Lecture 2: Caches

http://www.cs.sfu.ca/~ashriram/CS885/

© belongs to Milo Martin, Amir Roth, David Wood, James Smith, Mikko Lipasti 1

http://www.cs.sfu.ca/~ashriram/CS885/
http://www.cs.sfu.ca/~ashriram/CS885/
http://www.cs.sfu.ca/~ashriram/CS885/

Why focus on caches and memory 7

= CPU can only compute as fast as memory
— Add operation takes 0.5ns; Memory is >100ns away
— Data access dominates computing (Memory \Wall)

x Occupies 2/3rds of total chip budget

®x Design Goals

Cost Power Capacity
Cache or

> Memory
Bandwidth \Latency

Market Forces

Memory Evolution

100,000

0 SRAM (chip)
m DRAM (chip
& Disk

| | |]
10,000 100,000 1,000,000 10,000,000 100,000,000

Density

Types of Memory

%

x SRAM

— Uses same technology as CPUs
— Essentially a logic loop
— For Speed, Not Capacity
— Access (sub ns); Speed proportional to capacity

= DRAM

— Capacitative storage
— Optimized for density and capacity
— Slow (>40ns in the chip; 100ns to get to CPU)

—xample SRAM

—\lV

R/ }o

7 M x SRAM (“Static RAM”)
m ‘ — looped inverters hold
DO

o | -r-- state
4 04
I“I PO » Jo read
o{ o{ : :
— equalize, swing, amplify
N >

ﬁﬁﬁi

x [0 Write

— overwhelm

sense amp.
~data, data; ~data, data,

Memory Technologies

x Cost (what can 200$ buy today 20107?)
- SRAM 16MB
— DRAM 4,000MB (4GB), 250x cheaper than SRAM
— Flash 64,000 (64GB) - 16x cheaper than DRAM
— Disk 2,000,000 (2TB) - 32x cheaper than Flash

= | atency
— SRAM <1 to 2ns (on-chip)
— DRAM ~50ns - 100x or more slower than SRAM
— Flash 75,000 ns (75 ps) - 1500x vs DRAM
— Disk 10,000,000 (10ms) - 133x vs FLash

x Bandwidth
— SRAM 300 GB/s (12 port, 8 byte at 3 Ghz)
— DRAM 25 GB/s ;
— Flash 0.25 GB/s ; Disk 1T00MB/s

Ideally, one would desire an infinitely large memory
capacity such that any particular word would be
immediately available ... We are forced to recognize
the possibility of constructing a hierarchy of

memories, each of which has a greater capacity than

the preceding but which is less quickly accessible.”

Burks, Goldstine, VonNeumann
“Preliminary discussion of the logical
design of an electronic computing
instrument”

IAS memo 1946

=xploiting Locality

® | ocality of memory references
— Interesting property of real programs; few
exceptions

® [emporal Locality
— recently referenced data likely to be used again
— keep data in small and fast storage (reactive)

= Spatial Locality
— Likely to access data near each other
— fetch data in chunks (Proactive)

Library Analogy

Consider books in library
— library has lots of books, but slow

R g

R

far away (time to walk to library)
big (time to walk within library)

How can you avoid latencies
check out books and put them on desk (limited capacity)

g

R g

R

R

keep recently used books around (Temporal locality)
keep books on related topic together (Spatial locality)
Guess what books will be needed in the future
(prefetching)

10

Memory Hierarchy: Exploiting Locality

® Hierarchy of memory components
— Upper components; Fast, Small, expensive
— Lower components; Slow, Big, Cheap

®x Most frequently sed data in M1
— move data up and down the hierarchy

x Optimize
— Avg. Latency = Latencynit + %miss * Latencymiss

11

Memory Hierarchy

Processor

x | evel O: Registers

Level 1 : Split Ins. and Data cache
— typically 8-64KB

— Inside core

x [evel 2 and 3 (SRAM)

— shared by cores

— 2nd level typically 256-512KB
— last-level (LLO) typicall 4-16MB

Jojidwon

Q= Level 4 : Main Memory DRAM
— Desk (4GB), Servers (100s GB)

pebeuew pebeuew pabeuew

12

Library Analogy

x Registers = Books on desk
— actively used, small capacity

x Caches = bookshelves
— moderate capacity, pretty fast to access

= Main Memory = Library
— BIg; holds almost all data; but slow

13

Intel Penryn

Intel 486

14

Today’s Focus : Caches

®x Caches : hardware managed

— hardware automatically retrieves missing data
— built from SRAM

x Organization
— Array-based
— Miss classification

x Optimization techniques
— reducing misses
— Improving Miss penalty
— Improving hit latency

15

Basic Memory Structure

x Number of entries = 2n : n # of

address bits

— 10 bit address; 1024 entries

— Decoder does one-hot mapping

— address travels horizontally 10 bits
(word lines)

® Size of entries
— data width access
— data travels vertically (bit lines)

bitlines

16

Physical Layout : H-tree

256

510
511

/

address

Tv 12rartdd Theloliden ol wi®

5 3 4

T SV Yot W ekt -t

18

Caches

19

Caches Structure: Hash-Table

] 0 32byte

|] 1 chunk
Basic cache : Array of s
word chunks Key -1 _3
— 32KB cache (1024 frames, t = :
32B/block) S o

— Bounded-size Hash Table :l} 182?
E data bitlines

Hash-Table Key S1:10] B M

— 32 bit address; Max Mem.
4GB (128Million, 32byte Why use these bits for Key ?
blocks) Hint: Hash function and
spatial locality ?

20

How to know you found it”?

Each Fr1a7me can hold one G
of the 2'" blocks —st 1 [
— How to find out what you — 2 [
have cached Key ? 3: -:
5 ! -
Cache Tag ‘;’ "
To each frame attach bits —=— 1023 !
attach [31:15] L 1024 !
— compare incoming address :
and address stored v

1
1
1
1
1
1
1
1
1
\

140 gy <<

1

Hit"?

21

Overall Algorithm
— read frame from row
iIndicated by index

— “Hit” if tag matches

How to know you found it”?

Fach Frame can hold one

of the 217 blocks

— How to find out what you

have cached Key

WIN = 1O

=]

Data read (<<) and Key checks (==) can be in
parallel or serial? What are the benefits ?

]
]
.

Hint : Think critical path to get to data

Overall Algorithm

— read frame from row
iIndicated by index

— “Hit” if tag matches

L

Hit"?

21

Tag overhead

x 32KB Cache = 32KB of Data storage
— Tag storage considered to be overhead

x 32KB Cache, 1024 frames 32Bytes/frame
— 32Byte frame (5 bit offset); 1024 frames (10bit index)
— Max Physical Memory in system = 1 TB (40 bits)
— Tag - 40-(5+10) = 25 bits + 1 Valid bit
(~3.3KB storage) = 9% overhead

x [f Max physical memory = 256 1B (48 bits)
— Tag overhead = 13%

22

Cache Misses

x \hat If data isn’t in the cache

x Cache controller : State machine

e

e

R g

e

remember cache miss address

ISsues message to next-level of memory
waits for data response

fills cache entry

23

Cache Terminology

Access : Read/\Write to cache

Hit : Desired data in cache
Miss : Desired data not in cache
Fill : Data placed in cache

% miss = #misses/ #accesses
MPKI = # misses/ 1000 inst.
Thit = Time to read (write) data from cache
Tmiss = Time to read data into cache

Tavg — Thit + %miSS*Tmiss

Performance Calculation (Time/Ins)

®» Parameters
— Simple in-order pipeline with CPI=1
— Instruction mix=30% loads and stores
— D$ % miss = 10% Tmiss= 10 cycles

x Qverall CPI

— CPlpg = %omem. access+%MmisSS™ tmissDg
— 0.3 cycle

— Qverall CPI = CPI + CPIpg = 1.3 cycles/ins (30%
higher latency if only 10% missed)

25

Cache Example

®x 4 pit address = 16B memory

. 8B cache blocks, 2B blocks REeRtliR e drr s ion et

— # of sets 4

— Offset : least significant log (block size) = 1
— Index : log (# sets) = 2

— Tag rest

4 bit address, 8B cache, 2B blocks

tag (1bit) fIndex (2 bits) ' 1bit

0000
0001
0010
0011
0100

0101
0110

0111

1000

1001
1010

1011
1100

1THen
1110

T

00
O1

10 Y= :
11HT'JT"

IIII;:ZI—:xc_——:EgvﬂwnﬂCJC>uJ>
I I

4 bit address, 8B cache, 2B blocks

0000
0001
0010
0011
0100

0101
0110

0111

1000

1001
1010

1011
1100

1THen
1110

Ll

'UOZEII_XC——IQTIITIDOWZD

tag (1bit) fIndex (2 bits) ' 1bit

L.d 1100 (miss)

0[0) . .
o N g
10 M N
11 . .

28

Capacity and Performance

= Reduce % miss
— Increase cache cap.
— miss rate dec. always

% miss

A

Working set
Size

Cache Capacity

Why sqrt ?

29

Block size 512 * 512 bit

organization

Fixed capacity, decrease %miss BN
— 1 [N
Increase block size — 2> I
_ Exploit spatial locality ey, 71 2 I
— Tag overhead remaings fixed S |
2 5
— 512 !
Reduce miss (if locality exists) 5 5
Tag % overhead reduced (Why?) : v
T Word bits : '?
- \4
31:15] | [14:5] |40/ g <<

30

Block size and Tag overhead

x 1024 frames 32Bytes/frame (32KB)
— 32Byte frame (5 bit offset); 1024 frames (10bit
index)
— Max Physical Memory in system = 1 TB (40 bits)
— Tag - 40-(5+10) = 25 bits + 1 Valid bit
(~3.3KB storage) = 10% overhead

x 512 frames 64Bytes/frame (32KB)
— 64 byte frame (6 bit offset) : 512 frames (9bit)
— Tag = 40-(6+9)= 25 bits + 1 Valid bit
— 26 bits/tag and 512 tags = ~1.6KB storage
— 5% overhead

31

4 bit address, 8B cache, 4B blocks

tag (1bit) fIndex (2 bits) ' 1bit

0000
0001
0010
0011
0100

0101
0110

0111

1000

1001
1010

1071
1100

1THen

1110 !
1111 ¥ 5=

Ld 1110 (miss)

00
O1

ZIS|Im IR |ZO|mmOO|W@|>

Block Size and Derformaljce

x Dual effects on miss rate

% miss

= Spatial Prefetching (good)
— adjacent data brought in
— misses turned into hits

Block size

— useful words n in different blocks
— turns misses into hits ((limited # of unique blocks)

33

Slock size and Miss penalty

® |ncreasing block size increases Tmiss
— Larger blocks take longer to transfer and refill

x However, Tmiss of invidual word not affected

— Critical word first (req. word sent first, CPU continues)
— remaining word refilled in the background

n Tmisses of cluster suffers

— more than one miss can’t be handled at the same time
— latencies affected by bandwidth (more than one miss)

34

Conflicts

tag (1bit) fIndex (2 bits) ' 1bit

0000 [A
B :
88% = Ld 1110 (miss)
0011 | D
0100 |_E
0101 |- E 4 00 L L
0110 | G | 01 , |
o111 I A_ | 10 1,
1000 | 11 1 . . F
8
K
ey [Pairs like 1110 conflict (same index)
1100 [™ 0110
1Fer
m? :[_ﬂi“: Can such pairs reside at the same time?
| P I

Set Associativity 0
x Set Associativity e
— Block can be in any frame of set +— I_:
— Group of frames is a set :
— Each frame in set is called a way :'211?_

- E.g., 2-way set-assoc. (SA)
— 1-way direct-mapped (DM)
— 1-set fully-associative (FA)

T

Reduces conflicts [31:15] RIESOIIEE,

||
=

1

1

1
i

:

1

1

BB AN

36

Set Associativity

® | ookup Algorithm
— Index bits find the set
— Read all data frames in parallel
— Any frame can hold block

x [ag/Index bits change
— Only 9 bits

!

o |lon
—_—] —L
—|loT "~ 7 7

BN preen

||
=

1

1

1
i

:

1

1

Py

WIN|—

- HE-- SEEE

37

Replacement Policies

® Set-Associative caches present new challenges
— on a cache miss, which block to replace”?

x Options
— Random, FIFO (First-in-First-Out)
— |LRU (Least recently used)
— NMRU (Not most recently used)
— Most optimal (Not doable)

®x Replacement metadata updated on each miss

38

8B Cache, 2B blocks, 2\Way

tag (2 bit) [Index (1 bits) ' 1bit

A

B

C

D

E

= o [| |
G 1.‘ M 1||_'_']:
H

|

J

<

L

M

N

0000
0001
0010
0011
0100

0101
0110

0111

1000

1001
1010

1071
1100

1THen

1110 ! :
1111 ¥ =

Ld 1110 (miss)

Associativity and Performance

— Lower %miss (diminishing return)

— higher associativity (slower)
— more power

A

% Mmiss

Associativity

40

Way Prediction
Predict way of block (hint)

More misses

A

7)

tag 2-bit index

-

Way
Predictor

\
(&&&#&#&Jr#&&####

A,
E‘

Classification of Misses

= Compulsory (cold): never seen this address
— Would miss even in infinite cache

» Capacity: miss because cache is too small
— Would miss even in fully associative cache
— |dentify? Consecutive accesses to block separated by
access to at least N other distinct blocks (N is number
of frames in cache)

x Conflict: miss caused because cache
— associativity Is too loo low. Identify? other misses

= Coherence Misses : In Multiprocessors

42

Miss rate Factors

Associativity
Decreases conflict misses
INncreases latency Thi

Block Size
Decreases compulsory/capacity misses (spatial locality)

Increases conflict/capacity misses (fewer frames)
no effect on latency Thi

Capacity
Decreases capacity misses
Increases latency of Thit

43

Software Restructuring : Data

x (Capacity misses: poor locality
— code restructuring

® | 00op interchange: spatial locality
— Row major matrix X[i][]] followed by X[i][]
+1 JPoor code X[i][]j] followed by X[i+1][]]

for (J = 0; J<NCOLS,’ j++)
for (i = 0; i<NROWS; i++)

sum += X[i][j];

x Better Code

for (j = 0; j<NROWS; j++)
for (1 = 0; i<NCOLS; i++)

sum += X[1][]]-

44

Software Restructuring: Data

Loop blocking: temporal locality

Poor code

for (k = 0; k<NITERATIONS; k++)
for (1 = 0; i<NELMS; i++)

sum += X[i];

Better code
— cut array into CACHE_SIZE chunks

— run all phases on one chunck

for (i = 0; i<NELEMS; i+=CACHE SIZE)
for (ii = 0; ii<i+CACHE SIZE-1;ii++)

sum += X[i1];

45

Software restructuring code

= Compiler can layout code for ins. locality
— If (@) { } else {code 2;}
— code 2 never happens

I I Fewer branches, too
Intra-procedure, inter-procedure

I Java virtual machine does this

46

Prefetching : Speculation

® Proactively fetch data chunks into cache

— need to predict/anticipate upcoming miss addresses

— can be done in hardware or software

x Next block prefetcher (Intel L1 and L2)

— Miss on address X => fetch X+1 L1 Cache

— Works for ins.: sequential execution

e

Prefetch .

= [Design choice :
— Timeliness: Initiate prefetches
— Coverage: Prefetch as many misses as possible
— Pollution: Unnecessary data

-

\ 4

L2 Cache

A

47

Software Prefetching

x “Prefetch” (read) and “PrefetchW” (write)

— read data into cache not register (Why?)
— No guarantees

— Inserted by programmer or compiler

for (i = 0; i<NROWS; i++)
for (j = 0; J<NCOLS; 7j+=BLOCK SIZE) {

__builtin prefetch(&X[i] []]
+BLOCK SIZE) ;

for (33=3: jj<j+BLOCK;SIZE—1; Jj++)
sum += x[i][jj];

= Multiple prefetches using multiple blocks (in parallel)
— more “memory-level” parallelism (How does it help?)

48

Hardware Prefetches: Intel

x \\Vhat to prefetch” strides and other patterns

® Stride-based sequential prefetching
— works for many common patterns; inst. and arrays
— exploits spatial locality without inc. block size

» Address prediction
— more complicated data structures; trees, list etc
— record, trigger and replay

49

Writing to the cache

= Multiple design choices
— (Cache access
— Write-through vs. Write-back
— Write-allocate vs. Write not-allocate
— How to hide write latency?

50

Tag/Data Access

®x Read: read tag and data in parallel
— tag is wrong; wait for for data

x \Writes; read tag, write data in parallel”? Why?
— Tag mis-match -> data is mutated

x \Writes are completed in two-stages
— Step 1: match tag
— Step 2: write to matching block

51

Write Propagation

x \\VVhen to propagate new value to memory”?

x Option 1: Write-through immediately
— on hit, write data to cache
— OoNn miIss, send write value to next level

x Option 2: Write-back, when block is replaced
— track which blocks are written
— when dirty (written) block; write to next level

x \Nriteback-bufter

— #1: send “refill” request to next level
— #2: when waiting, write block to buffer
— #3: write value to cache and to next level

52

Wr-Through vs Wr-Back

x \Write-through
No writeback HW Simple design
Extra bandwidth (if same variable written repeatedly)

Too many small writes (1-8bytes)
Sun Niagara, IBM Power for L1 cache

n \\rite-back
Amortize write overhead L ess bandwidth

Used by Intel and AMD for all cache levels

53

Write-miss Handling

x \\Vhat to do on write miss?

x \\rite Allocate ; refilll from next level
improved hits (read to written data)

Writeback cache

x \\rite No-Allocate
Uses less bandwidth

Writethrough cache

54

Store buffer

Read miss? Load has to wait for data
Write miss”? No need to wait

Store buffer: core writes data to it

— frees up processor to do other work

— elimates stall on write misses

— loads’s data can be in either Store-Buf or L1$

Store Buf

Store buffer vs Writeback buffer
— Writeback: behind L1$ for hiding writeback
— Store buffer: in front of caches for freeing up core

55

Store buffer

Read miss? Load has to wait for data
Write miss”? No need to wait

U

Store buffer: core writes data to it 1
Store Buf

— frees up processor to do other work _

— elimates stall on write misses v

— loads’s data can be in either Store-Buf or L1$ L1%

Store buffer vs Writeback buffer
— Writeback: behind L1$ for hiding writeback
— Store buffer: in front of caches for freeing up core

55

Designing a cache hierarchy

® [radeoff Thitvs % miss tradeoff

x Upper components (I$,D$) emphasize low Thi
— Frequent access => Thit Important.
— tmiss NOt high => % miss not important
— low capacity/associativity (to reduce Thit)
— small-medium block size (to reduce conflicts)

= Moving down (L2, L3) emphasis turns to %miss
— Infrequent access => % miss iImportant
— Tmiss => % miss important
— High capacity/associativity/block size (to reduce %miss)

56

Memory Hierarchy Parameters
Main
Param. 1$/D$ | 2 | 3 Mom.
Thit 2NS 10Nns 30ns 100ns
6
Takse 10ns 30ns o | 1O (I
ns)
Capacity 8KB-64KB 256KBB'8M 2-16MB 1-4GB
Block Size 16B-64B 32B-128B 32B-256B
Associativity 1-4 4-16 4-16

57

Inclusive vs Exclusive

= |nclusion (Intel)
— Bring block from mem. into L2 and than L1
— If block in L2, then in L1 as well
— |If block evicted from L2, then L1 as well

x Exclusion (AMD)

— Bring block from L2 to L2 but not (L2 or lower)
— Good if L2 cache not that big

x Non-inclusion (AMD)
— No guarantees. First time bring only into L1
— evict and reload, keep In both L1 and L2.

58

Miss rate / access vs Instruction

® [or Level 1 caches use instruction mix
— |f memory ops. are 1/3rd of ins.
— 2% of inst. miss (1 in 50) is 6% of access

x For Level 2 caches

— Misses per inst. still straightforward

— Misses per-L2 reference more indirect
e |1 misses = # L2 references.

59

