
Agenda

• Lecture 
• Bottom-up motivation 
• Shared memory primitives  
• Shared memory synchronization 

• Barriers and locks 

• Next discussion papers 
• Selecting Locking Primitives for Parallel Programming 
• Selecting Locking Designs for Parallel Programs
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Barriers
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Common Parallel Idiom: Barriers 
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• Physics simulation computation 
• Divide up each timestep computation into N independent pieces 
• Each timestep: compute independently, synchronize 

• Example: each thread executes: 
• segment_size = total_particles / number_of_threads 
• my_start_particle = thread_id * segment_size 
• my_end_particle =  my_start_particle + segment_size - 1  
• for (timestep = 0; timestep += delta; timestep < stop_time): 

• calculate_forces(t, my_start_particle, my_end_particle) 
• barrier() 
• update_locations(t, my_start_particle, my_end_particle) 
• barrier() 

• Barrier? All threads wait until all threads have reached it



• Merge-sort 4096 elements with four threads 

• Step #1: 
• Sort each 1/4th of array 
• (N/4)*log(N/4) = 1024*10 = 10240 comparisons 

• Step #2: 
• Two N/2 merges 
• 2048 comparisons 

• Step #3: 
• Final merge 
• 4096 comparisons 

• Total: 3x speed up four threads 
• Parallel: 16384 comparisons  
• Sequential: ~50k comparisons

Example: Barrier-Based Merge Sort
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Global Synchronization Barrier

• At a barrier 
• All threads wait until all other threads have reached it 

• Strawman implementation (wrong!) 
   
global (shared) count : integer := P 
   
procedure central_barrier 
  if fetch_and_decrement(&count) == 1 
    count := P 
  else 
    repeat until count == P 

• What is wrong with the above code? 
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Sense-Reversing Barrier

• Correct barrier implementation: 
   
global (shared) count : integer := P 
global (shared) sense : Boolean := true 
local (private) local_sense : Boolean := true 
   
procedure central_barrier 
  // each processor toggles its own sense 
  local_sense := !local_sense   
  if fetch_and_decrement(&count) == 1 
    count := P 
    // last processor toggles global sense 
    sense := local_sense    
  else 
    repeat until sense == local_sense 

• Single counter makes this a “centralized” barrier 
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Other Barrier Implementations

• Problem with centralized barrier 
• All processors must increment each counter 
• Each read/modify/write is a serialized coherence action 

• Each one is a cache miss 
• O(n) if threads arrive simultaneously, slow for lots of processors 

• Combining Tree Barrier 
• Build a logk(n) height tree of counters (one per cache block) 
• Each thread coordinates with k other threads (by thread id)  
• Last of the k processors, coordinates with next higher node in tree 
• As many coordination address are used, misses are not serialized 
• O(log n) in best case 

• Static and more dynamic variants 
• Tree-based arrival, tree-based or centralized release 
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Barrier Performance (from 1991)
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Fig. 21. Performance of barmers on the Symmetry

smoother performance curve: each additional processor adds another level to
some path through the tree, or becomes the second child of some node in the
wakeup tree that is delayed slightly longer than its sibling.

Figure 21 shows the performance on the Sequent Symmetry of several
different barriers. Results differ sharply from those on the Butterfly for two
principal reasons. First, it is acceptable on the Symmetry for more than one
processor to spin on the same location; each obtains a copy in its cache.
Second, no significant advantage arises from distributing writes across the
memory modules of the machine; the shared bus enforces an overall serializa-
tion. The dissemination barrier requires O ( P log P) bus transactions to
achieve a P-processor barrier. The other four algorithms require O(P) trans-
actions, and all perform better than the dissemination barrier for P > 8.

Below the maximum number of processors in our tests, the fastest barrier
on the Symmetry used a centralized counter with a sense-reversing wakeup
flag (from Figure 8). P bus transactions are required to tally arrivals, 1 to
toggle the sense-reversing flag (invalidating all the cached copies), and P – 1
to effect the subsequent reloads. Our tree barrier generates 2 P – 2 writes to
flag variables on which other processors are waiting, necessitating an addi-
tional 2 P – 2 reloads. By using a central sense-reversing flag for wakeup
(instead of the wakeup tree), we can eliminate half of this overhead. The
resulting algorithm is identified as “arrival tree” in Figure 21. Though the

ACM Transactmns on Computer Systems, Vol 9, No 1, February 1991

From Mellor-Crummey & Scott, ACM TOCS, 1991



Locks
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Common Parallel Idiom: Locking 
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• Protecting a shared data structure 

• Example: parallel tree walk, apply f() to each node 
• Global “set” object, initialized with pointer to root of tree 
• Each thread, while (true): 

• node* next = set.remove() 
• if next == NULL: return    // terminate thread 
• func(code->value)    // computationally intense function 
• if (next->right != NULL): 

• set.insert(next->right) 
• if (next->left != NULL): 

• set.insert(next->left) 

• How do we protect the “set” data structure? 
• Also, to perform well, what element should it “remove” each step?



Common Parallel Idiom: Locking 
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• Parallel tree walk, apply f() to each node 
• Global “set” object, initialized with pointer to root of tree 
• Each thread, while (true): 

• acquire(set.lock_ptr) 
• node* next = set.pop() 
• release(set.lock_ptr) 
• if next == NULL:  

• return    // terminate thread 
• func(node->value)    // computationally intense 
• acquire(set.lock_ptr) 
• if (next->right != NULL)  

• set.insert(next->right) 
• if (next->left != NULL)  

• set.insert(next->left) 
• release(set.lock_ptr)

Put lock/unlock into 
pop() method?

Put lock/unlock into 
insert() method?



• Only one thread can hold a “lock” at a time 
• Used a provide serialized access to a data object 

• If another threads tries to acquire a held lock 
• Must wait until other thread performs a release 

• Performance implications 
• Lock contention limits parallelism 
• Lock acquire/release time adds overheads 

• Correctness implications 
• Just one example: 

• Thread #1: Holds lock A, tries to acquire B 
• Thread #2: Holds lock B, tries to acquire A 
• Classic deadlock!

Lock-Based Mutual Exclusion
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Simple Boolean Spin Locks

• Simplest lock: 
• Single variable, two states: locked, unlocked 
• When unlocked: atomically transition from unlocked to locked 
• When locked: keep checking (spin) until the lock is unlocked 

• Busy waiting versus “blocking” 
• In a multicore, busy wait for other thread to release lock 

• Likely to happen soon, assuming critical sections are small 
• Likely nothing “better” for the processor to do anyway 

• In a single processor, if trying to acquire a held lock, block 
• The only sensible option is to tell the O.S. to context switch 
• O.S. knows not to reschedule thread until lock is released 

• Blocking has high overhead (O.S. call) 
• IMHO, rarely makes sense in multicore (parallel) programs  
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Focus so far: Correctness

• Models 
– Accurate (we never lied to you) 

– But idealized (so we forgot to mention a few things) 

• Protocols 
– Elegant 
– Important 
– But naïve
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New Focus: Performance

• Models 
– More complicated (not the same as complex!) 

– Still focus on principles (not soon obsolete) 

• Protocols 
– Elegant (in their fashion) 

– Important (why else would we pay attention) 

– And realistic (your mileage may vary)
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What Should you do if you can’t 
get a lock?

• Keep trying 
– “spin” or “busy-wait” 
– Good if delays are short 

• Give up the processor 
– Good if delays are long 
– Always good on uniprocessor

(1)
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What Should you do if you can’t 
get a lock?

• Keep trying 
– “spin” or “busy-wait” 
– Good if delays are short 

• Give up the processor 
– Good if delays are long 
– Always good on uniprocessor

our focus
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Basic Spin-Lock
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Basic Spin-Lock

CS

Resets lock  
upon exit

spin  
lock

critical  
section

...

…lock introduces 
sequential bottleneck
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Basic Spin-Lock

CS

Resets lock  
upon exit

spin  
lock

critical  
section
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…lock suffers from 
contention
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Basic Spin-Lock

CS

Resets lock  
upon exit

spin  
lock

critical  
section

...
Notice: these are distinct 
phenomena

…lock suffers from 
contention
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Basic Spin-Lock

CS

Resets lock  
upon exit

spin  
lock

critical  
section

...

…lock suffers from 
contention

Seq Bottleneck ! no 
parallelism
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Basic Spin-Lock

CS

Resets lock  
upon exit

spin  
lock

critical  
section

...
Contention ! ???

…lock suffers from 
contention
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Review: Test-and-Set

• Boolean value 
• Test-and-set (TAS) 

– Swap true with current value 
– Return value tells if prior value was true 

or false 

• Can reset just by writing false 
• TAS aka “getAndSet”
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Review: Test-and-Set
public class AtomicBoolean { 
 boolean value; 
   
 public synchronized boolean 
getAndSet(boolean newValue) { 

   boolean prior = value; 
   value = newValue; 
   return prior; 
 } 
}

(5)
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Review: Test-and-Set
public class AtomicBoolean { 
 boolean value; 
   
 public synchronized boolean 
getAndSet(boolean newValue) { 

   boolean prior = value; 
   value = newValue; 
   return prior; 
 } 
} Package 

java.util.concurrent.atomic
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Review: Test-and-Set
public class AtomicBoolean { 
 boolean value; 
   
 public synchronized boolean 
getAndSet(boolean newValue) { 

   boolean prior = value; 
   value = newValue; 
   return prior; 
 } 
}

Swap old and new 
values
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Review: Test-and-Set
AtomicBoolean lock 
 = new AtomicBoolean(false) 
… 
boolean prior = lock.getAndSet(true) 
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Review: Test-and-Set
AtomicBoolean lock 
 = new AtomicBoolean(false) 
… 
boolean prior = lock.getAndSet(true) 
 

(5)

Swapping in true is called 
“test-and-set” or TAS
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Test-and-Set Locks

• Locking 
– Lock is free: value is false 
– Lock is taken: value is true 

• Acquire lock by calling TAS 
– If result is false, you win 
– If result is true, you lose  

• Release lock by writing false
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Test-and-set Lock
class TASlock { 
 AtomicBoolean state = 
  new AtomicBoolean(false); 

 void lock() { 
  while (state.getAndSet(true)) {} 
 } 
  
 void unlock() { 
  state.set(false); 
 }} 
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Test-and-set Lock
class TASlock { 
 AtomicBoolean state = 
  new AtomicBoolean(false); 

 void lock() { 
  while (state.getAndSet(true)) {} 
 } 
  
 void unlock() { 
  state.set(false); 
 }} 

Lock state is AtomicBoolean
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Test-and-set Lock
class TASlock { 
 AtomicBoolean state = 
  new AtomicBoolean(false); 

 void lock() { 
  while (state.getAndSet(true)) {} 
 } 
  
 void unlock() { 
  state.set(false); 
 }} 

Keep trying until lock acquired
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Test-and-set Lock
class TASlock { 
 AtomicBoolean state = 
  new AtomicBoolean(false); 

 void lock() { 
  while (state.getAndSet(true)) {} 
 } 
  
 void unlock() { 
  state.set(false); 
 }} 

Release lock by resetting 
state to false
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Space Complexity

• TAS spin-lock has small “footprint”  
• N thread spin-lock uses O(1) space 
• As opposed to O(n) Peterson/Bakery  
• How did we overcome the Ω(n) lower 

bound?  
• We used a RMW operation… 
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Performance

• Experiment 
– n threads 
– Increment shared counter 1 million times 

• How long should it take? 
• How long does it take?
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Mystery #1
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