Agenda

e |ecture

e Bottom-up motivation

e Shared memory primitives

e Shared memory synchronization
e Barriers and locks

o Next discussion papers
e Selecting Locking Primitives for Parallel Programming
e Selecting Locking Designs for Parallel Programs

Acknowledgments

e Pseudo code from:

o “Algorithms for Scalable Synchronization on Shared-Memory
Multiprocessors”, Mellor-Crummey & Scott, ACM TOCS, Feb 1991

e http://www.cs.rochester.edu/research/synchronization/pseudocode/
ss.html

Barriers

Common Parallel Idiom: Barriers

e Physics simulation computation
e Divide up each timestep computation into N independent pieces
o Each timestep: compute independently, synchronize

o Example: each thread executes:

e segment_size = total_particles / number_of_threads

e my_start_particle = thread_id * segment_size

e my_end_particle = my_start_particle + segment_size - 1

o for (timestep = 0; timestep += delta; timestep < stop_time):
e calculate_forces(t, my_start_particle, my_end_particle)
e barrier()
o update_locations(t, my_start_particle, my_end_particle)
e barrier()

e Barrier? All threads wait until all threads have reached it

Example: Barrier-Based Merge Sort

e Merge-sort 4096 elements with four threads to t1 t2 (3

o Step #1:
e Sort each 1/4th of array
e (N/4)*log(N/4) = 1024*10 = 10240 comparisons

o Step #2: Step 1
e Two N/2 merges
e 2048 comparisons

* Step #3: Barrier
e Final merge
e 4096 comparisons Step 2

e Total: 3x speed up four threads Barrier

e Parallel: 16384 comparisons
e Sequential: ~50k comparisons Step 3

Global Synchronization Barrier

e At a barrier
e All threads wait until all other threads have reached it

to t1 tO 3

e Strawman implementation (wrong!)

global (shared) count : integer := P

procedure central barrier
if fetch and decrement (&count) ==
count := P
else Barrier
repeat until count ==

o What is wrong with the above code?

Sense-Reversing Barrier

o Correct barrier implementation:

global (shared) count : integer := P
global (shared) sense : Boolean := true
local (private) local sense : Boolean := true

procedure central barrier
// each processor toggles its own sense

local sense := !'local sense
if fetch and decrement (&count) ==
count := P
// last processor toggles global sense
sense := local sense
else
repeat until sense == local_sense

e Single counter makes this a “centralized” barrier

Other Barrier Implementations

e Problem with centralized barrier
e All processors must increment each counter
o Each read/modify/write is a serialized coherence action
e Each one is a cache miss
e O(n) if threads arrive simultaneously, slow for lots of processors

e Combining Tree Barrier
o Build a logk(n) height tree of counters (one per cache block)
e Each thread coordinates with k other threads (by thread id)
o Last of the k processors, coordinates with next higher node in tree
e As many coordination address are used, misses are not serialized
O(log n) in best case

e Static and more dynamic variants
e Tree-based arrival, tree-based or centralized release

Barrier Performance (from 1991)

120
+«— dissemination

a——4 free
100 —
~ - -« tournament (flag wakeup)

s & grrival tree

80 — w=mmm counter

40 —

20 —

0 T 1 i T l I : T l
0 2 4 6 8 10 12 14 16 18
Processors

Fig. 21. Performance of barriers on the Symmetry

From Mellor-Crummey & Scott, ACM TOCS, 1991 10

Locks

11

Common Parallel Idiom: Locking

e Protecting a shared data structure

e Example: parallel tree walk, apply f() to each node
o Global “set” object, initialized with pointer to root of tree
e Each thread, while (true):
e node* next = set.remove()
e if next == NULL: return // terminate thread
o func(code->value) [/ computationally intense function
o if (next->right '= NULL):
e set.insert(next->right)
o if (next->left = NULL):
o set.insert(next->left)

e How do we protect the “set” data structure?
e Also, to perform well, what element should it “remove” each step?

12

Common Parallel Idiom: Locking

o Parallel tree walk, apply f() to each node
e Global “set” object, initialized with pointer to root of tree
e Each thread, while (true):

* acquire(set.lock_ptr) Put lock/unlock into

e node* next = set.pop() pop() method?
o release(set.lock_ptr)

o if next == NULL:
e return // terminate thread
e func(node->value) [/ computationally intense

e acquire(set.lock_ptr) _
e if (next->right 1= NULL) Put lock/unlock into

e set.insert(next->right) insert() method?
e if (next->left '= NULL)

o set.insert(next->left)
o release(set.lock_ptr)

13

Lock-Based Mutual Exclusion

\ ” . tO tl t2 t3
e Only one thread can hold a “lock” at a time I

e Used a provide serialized access to a data object

o If another threads tries to acquire a held lock
e Must wait until other thread performs a release

L
C
C
K

V
/
|
1
L
C
C
K

e Performance implications
e Lock contention limits parallelism
e Lock acquire/release time adds overheads

] Ny,

] ey,

o Correctness implications
e Just one example:
e Thread #1: Holds lock A, tries to acquire B
e Thread #2: Holds lock B, tries to acquire A
¢ Classic deadlock!

L
C
C
K

Simple Boolean Spin Locks

e Simplest lock:
e Single variable, two states: locked, unlocked
e When unlocked: atomically transition from unlocked to locked
e When locked: keep checking (spin) until the lock is unlocked

e Busy waiting versus “blocking”

e In a multicore, busy wait for other thread to release lock
e Likely to happen soon, assuming critical sections are small
e Likely nothing “better” for the processor to do anyway

e In a single processor, if trying to acquire a held lock, block
e The only sensible option is to tell the O.S. to context switch
e O.S. knows not to reschedule thread until lock is released

e Blocking has high overhead (O.S. call)
e IMHO, rarely makes sense in multicore (parallel) programs

15

Spin Locks and Contention

The Art of Multiprocessor
Programming

Art of Multiprocessor
Programming® Herlihy-Shavit

Focus so far: Correctness

- Models

- Accurate (we never lied to you)

- But idealized (so we forgot to mention a few things)

- Protocols

- Elegant
- Important
- But naive
BROWN Art of Multiprocessor 17

Programming® Herlihy-Shavit

New Focus: Performance

- Models

- More complica’red (not the same as complex!)

- Still focus on principles (not soon obsolete)

* Protocols
- Elegant (in their fashion)
- Impor’ran‘r (why else would we pay attention)

- And realistic (your mileage may vary)

BROWN Art of Multiprocessor 18
Programming® Herlihy-Shavit

- o —

What Should you do if you can't

get a lock?
* Keep trying
- "spin” or "busy-wait"
- Good if delays are short
* Give up the processor

- Good if delays are long
- Always good on uniprocessor

LD

BROWN Art of Multiprocessor 19 (1)
Programming® Herlihy-Shavit

What Should you do if you can't

get a lock?
—~~

Y @ep trying
- "spin” or "busy-wait"

\=_Good if delays are short
* Give up the proces

- Good if delays are long

- Always good on uniprocessor
our focus

LD

BROWN Art of Multiprocessor 20
Programming® Herlihy-Shavit

Basic Spin-Lock

&

X
-
X

Programming® Herlihy-Shavit

- o —

> CS
/v spin critical
lock section
BROWN Art of Multiprocessor

Resets lock
upon exit

Basic Spin-Lock

..lock introduces
sequential bottleneck

|
[|
m / spin critical Resets lock
lock section upon exit
BROWN Art of Multiprocessor 22

Programming® Herlihy-Shavit

- o —

Basic Spin-Lock

..lock suffers from
| \ contention
A =1+l ¥
. spin critical Resets lock
l‘ / lock section upon exit
BROWN Art of Multiprocessor 23

Programming® Herlihy-Shavit

Basic Spin-Lock

.lock suffers from

@ /‘ ., contention
T ‘ qb
=01
- spin critical Resets lock
l‘ / lock section upon exit

Notice: these are distinct
phenomena

BROWN Art of Multiprocessor 24
Programming® Herlihy-Shavit

[

e

NP
X
'~

BROWN

\.@ /U

Basic Spin-Lock

.lock suffers from

. contention

=0

spin critical Resets I_ock
lock section upon exit

Seq Bottleneck > no
parallelism

Art of Multiprocessor 25
Programming® Herlihy-Shavit

Basic Spin-Lock

.lock suffers from

@ /} ., contention
—~—— \ \.lb
=0
- spin critical Resets lock
l‘ / lock section upon exit

Contention - ???

I
Se
X

BROWN Art of Multiprocessor 26
Programming® Herlihy-Shavit

Review: Test-and-Set

- Boolean value
+ Test-and-set (TAS)

- Swap true with current value

- Return value tells if prior value was true
or false

+ Can reset just by writing false
TAS aka "getAndSet”

BROWN Art of Multiprocessor 27
Programming® Herlihy-Shavit

Review: Test-and-Set

public class AtomicBoolean {
noolean value;

P ASASY N EDoOTeZS a0 FaD)

boolean prior = value;
value = newvalue;
return prior;

¥
¥

1%
5%
IS a

BROWN Art of Multiprocessor 28
Programming® Herlihy-Shavit

- o —

(3)

Review: Test-and-Set

[pubh'c class AtomicBoolean {j

Package
java.util.concurrent.atomic

NP
X
'~

BROWN Art of Multiprocessor 29
Programming® Herlihy-Shavit

- o —

Review: Test-and-Set

T4 ' 1
PRl A Cas¥REbESTaZs Y, R90lfan)
boolean prior = value;
value = newvalue;

return prior;

N \\\\\\//__—//

Swap old and new

values

BROWN Art of Multiprocessor
Programming® Herlihy-Shavit

- o —

30

Review: Test-and-Set

AtomicBoolean lock
= new AtomicBoolean(false)

boolean prior = lock.getAndset(true)

1%
5%
IS a

BROWN Art of Multiprocessor 31
Programming® Herlihy-Shavit

- o —

Review: Test-and-Set

EBoolean prior = 'Iock.getAndSet(frue)]

\/

Swapping in true is called
"test-and-set” or TAS

S
B

BROWN Art of Multiprocessor 32 (5)
Programming® Herlihy-Shavit

- o —

Test-and-Set Locks

» Locking

- Lock is free: value is false

- Lock is taken: value is true

» Acquire lock by calling TAS

- If resu
- If resu

BROWN

t is false, you win
t is true, you lose

- Release lock by writing false

Art of Multiprocessor
Programming® Herlihy-Shavit

33

Test-and-set Lock

class TASlock {
AtomicBoolean state =
new AtomicBoolean(false);

void Tock() {
while (state.getAndSet(true)) {}

vold unlock() {
state.set(false);

b}

07
-2
IS

BROWN Art of Multiprocessor 34
Programming® Herlihy-Shavit

- o —

Test-and-set Lock

AtomicBoolean state =
new AtomicBoolean(false);

Lock state is AtomicBoolean

NP
=7

BROWN Art of Multiprocessor 35
Programming® Herlihy-Shavit

- o —

Test-and-set Lock

e CState e AT (T
_~

Keep trying until lock acquired

LD

BROWN Art of Multiprocessor 36
Programming® Herlihy-Shavit

Test-and-set Lock

Release lock by resetting
state to false

state.set 1s

S
B

BROWN Art of Multiprocessor 37
Programming® Herlihy-Shavit

- o —

Space Complexity

»+ TAS spin-lock has small "footprint”
* N thread spin-lock uses O(1) space
+ As opposed to O(h) Peterson/Bakery

» How did we overcome the Q(n) lower
bound?

+ We used a RMW operation...

LD

BROWN Art of Multiprocessor 38
Programming® Herlihy-Shavit

Performance

- Experiment
- nh threads
- Increment shared counter 1 million times

* How long should it take?

* How long does it take?

S
B

BROWN Art of Multiprocessor 39
Programming® Herlihy-Shavit

Graph

" no speedup
because of
sequential

_bottleneck /

time

ideal

threads

S
LA

BROWN Art of Multiprocessor 40
Programming® Herlihy-Shavit

- o —

Mystery #1

Q)

£

= A

What is
oin
threads 719
on?
BROWN Art of Multiprocessor 41 1)

Programming® Herlihy-Shavit

