
Agenda

• Lecture
• Bottom-up motivation
• Shared memory primitives
• Shared memory synchronization

• Barriers and locks

• Next discussion papers
• Selecting Locking Primitives for Parallel Programming
• Selecting Locking Designs for Parallel Programs

2

Acknowledgments

• Pseudo code from:
• “Algorithms for Scalable Synchronization on Shared-Memory

Multiprocessors”, Mellor-Crummey & Scott, ACM TOCS, Feb 1991
• http://www.cs.rochester.edu/research/synchronization/pseudocode/

ss.html

3

Barriers

4

Common Parallel Idiom: Barriers

5

• Physics simulation computation
• Divide up each timestep computation into N independent pieces
• Each timestep: compute independently, synchronize

• Example: each thread executes:
• segment_size = total_particles / number_of_threads
• my_start_particle = thread_id * segment_size
• my_end_particle = my_start_particle + segment_size - 1
• for (timestep = 0; timestep += delta; timestep < stop_time):

• calculate_forces(t, my_start_particle, my_end_particle)
• barrier()
• update_locations(t, my_start_particle, my_end_particle)
• barrier()

• Barrier? All threads wait until all threads have reached it

• Merge-sort 4096 elements with four threads

• Step #1:
• Sort each 1/4th of array
• (N/4)*log(N/4) = 1024*10 = 10240 comparisons

• Step #2:
• Two N/2 merges
• 2048 comparisons

• Step #3:
• Final merge
• 4096 comparisons

• Total: 3x speed up four threads
• Parallel: 16384 comparisons
• Sequential: ~50k comparisons

Example: Barrier-Based Merge Sort

6

Barrier

Barrier

t0 t1 t2 t3

Step 1

Step 2

Step 3

Global Synchronization Barrier

• At a barrier
• All threads wait until all other threads have reached it

• Strawman implementation (wrong!)

global (shared) count : integer := P

procedure central_barrier
 if fetch_and_decrement(&count) == 1
 count := P
 else
 repeat until count == P

• What is wrong with the above code?

7

Barrier

t0 t1 t2 t3

Sense-Reversing Barrier

• Correct barrier implementation:

global (shared) count : integer := P
global (shared) sense : Boolean := true
local (private) local_sense : Boolean := true

procedure central_barrier
 // each processor toggles its own sense
 local_sense := !local_sense
 if fetch_and_decrement(&count) == 1
 count := P
 // last processor toggles global sense
 sense := local_sense
 else
 repeat until sense == local_sense

• Single counter makes this a “centralized” barrier

8

Other Barrier Implementations

• Problem with centralized barrier
• All processors must increment each counter
• Each read/modify/write is a serialized coherence action

• Each one is a cache miss
• O(n) if threads arrive simultaneously, slow for lots of processors

• Combining Tree Barrier
• Build a logk(n) height tree of counters (one per cache block)
• Each thread coordinates with k other threads (by thread id)
• Last of the k processors, coordinates with next higher node in tree
• As many coordination address are used, misses are not serialized
• O(log n) in best case

• Static and more dynamic variants
• Tree-based arrival, tree-based or centralized release

9

Barrier Performance (from 1991)

10

56 . J M. Mellor-Crummey and M. L. Scott

120

M dissemination

I ~ tree
loo–

.

A

80 – “

Time
(p.) ‘0 -

40 –

20 –

o
0

-. tournament

A arriv~ tree

4 counter

flag wakeup)

I I I I I I I I I
2 4 6 8 10 12 14 16 18

Processors

Fig. 21. Performance of barmers on the Symmetry

smoother performance curve: each additional processor adds another level to
some path through the tree, or becomes the second child of some node in the
wakeup tree that is delayed slightly longer than its sibling.

Figure 21 shows the performance on the Sequent Symmetry of several
different barriers. Results differ sharply from those on the Butterfly for two
principal reasons. First, it is acceptable on the Symmetry for more than one
processor to spin on the same location; each obtains a copy in its cache.
Second, no significant advantage arises from distributing writes across the
memory modules of the machine; the shared bus enforces an overall serializa-
tion. The dissemination barrier requires O (P log P) bus transactions to
achieve a P-processor barrier. The other four algorithms require O(P) trans-
actions, and all perform better than the dissemination barrier for P > 8.

Below the maximum number of processors in our tests, the fastest barrier
on the Symmetry used a centralized counter with a sense-reversing wakeup
flag (from Figure 8). P bus transactions are required to tally arrivals, 1 to
toggle the sense-reversing flag (invalidating all the cached copies), and P – 1
to effect the subsequent reloads. Our tree barrier generates 2 P – 2 writes to
flag variables on which other processors are waiting, necessitating an addi-
tional 2 P – 2 reloads. By using a central sense-reversing flag for wakeup
(instead of the wakeup tree), we can eliminate half of this overhead. The
resulting algorithm is identified as “arrival tree” in Figure 21. Though the

ACM Transactmns on Computer Systems, Vol 9, No 1, February 1991

From Mellor-Crummey & Scott, ACM TOCS, 1991

Locks

11

Common Parallel Idiom: Locking

12

• Protecting a shared data structure

• Example: parallel tree walk, apply f() to each node
• Global “set” object, initialized with pointer to root of tree
• Each thread, while (true):

• node* next = set.remove()
• if next == NULL: return // terminate thread
• func(code->value) // computationally intense function
• if (next->right != NULL):

• set.insert(next->right)
• if (next->left != NULL):

• set.insert(next->left)

• How do we protect the “set” data structure?
• Also, to perform well, what element should it “remove” each step?

Common Parallel Idiom: Locking

13

• Parallel tree walk, apply f() to each node
• Global “set” object, initialized with pointer to root of tree
• Each thread, while (true):

• acquire(set.lock_ptr)
• node* next = set.pop()
• release(set.lock_ptr)
• if next == NULL:

• return // terminate thread
• func(node->value) // computationally intense
• acquire(set.lock_ptr)
• if (next->right != NULL)

• set.insert(next->right)
• if (next->left != NULL)

• set.insert(next->left)
• release(set.lock_ptr)

Put lock/unlock into
pop() method?

Put lock/unlock into
insert() method?

• Only one thread can hold a “lock” at a time
• Used a provide serialized access to a data object

• If another threads tries to acquire a held lock
• Must wait until other thread performs a release

• Performance implications
• Lock contention limits parallelism
• Lock acquire/release time adds overheads

• Correctness implications
• Just one example:

• Thread #1: Holds lock A, tries to acquire B
• Thread #2: Holds lock B, tries to acquire A
• Classic deadlock!

Lock-Based Mutual Exclusion

L 
O 
C
K

W
A
I
T

L 
O 
C
K

L 
O 
C
K

L 
O 
C
K

W
A
I
T

W
A
I
T

t0 t1 t2 t3

Simple Boolean Spin Locks

• Simplest lock:
• Single variable, two states: locked, unlocked
• When unlocked: atomically transition from unlocked to locked
• When locked: keep checking (spin) until the lock is unlocked

• Busy waiting versus “blocking”
• In a multicore, busy wait for other thread to release lock

• Likely to happen soon, assuming critical sections are small
• Likely nothing “better” for the processor to do anyway

• In a single processor, if trying to acquire a held lock, block
• The only sensible option is to tell the O.S. to context switch
• O.S. knows not to reschedule thread until lock is released

• Blocking has high overhead (O.S. call)
• IMHO, rarely makes sense in multicore (parallel) programs

15

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

Spin Locks and Contention

Companion slides for
The Art of Multiprocessor

Programming
by Maurice Herlihy & Nir Shavit

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

17

Focus so far: Correctness

• Models
– Accurate (we never lied to you)

– But idealized (so we forgot to mention a few things)

• Protocols
– Elegant
– Important
– But naïve

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

18

New Focus: Performance

• Models
– More complicated (not the same as complex!)

– Still focus on principles (not soon obsolete)

• Protocols
– Elegant (in their fashion)

– Important (why else would we pay attention)

– And realistic (your mileage may vary)

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

19

What Should you do if you can’t
get a lock?

• Keep trying
– “spin” or “busy-wait”
– Good if delays are short

• Give up the processor
– Good if delays are long
– Always good on uniprocessor

(1)

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

20

What Should you do if you can’t
get a lock?

• Keep trying
– “spin” or “busy-wait”
– Good if delays are short

• Give up the processor
– Good if delays are long
– Always good on uniprocessor

our focus

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

21

Basic Spin-Lock

CS

Resets lock
upon exit

spin
lock

critical
section

...

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

22

Basic Spin-Lock

CS

Resets lock
upon exit

spin
lock

critical
section

...

…lock introduces
sequential bottleneck

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

23

Basic Spin-Lock

CS

Resets lock
upon exit

spin
lock

critical
section

...

…lock suffers from
contention

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

24

Basic Spin-Lock

CS

Resets lock
upon exit

spin
lock

critical
section

...
Notice: these are distinct
phenomena

…lock suffers from
contention

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

25

Basic Spin-Lock

CS

Resets lock
upon exit

spin
lock

critical
section

...

…lock suffers from
contention

Seq Bottleneck ! no
parallelism

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

26

Basic Spin-Lock

CS

Resets lock
upon exit

spin
lock

critical
section

...
Contention ! ???

…lock suffers from
contention

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

27

Review: Test-and-Set

• Boolean value
• Test-and-set (TAS)

– Swap true with current value
– Return value tells if prior value was true

or false

• Can reset just by writing false
• TAS aka “getAndSet”

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

28

Review: Test-and-Set
public class AtomicBoolean {
 boolean value;

 public synchronized boolean
getAndSet(boolean newValue) {

 boolean prior = value;
 value = newValue;
 return prior;
 }
}

(5)

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

29

Review: Test-and-Set
public class AtomicBoolean {
 boolean value;

 public synchronized boolean
getAndSet(boolean newValue) {

 boolean prior = value;
 value = newValue;
 return prior;
 }
} Package

java.util.concurrent.atomic

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

30

Review: Test-and-Set
public class AtomicBoolean {
 boolean value;

 public synchronized boolean
getAndSet(boolean newValue) {

 boolean prior = value;
 value = newValue;
 return prior;
 }
}

Swap old and new
values

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

31

Review: Test-and-Set
AtomicBoolean lock
 = new AtomicBoolean(false)
…
boolean prior = lock.getAndSet(true)

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

32

Review: Test-and-Set
AtomicBoolean lock
 = new AtomicBoolean(false)
…
boolean prior = lock.getAndSet(true)

(5)

Swapping in true is called
“test-and-set” or TAS

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

33

Test-and-Set Locks

• Locking
– Lock is free: value is false
– Lock is taken: value is true

• Acquire lock by calling TAS
– If result is false, you win
– If result is true, you lose

• Release lock by writing false

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

34

Test-and-set Lock
class TASlock {
 AtomicBoolean state =
 new AtomicBoolean(false);

 void lock() {
 while (state.getAndSet(true)) {}
 }

 void unlock() {
 state.set(false);
 }}

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

35

Test-and-set Lock
class TASlock {
 AtomicBoolean state =
 new AtomicBoolean(false);

 void lock() {
 while (state.getAndSet(true)) {}
 }

 void unlock() {
 state.set(false);
 }}

Lock state is AtomicBoolean

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

36

Test-and-set Lock
class TASlock {
 AtomicBoolean state =
 new AtomicBoolean(false);

 void lock() {
 while (state.getAndSet(true)) {}
 }

 void unlock() {
 state.set(false);
 }}

Keep trying until lock acquired

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

37

Test-and-set Lock
class TASlock {
 AtomicBoolean state =
 new AtomicBoolean(false);

 void lock() {
 while (state.getAndSet(true)) {}
 }

 void unlock() {
 state.set(false);
 }}

Release lock by resetting
state to false

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

38

Space Complexity

• TAS spin-lock has small “footprint”
• N thread spin-lock uses O(1) space
• As opposed to O(n) Peterson/Bakery
• How did we overcome the Ω(n) lower

bound?
• We used a RMW operation…

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

39

Performance

• Experiment
– n threads
– Increment shared counter 1 million times

• How long should it take?
• How long does it take?

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

40

Graph

ideal

ti
m

e

threads

no speedup
because of
sequential
bottleneck

Art of Multiprocessor
Programming© Herlihy-Shavit

2007

41

Mystery #1
ti

m
e

threads

TAS lock

Ideal

(1)

What is
going
on?

