (10ms) – 133x vs Flash (200,000x vs DRAM) 

•  Bandwidth 
•  SRAM: 300GB/sec (e.g., 12-port 8-byte register file @ 3Ghz) 
•  DRAM: ~25GB/s 
•  Flash: 0.25GB/s (250MB/s), 100x less than DRAM 
•  Disk: 0.1 GB/s (100MB/s), 250x vs DRAM, sequential access only  
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Memory Technology Trends 

Cost 

Access Time 
Copyright Elsevier Scientific 2003 
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Types of Memory

SRAM 
Uses same technology as CPUs
Essentially a logic loop
For Speed, Not Capacity
Access (sub ns); Speed proportional to capacity

DRAM
Capacitative storage
Optimized for density and capacity
Slow (>40ns in the chip; 100ns to get to CPU)
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Example SRAM

SRAM (“Static RAM”)
looped inverters hold 
state

To read
equalize, swing, amplify

To Write
overwhelm
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Types of Memory 
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Memory & Storage Technologies 
•  Cost - what can $200 buy today (2009)? 

•  SRAM: 16MB 
•  DRAM: 4,000MB (4GB) – 250x cheaper than SRAM 
•  Flash: 64,000MB (64GB) – 16x cheaper than DRAM 
•  Disk: 2,000,000MB (2TB) – 32x vs. Flash (512x vs. DRAM)  
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•  SRAM: <1 to 2ns (on chip) 
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Memory Technology Trends 

Cost 

Access Time 
Copyright Elsevier Scientific 2003 
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Memory Technologies
Cost (what can 200$ buy today 2010?)

SRAM 16MB 
DRAM 4,000MB (4GB), 250x cheaper than SRAM
Flash 64,000 (64GB) - 16x cheaper than DRAM
Disk 2,000,000 (2TB) - 32x cheaper than Flash 

Latency 
SRAM <1 to 2ns (on-chip)
DRAM ~50ns - 100x or more slower than SRAM
Flash 75,000 ns (75 µs) - 1500x vs DRAM
Disk 10,000,000 (10ms) - 133x vs FLash

Bandwidth
SRAM 300 GB/s (12 port, 8 byte at 3 Ghz)
DRAM 25 GB/s ; 
Flash 0.25 GB/s ; Disk 100MB/s 7
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Ideally, one would desire an infinitely large memory 

capacity such that any particular word would be 

immediately available ... We are forced to recognize 

the possibility of constructing a hierarchy of 

memories, each of which has a greater capacity than 

the preceding but which is less quickly accessible.”

Burks, Goldstine, VonNeumann
“Preliminary discussion of the logical 
design of an electronic computing 
instrument”
IAS memo 1946



Exploiting Locality

Locality of memory references
interesting property of real programs; few 
exceptions

Temporal Locality
recently referenced data likely to be used again
keep data in small and fast storage (reactive)

Spatial Locality
Likely to access data near each other
fetch data in chunks (Proactive)
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Library Analogy

Consider books in library
library has lots of books, but slow
far away (time to walk to library)
big (time to walk within library)

How can you avoid latencies
check out books and put them on desk (limited capacity)
keep recently used books around (Temporal locality)
keep books on related topic together (Spatial locality)
Guess what books will be needed in the future 
(prefetching)
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Memory Hierarchy: Exploiting Locality

Hierarchy of memory components
Upper components; Fast, Small, expensive
Lower components; Slow, Big, Cheap

Most frequently sed data in M1
move data up and down the hierarchy

Optimize
Avg. Latency = Latencyhit + %miss * Latencymiss

11



Memory Hierarchy

Level 0 : Registers
Level 1 : Split Ins. and Data cache

typically 8-64KB
inside core

Level 2 and 3 (SRAM)
shared by cores
2nd level typically 256-512KB
last-level (LLC) typicall 4-16MB

Level 4 : Main Memory DRAM
Desk (4GB), Servers (100s GB)
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Exploiting Locality: Memory Hierarchy 

•  Hierarchy of memory components 
•  Upper components 

•  Fast ! Small ! Expensive 
•  Lower components 

•  Slow ! Big ! Cheap 

•  Connected by “buses” 
•  Which also have latency and bandwidth issues 

•  Most frequently accessed data in M1 
•  M1 + next most frequently accessed in M2, etc. 
•  Move data up-down hierarchy 

•  Optimize average access time 
•  latencyavg = latencyhit + %miss * latencymiss 

•  Attack each component 

CPU 

M1 

M2 

M3 

M4 
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Concrete Memory Hierarchy 

•  0th level: Registers 
•  1st level: Primary caches 

•  Split instruction (I$) and data (D$) 
•  Typically 8KB to 64KB each 

•  2nd level: 2nd and 3rd cache (L2, L3) 
•  On-chip, typically made of SRAM 
•  2nd level typically ~256KB to 512KB  
•  “Last level cache” typically 4MB to 16MB 

•  3rd level: main memory 
•  Made of DRAM (“Dynamic” RAM) 
•  Typically 1GB to 4GB for desktops/laptops 

•  Servers can have 100s of GB  

•  4th level: disk (swap and files) 
•  Uses magnetic disks 

Processor 

D$ 

L2, L3 

Main 
Memory 

I$ 

Disk 

Compiler 
Managed 

Hardware 
Managed 

Software 
Managed 
(by OS) 

Regs 

Library Analogy Revisited 

•  Registers ! books on your desk 
•  Actively being used, small capacity 

•  Caches ! bookshelves 
•  Moderate capacity, pretty fast to access 

•  Main memory ! library 
•  Big, holds almost all data, but slow 

•  Disk (swap) ! inter-library loan 
•  Very slow, but hopefully really uncommon 
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Evolution of Cache Hierarchies 

Intel 486 

8KB 
I/D$ 

1.5MB L2 

L3 tags 

64KB D$ 
64KB I$ 

IBM Power5 (dual core) 

•  Chips today are 30–70% cache by area 

Com
piler

m
anaged

HW
m

anaged
O

S
m

anaged



Library Analogy

Registers = Books on desk
actively used, small capacity

Caches = bookshelves
moderate capacity, pretty fast to access

Main Memory = Library
Big; holds almost all data; but slow

13
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Evolution of Cache Hierarchies 

Intel 486 

8KB 
I/D$ 

1.5MB L2 

L3 tags 

64KB D$ 
64KB I$ 

IBM Power5 (dual core) 

•  Chips today are 30–70% cache by area 

4MB 4MB

Intel 486 Intel Penryn



Today’s Focus : Caches

Caches : hardware managed
hardware automatically retrieves missing data
built from SRAM

Organization
Array-based
Miss classification

Optimization techniques
reducing misses
improving miss penalty
improving hit latency
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This Unit: Caches 
•  “Cache”: hardware managed 

•  Hardware automatically retrieves missing data 
•  Built from fast SRAM, usually on-chip today 
•  In contrast to off-chip, DRAM “main memory” 

•  Cache organization 
•  ABC 
•  Miss classification 

•  High-performance techniques 
•  Reducing misses 
•  Improving miss penalty 
•  Improving hit latency 

•  Some example performance calculations 

CPU 

D$ 

L2 

Main 
Memory 

I$ 

Disk 
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Memory and Disk 

•  Main memory 
•  DRAM-based memory systems 
•  Virtual memory 

•  Disks and Storage 
•  Disks vs Flash 
•  Disk arrays (for performance and reliability) 

•  Likely not covering disks this year 
•  Make room for more on multicore 

CPU 

Main 
Memory 

Disk 

D$ 

L2$ 

I$ 
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Basic Memory Array Structure 

•  Number of entries 
•  2n, where n is number of address bits 
•  Example:  1024 entries, 10 bit address 
•  Decoder changes n-bit address to  

2n bit “one-hot” signal 
•  One-bit address travels on “wordlines” 

•  Size of entries 
•  Width of data accessed 
•  Data travels on “bitlines”   
•  256 bits (32 bytes) in example 

0 

1 

1021 

1022 

1023 

2 

3 

1024*256bit 
SRAM 

bitlines 

w
or

dl
in

es
 

10 bits 
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FYI: Physical Memory Layout 

•  Logical layout 
•  Arrays are vertically contiguous 

•  Physical layout - roughly square 
•  Vertical partitioning to minimize wire lengths 
•  H-tree: horizontal/vertical partitioning layout 

•  Applied recursively 
•  Each node looks like an H 

512 

513 

1022 

1023 

767 

data address 

0 

1 

510 

511 

255 

256 768 



Basic Memory Structure

Number of entries = 2n : n # of 
address bits

10 bit address; 1024 entries
Decoder does one-hot mapping
address travels horizontally                 
(word lines) 

Size of entries 
data width access
data travels vertically (bit lines)
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Physical Layout : H-tree
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Physical Cache Layout 

•  Arrays and h-trees make caches easy to spot in µgraphs 
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Caches: Finding Data via Indexing 
•  Basic cache: array of block frames 

•  Example: 32KB cache (1024 frames, 32B blocks) 
•  “Hash table in hardware” 

•  To find frame: decode part of address 
•  Which part? 
•  32-bit address 
•  32B blocks ! 5 lowest bits locate byte in block 

•  These are called offset bits 
•  1024 frames ! next 10 bits find frame 

•  These are the index bits 
•  Note: nothing says index must be these bits 
•  But these work best (think about why) 

0 

1 

1021 

1022 

1023 

2 

3 

[4:0] [31:15] index [14:5] << 

1024* 
256bit 
SRAM 

bitlines 

w
or
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data address 
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Knowing that You Found It: Tags 

•  Each frame can hold one of 217 blocks 
•  All blocks with same index bit pattern 

•  How to know which if any is currently there? 
•  To each frame attach tag and valid bit 
•  Compare frame tag to address tag bits 

•  No need to match index bits (why?) 

•  Lookup algorithm 
•  Read frame indicated by index bits 
•  “Hit” if tag matches and valid bit is set 
•  Otherwise, a “miss”.  Get data from next level 

0 

1 

1021 

1022 

1023 

2 

3 

[4:0] tag [31:15] 

data 

index [14:5] << 

address 

= 

hit? 

w
or

dl
in

es
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Calculating Tag Overhead 

•  “32KB cache” means cache holds 32KB of data 
•  Called capacity 
•  Tag storage is considered overhead 

•  Tag overhead of 32KB cache with 1024 32B frames 
•  32B frames ! 5-bit offset 
•  1024 frames ! 10-bit index 
•  32-bit address – 5-bit offset – 10-bit index = 17-bit tag 
•  (17-bit tag + 1-bit valid)* 1024 frames = 18Kb tags = 2.2KB tags 
•  ~6% overhead 

•  What about 64-bit addresses? 
•  Tag increases to 49 bits, ~20% overhead (worst case) 



Caches 
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Limited, Fixed Capacity

Need to access in a fast manner

Insertion and removal should be easy



Caches Structure: Hash-Table 

Basic cache : Array of 
word chunks

32KB cache (1024 frames, 
32B/block)
Bounded-size Hash Table

Hash-Table Key
32 bit address; Max Mem. 
4GB (128Million, 32byte 
blocks)

20

0
1
2
3

1023
1024

32byte 
chunk

w
or

dl
ine

s

data bitlines

[4:0][14:5][31:15] <<

Key

Why use these bits for Key ?
Hint: Hash function and 

spatial locality ?



How to know you found it?
Each Frame can hold one 
of the 217 blocks

How to find out what you 
have cached

Cache Tag
To each frame attach bits 
attach [31:15]
compare incoming address 
and address stored

Overall Algorithm
read frame from row 
indicated by index
“Hit” if tag matches
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Key
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Hit?

Tag



How to know you found it?
Each Frame can hold one 
of the 217 blocks

How to find out what you 
have cached

Cache Tag
To each frame attach bits 
attach [31:15]
compare incoming address 
and address stored

Overall Algorithm
read frame from row 
indicated by index
“Hit” if tag matches
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[4:0][14:5][31:15] <<

Key

==

Hit?

Data read (<<) and Key checks (==) can be in
parallel or serial? What are the benefits ?

Hint : Think critical path to get to data 

Tag



Tag overhead

32KB Cache = 32KB of Data storage
Tag storage considered to be overhead

32KB Cache, 1024 frames 32Bytes/frame
32Byte frame (5 bit offset); 1024 frames (10bit index)
Max Physical Memory in system = 1 TB (40 bits)
Tag - 40-(5+10) = 25 bits + 1 Valid bit                    
(~3.3KB storage) = 9% overhead

If Max physical memory = 256TB (48 bits)
Tag overhead = 13%

22



Cache Misses

What if data isn’t in the cache

Cache controller : State machine
remember cache miss address
issues message to next-level of memory
waits for data response
fills cache entry

23



Cache Terminology
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Cache
%miss

Thit

TmissAccess : Read/Write to cache

Hit : Desired data in cache
Miss : Desired data not in cache

Fill : Data placed in cache 

% miss = #misses/ #accesses
MPKI = # misses/ 1000 inst.

Thit = Time to read (write) data from cache
Tmiss = Time to read data into cache

Tavg = Thit + %miss*Tmiss



Performance Calculation (Time/Ins)
Parameters

Simple in-order pipeline with CPI=1
Instruction mix=30% loads and stores
D$ % miss = 10% Tmiss= 10 cycles

Overall CPI
CPID$ = %mem. access+%miss*tmissD$
0.3 cycle
Overall CPI = CPI + CPID$ = 1.3 cycles/ins (30% 
higher latency if only 10% missed) 

25



Cache Example	

4 bit address = 16B memory

8B cache blocks, 2B blocks
# of sets 4
Offset : least significant log (block size) = 1
Index : log (# sets) = 2 
Tag rest

26

1bitIndex (2 bits)tag (1bit)



4 bit address, 8B cache, 2B blocks

27

A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

1bitIndex (2 bits)tag (1bit)

.

.

.

.

.

.

.

.

00
01
10
11



4 bit address, 8B cache, 2B blocks
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Capacity and Performance

Reduce % miss 
increase cache cap.
miss rate dec. always
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Cache Capacity

%
 m

iss Working set 
Size

- diminishing returns

Thit increases. proportional to sqrt (capacity)
Why sqrt ?



Block size
Fixed capacity, decrease %miss

Increase block size
Exploit spatial locality
Tag overhead remaings fixed

Reduce miss (if locality exists)
Tag % overhead reduced (Why?)

Potentially wasted data transfer
Potentially wasted storage
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Block size and Tag overhead
1024 frames 32Bytes/frame (32KB)

32Byte frame (5 bit offset); 1024 frames (10bit 
index)
Max Physical Memory in system = 1 TB (40 bits)
Tag - 40-(5+10) = 25 bits + 1 Valid bit                    
(~3.3KB storage) = 10% overhead

512 frames 64Bytes/frame (32KB)
64 byte frame (6 bit offset) : 512 frames (9bit)
Tag = 40-(6+9)= 25 bits + 1 Valid bit
26 bits/tag and 512 tags = ~1.6KB storage
5% overhead
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4 bit address, 8B cache, 4B blocks
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Block Size and Performance
Dual effects on miss rate

Spatial Prefetching (good)
adjacent data brought in
misses turned into hits

Interference (bad)
useful words n in different blocks
turns misses into hits ( (limited # of unique blocks)
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Block size and Miss penalty

Increasing block size increases Tmiss
 Larger blocks take longer to transfer and refill

However, Tmiss of invidual word not affected
Critical word first (req. word sent first, CPU continues)
remaining word refilled in the background

Tmisses of cluster suffers
more than one miss can’t be handled at the same time
latencies affected by bandwidth (more than one miss)
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Conflicts
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Set Associativity
Set Associativity

Block can be in any frame of set
Group of frames is a set
Each frame in set is called a way
E.g., 2-way set-assoc. (SA)
1-way direct-mapped (DM)
1-set fully-associative (FA)
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Set Associativity
Lookup Algorithm

Index bits find the set
Read all data frames in parallel
Any frame can hold block

Tag/Index bits change
Only 9 bits
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Replacement Policies

Set-Associative caches present new challenges
on a cache miss, which block to replace?

Options
Random, FIFO (First-in-First-Out)
LRU (Least recently used)
NMRU (Not most recently used)
Most optimal (Not doable)

Replacement metadata updated on each miss

38



39

A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

1bitIndex (1 bits)tag (2 bit)

.

.
.
.

.

.
.
.

0
1

Ld 1110 (miss)

8B Cache, 2B blocks, 2Way

0
1



Associativity and Performance

Higher Associativity
Lower %miss (diminishing return)

Thit increases
higher associativity (slower) 
more power 

40Associativity
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Way Prediction

41

<< 
= = = = 

offset tag 2-bit index 

2-bit 

2-bit 

4-bit 

Way 
Predictor 

= 

Predict way of block (hint)
Fast; Low Power

More  misses



Classification of Misses
Compulsory (cold): never seen this address 

Would miss even in infinite cache

Capacity: miss because cache is too small
Would miss even in fully associative cache
Identify? Consecutive accesses to block separated by 
access to at least N other distinct blocks (N is number 
of frames in cache)

Conflict: miss caused because cache
associativity is too loo low. Identify? other misses

Coherence Misses : In Multiprocessors 
42



Miss rate Factors
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Associativity

increases latency Thit

Decreases conflict misses

Block Size

no effect on latency Thit

Decreases compulsory/capacity misses (spatial locality)
Increases conflict/capacity misses (fewer frames) 

Capacity
Decreases capacity misses 
increases latency of Thit



Software Restructuring : Data

Capacity misses: poor locality
code restructuring 

Loop interchange: spatial locality
Row major matrix X[ i ][ j ] followed by X[ i ][ j
+1 ]Poor code  X[ i ][ j ] followed by X[ i+1][ j ]

Better Code
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for (j = 0; j<NCOLS; j++)
  for (i = 0; i<NROWS; i++)
     sum += X[i][j];

for (j = 0; j<NROWS; j++)
  for (i = 0; i<NCOLS; i++)
     sum += X[i][j];



Software Restructuring: Data

Loop blocking: temporal locality
Poor code

Better code
cut array into CACHE_SIZE chunks
run all phases on one chunck
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for (k = 0; k<NITERATIONS; k++)
  for (i = 0; i<NELMS; i++)
     sum += X[i];

for (i = 0; i<NELEMS; i+=CACHE_SIZE)
  for (ii = 0; ii<i+CACHE_SIZE-1;ii++)
     sum += X[ii];



Software restructuring code

Compiler can layout code for ins. locality
If (a) {code 1;} else {code 2;} code 3;
code 2 never happens

46

Fewer branches, too
Intra-procedure, inter-procedure

...

Java virtual machine  does this



Prefetching : Speculation
Proactively fetch data chunks into cache

need to predict/anticipate upcoming miss addresses
can be done in hardware or software

Next block prefetcher (Intel L1 and L2)
Miss on address X => fetch X+1
Works for ins.: sequential execution
works for data arrays

Design choice
Timeliness: Initiate prefetches
Coverage: Prefetch as many misses as possible
Pollution: Unnecessary data

47

L1 Cache

L2 Cache

Prefetch



Software Prefetching

“Prefetch” (read) and “PrefetchW” (write)
read data into cache not register (Why?)
No guarantees
Inserted by programmer or compiler

Multiple prefetches using multiple blocks (in parallel)
more “memory-level” parallelism (How does it help?)
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for (i = 0; i<NROWS; i++)
   for (j = 0; j<NCOLS; j+=BLOCK_SIZE) {
      __builtin_prefetch(&X[i][j]
+BLOCK_SIZE);

      for (jj=j; jj<j+BLOCK_SIZE-1; jj++)
         sum += x[i][jj];
   }



Hardware Prefetches: Intel

What to prefetch? strides and other patterns

Stride-based sequential prefetching
works for many common patterns; inst. and arrays
exploits spatial locality without inc. block size

Address prediction
more complicated data structures; trees, list etc
record, trigger and replay
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Writing to the cache

Multiple design choices 
Cache access
Write-through vs. Write-back
Write-allocate vs. Write not-allocate
How to hide write latency?

50



Tag/Data Access

Read: read tag and data in parallel
tag is wrong; wait for for data

Writes; read tag, write data in parallel? Why?
Tag mis-match -> data is mutated

Writes are completed in two-stages
Step 1: match tag
Step 2: write to matching block

51



Write Propagation
When to propagate new value to memory?
Option 1: Write-through immediately

on hit, write data to cache
on miss, send write value to next level

Option 2: Write-back, when block is replaced
track which blocks are written
when dirty (written) block; write to next level

Writeback-buffer
#1: send “refill” request to next level
#2: when waiting, write block to buffer
#3: write value to cache and to next level
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Wr-Through vs Wr-Back

Write-through

Write-back
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Extra bandwidth (if same variable written repeatedly)

No writeback HW Simple design

Too many small writes (1-8bytes)

Amortize write overhead Less bandwidth

Sun Niagara, IBM Power for L1 cache

Used by Intel and AMD for all cache levels



Write-miss Handling
What to do on write miss?

Write Allocate : refill from next level

Write No-Allocate
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Extra bandwidth (get data you may not need) 
improved hits (read to written data)

Uses less bandwidth

Writeback cache

extra write misses
Writethrough cache



Store buffer

Read miss? Load has to wait for data
Write miss? No need to wait 

Store buffer: core writes data to it
frees up processor to do other work
elimates stall on write misses
loads’s data can be in either Store-Buf or L1$

Store buffer vs Writeback buffer
Writeback: behind L1$ for hiding writeback
Store buffer: in front of caches for freeing up core

55

Store Buf



Store buffer

Read miss? Load has to wait for data
Write miss? No need to wait 

Store buffer: core writes data to it
frees up processor to do other work
elimates stall on write misses
loads’s data can be in either Store-Buf or L1$

Store buffer vs Writeback buffer
Writeback: behind L1$ for hiding writeback
Store buffer: in front of caches for freeing up core
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Designing a cache hierarchy
Tradeoff Thit vs % miss tradeoff

Upper components (I$,D$) emphasize low Thit
Frequent access => Thit  important. 
tmiss  not high => % miss not important
low capacity/associativity ( to reduce Thit )
small-medium block size (to reduce conflicts)

Moving down (L2, L3) emphasis turns to %miss
Infrequent access => % miss important
Tmiss => % miss important
High capacity/associativity/block size (to reduce %miss)  

56



Memory Hierarchy Parameters
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Param. I$/D$ L2 L3 Main
Mem.

Thit 2ns 10ns 30ns 100ns

Tmiss 10ns 30ns 100ns 10ms (106 
ns)

Capacity 8KB-64KB 256KB-8M
B 2-16MB 1-4GB

Block Size 16B-64B 32B-128B 32B-256B

Associativity 1-4 4-16 4-16



Inclusive vs Exclusive
Inclusion (Intel)

Bring block from mem. into L2 and than L1
If block in L2, then in L1 as well
If block evicted from L2, then L1 as well

Exclusion (AMD)
Bring block from L2 to L2 but not (L2 or lower)
Good if L2 cache not that big

Non-inclusion (AMD)
No guarantees. First time bring only into L1
evict and reload, keep in both L1 and L2.

58



Miss rate / access vs instruction

For Level 1 caches use instruction mix
If memory ops. are 1/3rd of ins.
2% of inst. miss (1 in 50) is 6% of access

For Level 2 caches
Misses per inst. still straightforward
Misses per-L2 reference more indirect

L1 misses = # L2 references.
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