
1

http://www.cs.sfu.ca/~ashriram/CS885/

Lecture 2: Caches

© belongs to Milo Martin, Amir Roth, David Wood, James Smith, Mikko Lipasti

http://www.cs.sfu.ca/~ashriram/CS885/
http://www.cs.sfu.ca/~ashriram/CS885/
http://www.cs.sfu.ca/~ashriram/CS885/

Why focus on caches and memory ?
CPU can only compute as fast as memory

Add operation takes 0.5ns; Memory is >100ns away
Data access dominates computing (Memory Wall)

Occupies 2/3rds of total chip budget

Design Goals

2

Cost Power Capacity

Bandwidth Latency

Cache or
Memory

Market Forces

3

What Computing What Computing
Customers Care AboutCustomers Care About

What is Most Important?

Mobile/Laptop Desktop Server

Quality

Cost

Power

Bandwidth

Density

Latency

Memory Evolution

4

CIS 501 (Martin): Caches 5

Types of Memory
•  Static RAM (SRAM)

•  6 0r 8 transistors per bit
•  Two inverters (4 transistors) + transistors for reading/writing

•  Optimized for speed (first) and density (second)
•  Fast (sub-nanosecond latencies for small SRAM)

•  Speed roughly proportional to its area
•  Mixes well with standard processor logic

•  Dynamic RAM (DRAM)
•  1 transistor + 1 capacitor per bit
•  Optimized for density (in terms of cost per bit)
•  Slow (>40ns internal access, ~100ns pin-to-pin)
•  Different fabrication steps (does not mix well with logic)

•  Nonvolatile storage: Magnetic disk, Flash RAM
CIS 501 (Martin): Caches 6

SRAM Circuit Implementation

•  SRAM:
•  Six transistors (6T) cells
•  4 for the cross-coupled

inverters
•  2 access transistors

•  “Static”
•  Cross-coupled inverters

hold state

•  To read
•  Equalize, swing, amplify

•  To write
•  Overwhelm

ad
dr

es
s

data0 ~data0 data1 ~data1
sense amp.

CIS 501 (Martin): Caches 7

Memory & Storage Technologies
•  Cost - what can $200 buy today (2009)?

•  SRAM: 16MB
•  DRAM: 4,000MB (4GB) – 250x cheaper than SRAM
•  Flash: 64,000MB (64GB) – 16x cheaper than DRAM
•  Disk: 2,000,000MB (2TB) – 32x vs. Flash (512x vs. DRAM)

•  Latency
•  SRAM: <1 to 2ns (on chip)
•  DRAM: ~50ns – 100x or more slower than SRAM
•  Flash: 75,000ns (75 microseconds) – 1500x vs. DRAM
•  Disk: 10,000,000ns (10ms) – 133x vs Flash (200,000x vs DRAM)

•  Bandwidth
•  SRAM: 300GB/sec (e.g., 12-port 8-byte register file @ 3Ghz)
•  DRAM: ~25GB/s
•  Flash: 0.25GB/s (250MB/s), 100x less than DRAM
•  Disk: 0.1 GB/s (100MB/s), 250x vs DRAM, sequential access only

CIS 501 (Martin): Caches 8

Memory Technology Trends

Cost

Access Time
Copyright Elsevier Scientific 2003

Co
st

Density

Types of Memory

SRAM
Uses same technology as CPUs
Essentially a logic loop
For Speed, Not Capacity
Access (sub ns); Speed proportional to capacity

DRAM
Capacitative storage
Optimized for density and capacity
Slow (>40ns in the chip; 100ns to get to CPU)

5

CIS 501 (Martin): Caches 5

Types of Memory
•  Static RAM (SRAM)

•  6 0r 8 transistors per bit
•  Two inverters (4 transistors) + transistors for reading/writing

•  Optimized for speed (first) and density (second)
•  Fast (sub-nanosecond latencies for small SRAM)

•  Speed roughly proportional to its area
•  Mixes well with standard processor logic

•  Dynamic RAM (DRAM)
•  1 transistor + 1 capacitor per bit
•  Optimized for density (in terms of cost per bit)
•  Slow (>40ns internal access, ~100ns pin-to-pin)
•  Different fabrication steps (does not mix well with logic)

•  Nonvolatile storage: Magnetic disk, Flash RAM
CIS 501 (Martin): Caches 6

SRAM Circuit Implementation

•  SRAM:
•  Six transistors (6T) cells
•  4 for the cross-coupled

inverters
•  2 access transistors

•  “Static”
•  Cross-coupled inverters

hold state

•  To read
•  Equalize, swing, amplify

•  To write
•  Overwhelm

ad
dr

es
s

data0 ~data0 data1 ~data1
sense amp.

CIS 501 (Martin): Caches 7

Memory & Storage Technologies
•  Cost - what can $200 buy today (2009)?

•  SRAM: 16MB
•  DRAM: 4,000MB (4GB) – 250x cheaper than SRAM
•  Flash: 64,000MB (64GB) – 16x cheaper than DRAM
•  Disk: 2,000,000MB (2TB) – 32x vs. Flash (512x vs. DRAM)

•  Latency
•  SRAM: <1 to 2ns (on chip)
•  DRAM: ~50ns – 100x or more slower than SRAM
•  Flash: 75,000ns (75 microseconds) – 1500x vs. DRAM
•  Disk: 10,000,000ns (10ms) – 133x vs Flash (200,000x vs DRAM)

•  Bandwidth
•  SRAM: 300GB/sec (e.g., 12-port 8-byte register file @ 3Ghz)
•  DRAM: ~25GB/s
•  Flash: 0.25GB/s (250MB/s), 100x less than DRAM
•  Disk: 0.1 GB/s (100MB/s), 250x vs DRAM, sequential access only

CIS 501 (Martin): Caches 8

Memory Technology Trends

Cost

Access Time
Copyright Elsevier Scientific 2003

Example SRAM

SRAM (“Static RAM”)
looped inverters hold
state

To read
equalize, swing, amplify

To Write
overwhelm

6
CIS 501 (Martin): Caches 5

Types of Memory
•  Static RAM (SRAM)

•  6 0r 8 transistors per bit
•  Two inverters (4 transistors) + transistors for reading/writing

•  Optimized for speed (first) and density (second)
•  Fast (sub-nanosecond latencies for small SRAM)

•  Speed roughly proportional to its area
•  Mixes well with standard processor logic

•  Dynamic RAM (DRAM)
•  1 transistor + 1 capacitor per bit
•  Optimized for density (in terms of cost per bit)
•  Slow (>40ns internal access, ~100ns pin-to-pin)
•  Different fabrication steps (does not mix well with logic)

•  Nonvolatile storage: Magnetic disk, Flash RAM
CIS 501 (Martin): Caches 6

SRAM Circuit Implementation

•  SRAM:
•  Six transistors (6T) cells
•  4 for the cross-coupled

inverters
•  2 access transistors

•  “Static”
•  Cross-coupled inverters

hold state

•  To read
•  Equalize, swing, amplify

•  To write
•  Overwhelm

ad
dr

es
s

data0 ~data0 data1 ~data1
sense amp.

CIS 501 (Martin): Caches 7

Memory & Storage Technologies
•  Cost - what can $200 buy today (2009)?

•  SRAM: 16MB
•  DRAM: 4,000MB (4GB) – 250x cheaper than SRAM
•  Flash: 64,000MB (64GB) – 16x cheaper than DRAM
•  Disk: 2,000,000MB (2TB) – 32x vs. Flash (512x vs. DRAM)

•  Latency
•  SRAM: <1 to 2ns (on chip)
•  DRAM: ~50ns – 100x or more slower than SRAM
•  Flash: 75,000ns (75 microseconds) – 1500x vs. DRAM
•  Disk: 10,000,000ns (10ms) – 133x vs Flash (200,000x vs DRAM)

•  Bandwidth
•  SRAM: 300GB/sec (e.g., 12-port 8-byte register file @ 3Ghz)
•  DRAM: ~25GB/s
•  Flash: 0.25GB/s (250MB/s), 100x less than DRAM
•  Disk: 0.1 GB/s (100MB/s), 250x vs DRAM, sequential access only

CIS 501 (Martin): Caches 8

Memory Technology Trends

Cost

Access Time
Copyright Elsevier Scientific 2003

SRAM
R/W

Sense

Memory Technologies
Cost (what can 200$ buy today 2010?)

SRAM 16MB
DRAM 4,000MB (4GB), 250x cheaper than SRAM
Flash 64,000 (64GB) - 16x cheaper than DRAM
Disk 2,000,000 (2TB) - 32x cheaper than Flash

Latency
SRAM <1 to 2ns (on-chip)
DRAM ~50ns - 100x or more slower than SRAM
Flash 75,000 ns (75 µs) - 1500x vs DRAM
Disk 10,000,000 (10ms) - 133x vs FLash

Bandwidth
SRAM 300 GB/s (12 port, 8 byte at 3 Ghz)
DRAM 25 GB/s ;
Flash 0.25 GB/s ; Disk 100MB/s 7

8

Ideally, one would desire an infinitely large memory

capacity such that any particular word would be

immediately available ... We are forced to recognize

the possibility of constructing a hierarchy of

memories, each of which has a greater capacity than

the preceding but which is less quickly accessible.”

Burks, Goldstine, VonNeumann
“Preliminary discussion of the logical
design of an electronic computing
instrument”
IAS memo 1946

Exploiting Locality

Locality of memory references
interesting property of real programs; few
exceptions

Temporal Locality
recently referenced data likely to be used again
keep data in small and fast storage (reactive)

Spatial Locality
Likely to access data near each other
fetch data in chunks (Proactive)

9

Library Analogy

Consider books in library
library has lots of books, but slow
far away (time to walk to library)
big (time to walk within library)

How can you avoid latencies
check out books and put them on desk (limited capacity)
keep recently used books around (Temporal locality)
keep books on related topic together (Spatial locality)
Guess what books will be needed in the future
(prefetching)

10

Memory Hierarchy: Exploiting Locality

Hierarchy of memory components
Upper components; Fast, Small, expensive
Lower components; Slow, Big, Cheap

Most frequently sed data in M1
move data up and down the hierarchy

Optimize
Avg. Latency = Latencyhit + %miss * Latencymiss

11

Memory Hierarchy

Level 0 : Registers
Level 1 : Split Ins. and Data cache

typically 8-64KB
inside core

Level 2 and 3 (SRAM)
shared by cores
2nd level typically 256-512KB
last-level (LLC) typicall 4-16MB

Level 4 : Main Memory DRAM
Desk (4GB), Servers (100s GB)

12
CIS 501 (Martin): Caches 13

Exploiting Locality: Memory Hierarchy

•  Hierarchy of memory components
•  Upper components

•  Fast ! Small ! Expensive
•  Lower components

•  Slow ! Big ! Cheap

•  Connected by “buses”
•  Which also have latency and bandwidth issues

•  Most frequently accessed data in M1
•  M1 + next most frequently accessed in M2, etc.
•  Move data up-down hierarchy

•  Optimize average access time
•  latencyavg = latencyhit + %miss * latencymiss

•  Attack each component

CPU

M1

M2

M3

M4

CIS 501 (Martin): Caches 14

Concrete Memory Hierarchy

•  0th level: Registers
•  1st level: Primary caches

•  Split instruction (I$) and data (D$)
•  Typically 8KB to 64KB each

•  2nd level: 2nd and 3rd cache (L2, L3)
•  On-chip, typically made of SRAM
•  2nd level typically ~256KB to 512KB
•  “Last level cache” typically 4MB to 16MB

•  3rd level: main memory
•  Made of DRAM (“Dynamic” RAM)
•  Typically 1GB to 4GB for desktops/laptops

•  Servers can have 100s of GB

•  4th level: disk (swap and files)
•  Uses magnetic disks

Processor

D$

L2, L3

Main
Memory

I$

Disk

Compiler
Managed

Hardware
Managed

Software
Managed
(by OS)

Regs

Library Analogy Revisited

•  Registers ! books on your desk
•  Actively being used, small capacity

•  Caches ! bookshelves
•  Moderate capacity, pretty fast to access

•  Main memory ! library
•  Big, holds almost all data, but slow

•  Disk (swap) ! inter-library loan
•  Very slow, but hopefully really uncommon

CIS 501 (Martin): Caches 15 CIS 501 (Martin): Caches 16

Evolution of Cache Hierarchies

Intel 486

8KB
I/D$

1.5MB L2

L3 tags

64KB D$
64KB I$

IBM Power5 (dual core)

•  Chips today are 30–70% cache by area

Com
piler

m
anaged

HW
m

anaged
O

S
m

anaged

Library Analogy

Registers = Books on desk
actively used, small capacity

Caches = bookshelves
moderate capacity, pretty fast to access

Main Memory = Library
Big; holds almost all data; but slow

13

14

CIS 501 (Martin): Caches 13

Exploiting Locality: Memory Hierarchy

•  Hierarchy of memory components
•  Upper components

•  Fast ! Small ! Expensive
•  Lower components

•  Slow ! Big ! Cheap

•  Connected by “buses”
•  Which also have latency and bandwidth issues

•  Most frequently accessed data in M1
•  M1 + next most frequently accessed in M2, etc.
•  Move data up-down hierarchy

•  Optimize average access time
•  latencyavg = latencyhit + %miss * latencymiss

•  Attack each component

CPU

M1

M2

M3

M4

CIS 501 (Martin): Caches 14

Concrete Memory Hierarchy

•  0th level: Registers
•  1st level: Primary caches

•  Split instruction (I$) and data (D$)
•  Typically 8KB to 64KB each

•  2nd level: 2nd and 3rd cache (L2, L3)
•  On-chip, typically made of SRAM
•  2nd level typically ~256KB to 512KB
•  “Last level cache” typically 4MB to 16MB

•  3rd level: main memory
•  Made of DRAM (“Dynamic” RAM)
•  Typically 1GB to 4GB for desktops/laptops

•  Servers can have 100s of GB

•  4th level: disk (swap and files)
•  Uses magnetic disks

Processor

D$

L2, L3

Main
Memory

I$

Disk

Compiler
Managed

Hardware
Managed

Software
Managed
(by OS)

Regs

Library Analogy Revisited

•  Registers ! books on your desk
•  Actively being used, small capacity

•  Caches ! bookshelves
•  Moderate capacity, pretty fast to access

•  Main memory ! library
•  Big, holds almost all data, but slow

•  Disk (swap) ! inter-library loan
•  Very slow, but hopefully really uncommon

CIS 501 (Martin): Caches 15 CIS 501 (Martin): Caches 16

Evolution of Cache Hierarchies

Intel 486

8KB
I/D$

1.5MB L2

L3 tags

64KB D$
64KB I$

IBM Power5 (dual core)

•  Chips today are 30–70% cache by area

4MB 4MB

Intel 486 Intel Penryn

Today’s Focus : Caches

Caches : hardware managed
hardware automatically retrieves missing data
built from SRAM

Organization
Array-based
Miss classification

Optimization techniques
reducing misses
improving miss penalty
improving hit latency

15

CIS 501 (Martin): Caches 17

This Unit: Caches
•  “Cache”: hardware managed

•  Hardware automatically retrieves missing data
•  Built from fast SRAM, usually on-chip today
•  In contrast to off-chip, DRAM “main memory”

•  Cache organization
•  ABC
•  Miss classification

•  High-performance techniques
•  Reducing misses
•  Improving miss penalty
•  Improving hit latency

•  Some example performance calculations

CPU

D$

L2

Main
Memory

I$

Disk

CIS 501 (Martin): Caches 18

Memory and Disk

•  Main memory
•  DRAM-based memory systems
•  Virtual memory

•  Disks and Storage
•  Disks vs Flash
•  Disk arrays (for performance and reliability)

•  Likely not covering disks this year
•  Make room for more on multicore

CPU

Main
Memory

Disk

D$

L2$

I$

CIS 501 (Martin): Caches 19

Basic Memory Array Structure

•  Number of entries
•  2n, where n is number of address bits
•  Example: 1024 entries, 10 bit address
•  Decoder changes n-bit address to

2n bit “one-hot” signal
•  One-bit address travels on “wordlines”

•  Size of entries
•  Width of data accessed
•  Data travels on “bitlines”
•  256 bits (32 bytes) in example

0

1

1021

1022

1023

2

3

1024*256bit
SRAM

bitlines

w
or

dl
in

es

10 bits

CIS 501 (Martin): Caches 20

FYI: Physical Memory Layout

•  Logical layout
•  Arrays are vertically contiguous

•  Physical layout - roughly square
•  Vertical partitioning to minimize wire lengths
•  H-tree: horizontal/vertical partitioning layout

•  Applied recursively
•  Each node looks like an H

512

513

1022

1023

767

data address

0

1

510

511

255

256 768

Basic Memory Structure

Number of entries = 2n : n # of
address bits

10 bit address; 1024 entries
Decoder does one-hot mapping
address travels horizontally
(word lines)

Size of entries
data width access
data travels vertically (bit lines)

16

CIS 501 (Martin): Caches 17

This Unit: Caches
•  “Cache”: hardware managed

•  Hardware automatically retrieves missing data
•  Built from fast SRAM, usually on-chip today
•  In contrast to off-chip, DRAM “main memory”

•  Cache organization
•  ABC
•  Miss classification

•  High-performance techniques
•  Reducing misses
•  Improving miss penalty
•  Improving hit latency

•  Some example performance calculations

CPU

D$

L2

Main
Memory

I$

Disk

CIS 501 (Martin): Caches 18

Memory and Disk

•  Main memory
•  DRAM-based memory systems
•  Virtual memory

•  Disks and Storage
•  Disks vs Flash
•  Disk arrays (for performance and reliability)

•  Likely not covering disks this year
•  Make room for more on multicore

CPU

Main
Memory

Disk

D$

L2$

I$

CIS 501 (Martin): Caches 19

Basic Memory Array Structure

•  Number of entries
•  2n, where n is number of address bits
•  Example: 1024 entries, 10 bit address
•  Decoder changes n-bit address to

2n bit “one-hot” signal
•  One-bit address travels on “wordlines”

•  Size of entries
•  Width of data accessed
•  Data travels on “bitlines”
•  256 bits (32 bytes) in example

0

1

1021

1022

1023

2

3

1024*256bit
SRAM

bitlines

w
or

dl
in

es

10 bits

CIS 501 (Martin): Caches 20

FYI: Physical Memory Layout

•  Logical layout
•  Arrays are vertically contiguous

•  Physical layout - roughly square
•  Vertical partitioning to minimize wire lengths
•  H-tree: horizontal/vertical partitioning layout

•  Applied recursively
•  Each node looks like an H

512

513

1022

1023

767

data address

0

1

510

511

255

256 768

Physical Layout : H-tree

17

CIS 501 (Martin): Caches 17

This Unit: Caches
•  “Cache”: hardware managed

•  Hardware automatically retrieves missing data
•  Built from fast SRAM, usually on-chip today
•  In contrast to off-chip, DRAM “main memory”

•  Cache organization
•  ABC
•  Miss classification

•  High-performance techniques
•  Reducing misses
•  Improving miss penalty
•  Improving hit latency

•  Some example performance calculations

CPU

D$

L2

Main
Memory

I$

Disk

CIS 501 (Martin): Caches 18

Memory and Disk

•  Main memory
•  DRAM-based memory systems
•  Virtual memory

•  Disks and Storage
•  Disks vs Flash
•  Disk arrays (for performance and reliability)

•  Likely not covering disks this year
•  Make room for more on multicore

CPU

Main
Memory

Disk

D$

L2$

I$

CIS 501 (Martin): Caches 19

Basic Memory Array Structure

•  Number of entries
•  2n, where n is number of address bits
•  Example: 1024 entries, 10 bit address
•  Decoder changes n-bit address to

2n bit “one-hot” signal
•  One-bit address travels on “wordlines”

•  Size of entries
•  Width of data accessed
•  Data travels on “bitlines”
•  256 bits (32 bytes) in example

0

1

1021

1022

1023

2

3

1024*256bit
SRAM

bitlines

w
or

dl
in

es

10 bits

CIS 501 (Martin): Caches 20

FYI: Physical Memory Layout

•  Logical layout
•  Arrays are vertically contiguous

•  Physical layout - roughly square
•  Vertical partitioning to minimize wire lengths
•  H-tree: horizontal/vertical partitioning layout

•  Applied recursively
•  Each node looks like an H

512

513

1022

1023

767

data address

0

1

510

511

255

256 768

CIS 501 (Martin): Caches 17

This Unit: Caches
•  “Cache”: hardware managed

•  Hardware automatically retrieves missing data
•  Built from fast SRAM, usually on-chip today
•  In contrast to off-chip, DRAM “main memory”

•  Cache organization
•  ABC
•  Miss classification

•  High-performance techniques
•  Reducing misses
•  Improving miss penalty
•  Improving hit latency

•  Some example performance calculations

CPU

D$

L2

Main
Memory

I$

Disk

CIS 501 (Martin): Caches 18

Memory and Disk

•  Main memory
•  DRAM-based memory systems
•  Virtual memory

•  Disks and Storage
•  Disks vs Flash
•  Disk arrays (for performance and reliability)

•  Likely not covering disks this year
•  Make room for more on multicore

CPU

Main
Memory

Disk

D$

L2$

I$

CIS 501 (Martin): Caches 19

Basic Memory Array Structure

•  Number of entries
•  2n, where n is number of address bits
•  Example: 1024 entries, 10 bit address
•  Decoder changes n-bit address to

2n bit “one-hot” signal
•  One-bit address travels on “wordlines”

•  Size of entries
•  Width of data accessed
•  Data travels on “bitlines”
•  256 bits (32 bytes) in example

0

1

1021

1022

1023

2

3

1024*256bit
SRAM

bitlines

w
or

dl
in

es

10 bits

CIS 501 (Martin): Caches 20

FYI: Physical Memory Layout

•  Logical layout
•  Arrays are vertically contiguous

•  Physical layout - roughly square
•  Vertical partitioning to minimize wire lengths
•  H-tree: horizontal/vertical partitioning layout

•  Applied recursively
•  Each node looks like an H

512

513

1022

1023

767

data address

0

1

510

511

255

256 768

18
CIS 501 (Martin): Caches 21

Physical Cache Layout

•  Arrays and h-trees make caches easy to spot in µgraphs

CIS 501 (Martin): Caches 22

Caches: Finding Data via Indexing
•  Basic cache: array of block frames

•  Example: 32KB cache (1024 frames, 32B blocks)
•  “Hash table in hardware”

•  To find frame: decode part of address
•  Which part?
•  32-bit address
•  32B blocks ! 5 lowest bits locate byte in block

•  These are called offset bits
•  1024 frames ! next 10 bits find frame

•  These are the index bits
•  Note: nothing says index must be these bits
•  But these work best (think about why)

0

1

1021

1022

1023

2

3

[4:0] [31:15] index [14:5] <<

1024*
256bit
SRAM

bitlines

w
or

dl
in

es

data address

CIS 501 (Martin): Caches 23

Knowing that You Found It: Tags

•  Each frame can hold one of 217 blocks
•  All blocks with same index bit pattern

•  How to know which if any is currently there?
•  To each frame attach tag and valid bit
•  Compare frame tag to address tag bits

•  No need to match index bits (why?)

•  Lookup algorithm
•  Read frame indicated by index bits
•  “Hit” if tag matches and valid bit is set
•  Otherwise, a “miss”. Get data from next level

0

1

1021

1022

1023

2

3

[4:0] tag [31:15]

data

index [14:5] <<

address

=

hit?

w
or

dl
in

es

CIS 501 (Martin): Caches 24

Calculating Tag Overhead

•  “32KB cache” means cache holds 32KB of data
•  Called capacity
•  Tag storage is considered overhead

•  Tag overhead of 32KB cache with 1024 32B frames
•  32B frames ! 5-bit offset
•  1024 frames ! 10-bit index
•  32-bit address – 5-bit offset – 10-bit index = 17-bit tag
•  (17-bit tag + 1-bit valid)* 1024 frames = 18Kb tags = 2.2KB tags
•  ~6% overhead

•  What about 64-bit addresses?
•  Tag increases to 49 bits, ~20% overhead (worst case)

Caches

19

Limited, Fixed Capacity

Need to access in a fast manner

Insertion and removal should be easy

Caches Structure: Hash-Table

Basic cache : Array of
word chunks

32KB cache (1024 frames,
32B/block)
Bounded-size Hash Table

Hash-Table Key
32 bit address; Max Mem.
4GB (128Million, 32byte
blocks)

20

0
1
2
3

1023
1024

32byte
chunk

w
or

dl
ine

s

data bitlines

[4:0][14:5][31:15] <<

Key

Why use these bits for Key ?
Hint: Hash function and

spatial locality ?

How to know you found it?
Each Frame can hold one
of the 217 blocks

How to find out what you
have cached

Cache Tag
To each frame attach bits
attach [31:15]
compare incoming address
and address stored

Overall Algorithm
read frame from row
indicated by index
“Hit” if tag matches

21

0
1
2
3

1023
1024

w
or

dl
ine

s

[4:0][14:5][31:15] <<

Key

==

Hit?

Tag

How to know you found it?
Each Frame can hold one
of the 217 blocks

How to find out what you
have cached

Cache Tag
To each frame attach bits
attach [31:15]
compare incoming address
and address stored

Overall Algorithm
read frame from row
indicated by index
“Hit” if tag matches

21

0
1
2
3

1023
1024

w
or

dl
ine

s

[4:0][14:5][31:15] <<

Key

==

Hit?

Data read (<<) and Key checks (==) can be in
parallel or serial? What are the benefits ?

Hint : Think critical path to get to data

Tag

Tag overhead

32KB Cache = 32KB of Data storage
Tag storage considered to be overhead

32KB Cache, 1024 frames 32Bytes/frame
32Byte frame (5 bit offset); 1024 frames (10bit index)
Max Physical Memory in system = 1 TB (40 bits)
Tag - 40-(5+10) = 25 bits + 1 Valid bit
(~3.3KB storage) = 9% overhead

If Max physical memory = 256TB (48 bits)
Tag overhead = 13%

22

Cache Misses

What if data isn’t in the cache

Cache controller : State machine
remember cache miss address
issues message to next-level of memory
waits for data response
fills cache entry

23

Cache Terminology

24

Cache
%miss

Thit

TmissAccess : Read/Write to cache

Hit : Desired data in cache
Miss : Desired data not in cache

Fill : Data placed in cache

% miss = #misses/ #accesses
MPKI = # misses/ 1000 inst.

Thit = Time to read (write) data from cache
Tmiss = Time to read data into cache

Tavg = Thit + %miss*Tmiss

Performance Calculation (Time/Ins)
Parameters

Simple in-order pipeline with CPI=1
Instruction mix=30% loads and stores
D$ % miss = 10% Tmiss= 10 cycles

Overall CPI
CPID$ = %mem. access+%miss*tmissD$
0.3 cycle
Overall CPI = CPI + CPID$ = 1.3 cycles/ins (30%
higher latency if only 10% missed)

25

Cache Example	

4 bit address = 16B memory

8B cache blocks, 2B blocks
of sets 4
Offset : least significant log (block size) = 1
Index : log (# sets) = 2
Tag rest

26

1bitIndex (2 bits)tag (1bit)

4 bit address, 8B cache, 2B blocks

27

A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

1bitIndex (2 bits)tag (1bit)

.

.

.

.

.

.

.

.

00
01
10
11

4 bit address, 8B cache, 2B blocks

28

A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

1bitIndex (2 bits)tag (1bit)

.

.

.

.

.

.

.

.

00
01
10
11

Ld 1100 (miss)

M N

Capacity and Performance

Reduce % miss
increase cache cap.
miss rate dec. always

29

Cache Capacity

%
 m

iss Working set
Size

- diminishing returns

Thit increases. proportional to sqrt (capacity)
Why sqrt ?

Block size
Fixed capacity, decrease %miss

Increase block size
Exploit spatial locality
Tag overhead remaings fixed

Reduce miss (if locality exists)
Tag % overhead reduced (Why?)

Potentially wasted data transfer
Potentially wasted storage

30

0
1
2
3

511
512

w
or

dl
ine

s

[4:0][14:5][31:15] <<

Key

==

Tag

Word bits

512 * 512 bit
organization

Block size and Tag overhead
1024 frames 32Bytes/frame (32KB)

32Byte frame (5 bit offset); 1024 frames (10bit
index)
Max Physical Memory in system = 1 TB (40 bits)
Tag - 40-(5+10) = 25 bits + 1 Valid bit
(~3.3KB storage) = 10% overhead

512 frames 64Bytes/frame (32KB)
64 byte frame (6 bit offset) : 512 frames (9bit)
Tag = 40-(6+9)= 25 bits + 1 Valid bit
26 bits/tag and 512 tags = ~1.6KB storage
5% overhead

31

4 bit address, 8B cache, 4B blocks

32

A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

1bitIndex (2 bits)tag (1bit)

.

.
.
.

.

.
.
.

00
01

Ld 1110 (miss)

Block Size and Performance
Dual effects on miss rate

Spatial Prefetching (good)
adjacent data brought in
misses turned into hits

Interference (bad)
useful words n in different blocks
turns misses into hits ((limited # of unique blocks)

33

Block size

%
 m

iss

Block size and Miss penalty

Increasing block size increases Tmiss
 Larger blocks take longer to transfer and refill

However, Tmiss of invidual word not affected
Critical word first (req. word sent first, CPU continues)
remaining word refilled in the background

Tmisses of cluster suffers
more than one miss can’t be handled at the same time
latencies affected by bandwidth (more than one miss)

34

Conflicts

35

A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

1bitIndex (2 bits)tag (1bit)

.

.

.

.

.

.

.

.

00
01

Ld 1110 (miss)

10
11

Pairs like conflict (same index)1110
0110

Can such pairs reside at the same time?

Set Associativity
Set Associativity

Block can be in any frame of set
Group of frames is a set
Each frame in set is called a way
E.g., 2-way set-assoc. (SA)
1-way direct-mapped (DM)
1-set fully-associative (FA)

36

0
1
2
3

510
511

[4:0][14:5][31:15] <<

=

Tg 512
513
514
515

1022
1023

Tg

=

Reduces conflicts

Increases Thit

Set Associativity
Lookup Algorithm

Index bits find the set
Read all data frames in parallel
Any frame can hold block

Tag/Index bits change
Only 9 bits

37

0
1
2
3

510
511

[4:0][13:5][31:14] <<

=

Tg 512
513
514
515

1022
1023

Tg

=

Replacement Policies

Set-Associative caches present new challenges
on a cache miss, which block to replace?

Options
Random, FIFO (First-in-First-Out)
LRU (Least recently used)
NMRU (Not most recently used)
Most optimal (Not doable)

Replacement metadata updated on each miss

38

39

A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

1bitIndex (1 bits)tag (2 bit)

.

.
.
.

.

.
.
.

0
1

Ld 1110 (miss)

8B Cache, 2B blocks, 2Way

0
1

Associativity and Performance

Higher Associativity
Lower %miss (diminishing return)

Thit increases
higher associativity (slower)
more power

40Associativity

%
 m

iss

Way Prediction

41

<<
= = = =

offset tag 2-bit index

2-bit

2-bit

4-bit

Way
Predictor

=

Predict way of block (hint)
Fast; Low Power

More misses

Classification of Misses
Compulsory (cold): never seen this address

Would miss even in infinite cache

Capacity: miss because cache is too small
Would miss even in fully associative cache
Identify? Consecutive accesses to block separated by
access to at least N other distinct blocks (N is number
of frames in cache)

Conflict: miss caused because cache
associativity is too loo low. Identify? other misses

Coherence Misses : In Multiprocessors
42

Miss rate Factors

43

Associativity

increases latency Thit

Decreases conflict misses

Block Size

no effect on latency Thit

Decreases compulsory/capacity misses (spatial locality)
Increases conflict/capacity misses (fewer frames)

Capacity
Decreases capacity misses
increases latency of Thit

Software Restructuring : Data

Capacity misses: poor locality
code restructuring

Loop interchange: spatial locality
Row major matrix X[i][j] followed by X[i][j
+1]Poor code X[i][j] followed by X[i+1][j]

Better Code

44

for (j = 0; j<NCOLS; j++)
 for (i = 0; i<NROWS; i++)
 sum += X[i][j];

for (j = 0; j<NROWS; j++)
 for (i = 0; i<NCOLS; i++)
 sum += X[i][j];

Software Restructuring: Data

Loop blocking: temporal locality
Poor code

Better code
cut array into CACHE_SIZE chunks
run all phases on one chunck

45

for (k = 0; k<NITERATIONS; k++)
 for (i = 0; i<NELMS; i++)
 sum += X[i];

for (i = 0; i<NELEMS; i+=CACHE_SIZE)
 for (ii = 0; ii<i+CACHE_SIZE-1;ii++)
 sum += X[ii];

Software restructuring code

Compiler can layout code for ins. locality
If (a) {code 1;} else {code 2;} code 3;
code 2 never happens

46

Fewer branches, too
Intra-procedure, inter-procedure

...

Java virtual machine does this

Prefetching : Speculation
Proactively fetch data chunks into cache

need to predict/anticipate upcoming miss addresses
can be done in hardware or software

Next block prefetcher (Intel L1 and L2)
Miss on address X => fetch X+1
Works for ins.: sequential execution
works for data arrays

Design choice
Timeliness: Initiate prefetches
Coverage: Prefetch as many misses as possible
Pollution: Unnecessary data

47

L1 Cache

L2 Cache

Prefetch

Software Prefetching

“Prefetch” (read) and “PrefetchW” (write)
read data into cache not register (Why?)
No guarantees
Inserted by programmer or compiler

Multiple prefetches using multiple blocks (in parallel)
more “memory-level” parallelism (How does it help?)

48

for (i = 0; i<NROWS; i++)
 for (j = 0; j<NCOLS; j+=BLOCK_SIZE) {
 __builtin_prefetch(&X[i][j]
+BLOCK_SIZE);

 for (jj=j; jj<j+BLOCK_SIZE-1; jj++)
 sum += x[i][jj];
 }

Hardware Prefetches: Intel

What to prefetch? strides and other patterns

Stride-based sequential prefetching
works for many common patterns; inst. and arrays
exploits spatial locality without inc. block size

Address prediction
more complicated data structures; trees, list etc
record, trigger and replay

49

Writing to the cache

Multiple design choices
Cache access
Write-through vs. Write-back
Write-allocate vs. Write not-allocate
How to hide write latency?

50

Tag/Data Access

Read: read tag and data in parallel
tag is wrong; wait for for data

Writes; read tag, write data in parallel? Why?
Tag mis-match -> data is mutated

Writes are completed in two-stages
Step 1: match tag
Step 2: write to matching block

51

Write Propagation
When to propagate new value to memory?
Option 1: Write-through immediately

on hit, write data to cache
on miss, send write value to next level

Option 2: Write-back, when block is replaced
track which blocks are written
when dirty (written) block; write to next level

Writeback-buffer
#1: send “refill” request to next level
#2: when waiting, write block to buffer
#3: write value to cache and to next level

52

Wr-Through vs Wr-Back

Write-through

Write-back

53

Extra bandwidth (if same variable written repeatedly)

No writeback HW Simple design

Too many small writes (1-8bytes)

Amortize write overhead Less bandwidth

Sun Niagara, IBM Power for L1 cache

Used by Intel and AMD for all cache levels

Write-miss Handling
What to do on write miss?

Write Allocate : refill from next level

Write No-Allocate

54

Extra bandwidth (get data you may not need)
improved hits (read to written data)

Uses less bandwidth

Writeback cache

extra write misses
Writethrough cache

Store buffer

Read miss? Load has to wait for data
Write miss? No need to wait

Store buffer: core writes data to it
frees up processor to do other work
elimates stall on write misses
loads’s data can be in either Store-Buf or L1$

Store buffer vs Writeback buffer
Writeback: behind L1$ for hiding writeback
Store buffer: in front of caches for freeing up core

55

Store Buf

Store buffer

Read miss? Load has to wait for data
Write miss? No need to wait

Store buffer: core writes data to it
frees up processor to do other work
elimates stall on write misses
loads’s data can be in either Store-Buf or L1$

Store buffer vs Writeback buffer
Writeback: behind L1$ for hiding writeback
Store buffer: in front of caches for freeing up core

55

L1$

C0

Store Buf

Designing a cache hierarchy
Tradeoff Thit vs % miss tradeoff

Upper components (I$,D$) emphasize low Thit
Frequent access => Thit important.
tmiss not high => % miss not important
low capacity/associativity (to reduce Thit)
small-medium block size (to reduce conflicts)

Moving down (L2, L3) emphasis turns to %miss
Infrequent access => % miss important
Tmiss => % miss important
High capacity/associativity/block size (to reduce %miss)

56

Memory Hierarchy Parameters

57

Param. I$/D$ L2 L3 Main
Mem.

Thit 2ns 10ns 30ns 100ns

Tmiss 10ns 30ns 100ns 10ms (106
ns)

Capacity 8KB-64KB 256KB-8M
B 2-16MB 1-4GB

Block Size 16B-64B 32B-128B 32B-256B

Associativity 1-4 4-16 4-16

Inclusive vs Exclusive
Inclusion (Intel)

Bring block from mem. into L2 and than L1
If block in L2, then in L1 as well
If block evicted from L2, then L1 as well

Exclusion (AMD)
Bring block from L2 to L2 but not (L2 or lower)
Good if L2 cache not that big

Non-inclusion (AMD)
No guarantees. First time bring only into L1
evict and reload, keep in both L1 and L2.

58

Miss rate / access vs instruction

For Level 1 caches use instruction mix
If memory ops. are 1/3rd of ins.
2% of inst. miss (1 in 50) is 6% of access

For Level 2 caches
Misses per inst. still straightforward
Misses per-L2 reference more indirect

L1 misses = # L2 references.

59

