
1	

Concurrent Programing:
Why you should care, deeply

2	

Questions	

! Do the following either completely succeed or
completely fail?

! Writing an 8-bit byte to memory
 A. Yes B. No

! Creating a file
 A. Yes B. No

! Writing a 512-byte disk sector
 A. Yes B. No

3	

Sharing	
 among	
 threads	
 increases	
 performance…	

int a = 1, b = 2;
main() {

 CreateThread(fn1, 4);
 CreateThread(fn2, 5);

}
fn1(int arg1) {

 if(a) b++;
}
fn2(int arg1) {

 a = arg1;
}

What are the value of a & b
at the end of execution?

4	

Sharing	
 among	
 theads	
 increases	
 performance,	
 but	
 can	

lead	
 to	
 problems!!	

int a = 1, b = 2;
main() {

 CreateThread(fn1, 4);
 CreateThread(fn2, 5);

}
fn1(int arg1) {

 if(a) b++;
}
fn2(int arg1) {

 a = 0;
}

What are the values of a & b
at the end of execution?

5	

Some	
 More	
 Examples	

! What are the possible values of x in these cases?

Thread1: x = 1; Thread2: x = 2;

Initially y = 10;
Thread1: x = y + 1; Thread2: y = y * 2;

Initially x = 0;
Thread1: x = x + 1; Thread2: x = x + 2;

6	

Critical	
 Sections	

! A critical section is an abstraction
  Consists of a number of consecutive program instructions
  Usually, crit sec are mutually exclusive and can wait/signal

  Later, we will talk about atomicity and isolation
! Critical sections are used frequently to protect data structures

(e.g., queues, shared variables, lists, …)

! A critical section implementation must be:
 Correct or Serialization : the system behaves as if only 1

thread can execute in the critical section at any given time.

 Efficient: getting into and out of critical section must be fast.

 Concurrency control: a good implementation allows
maximum concurrency while preserving correctness

  Flexible: a good implementation must have as few
restrictions as practically possible

7	

The	
 Need	
 For	
 Mutual	
 Exclusion	

! Running multiple processes/threads in parallel
increases performance

! Some computer resources cannot be accessed by
multiple threads at the same time
 E.g., a printer can’t print two documents at once

! Mutual exclusion is the term to indicate that some
resource can only be used by one thread at a time
 Active thread excludes its peers

! For shared memory architectures, data structures are
often mutually exclusive
  Two threads adding to a linked list can corrupt the list

8	

Exclusion	
 Problems,	
 Real	
 Life	
 Example	

! Imagine multiple chefs in the same kitchen
 Each chef follows a different recipe

! Chef 1
 Grab butter, grab salt, do other stuff

! Chef 2
 Grab salt, grab butter, do other stuff

! What if Chef 1 grabs the butter and Chef 2 grabs the
salt?
 Yell at each other (not a computer science solution)
 Chef 1 grabs salt from Chef 2 (preempt resource)
 Chefs all grab ingredients in the same order

  Current best solution, but difficult as recipes get complex
  Ingredient like cheese might be sans refrigeration for a while

9	

The	
 Need	
 To	
 Wait	

! Very often, synchronization consists of one thread
waiting for another to make a condition true
 Master tells worker a request has arrived
 Cleaning thread waits until all lanes are colored

! Until condition is true, thread can sleep
  Ties synchronization to scheduling

! Mutual exclusion for data structure
 Code can wait (await)
 Another thread signals (notify)

10	

Even	
 more	
 real	
 life,	
 linked	
 lists	

! Where is the critical section?

lprev = elt = NULL;
for(lptr = lhead; lptr; lptr = lptr->next) {
 if(lptr->val == target){
 elt = lptr;
 // Already head?, break
 if(lprev == NULL) break;
 // Move cell to head
 lprev->next = lptr->next;
 lptr->next = lhead;
 lhead = lptr;
 break;
 }
 lprev = lptr;
} return elt;

11	

Even	
 more	
 real	
 life,	
 linked	
 lists	

! A critical section often needs to be larger than it first
appears
  The 3 key lines are not enough of a critical section

 // Move cell to head
 lprev->next = lptr->next;
 lptr->next = lhead
 lhead = lptr;

lprev->next = lptr->next;
lptr->next = lhead;
lhead = lptr;

Thread 1	

 Thread 2	

lhead	

 elt	

lptr	

lprev	

lhead	

elt	

lptr	

lprev	

12	

Even	
 more	
 real	
 life,	
 linked	
 lists	

! Putting entire search in a critical section reduces
concurrency, but it is safe.
 Mutual exclusion is conservative
  Transactions are optimistic

if(lptr->val == target){
 elt = lptr;
 // Already head?, break
 if(lprev == NULL) break;
 // Move cell to head
 lprev->next = lptr->next;
 // lptr no longer in list

for(lptr = lhead; lptr;
 lptr = lptr->next) {
 if(lptr->val == target){

Thread 1	

 Thread 2	

13	

Safety	
 and	
 Liveness	

! Safety property : “nothing bad happens”
  holds in every finite execution prefix

  Windows™ never crashes
  a program never terminates with a wrong answer

! Liveness property: “something good eventually happens”
  no partial execution is irremediable

  Windows™ always reboots
  a program eventually terminates

! Every property is a combination of a safety property and a
liveness property - (Alpern and Schneider)

14	

Safety	
 and	
 liveness	
 for	
 critical	
 sections	

! At most k threads are concurrently in the critical section
  A. Safety
  B. Liveness
  C. Both

! A thread that wants to enter the critical section will eventually

succeed
  A. Safety
  B. Liveness
  C. Both

! Bounded waiting: If a thread i is in entry section, then there is a
bound on the number of times that other threads are allowed to
enter the critical section (only 1 thread is alowed in at a time)
before thread i’s request is granted.
  A. Safety B. Liveness C. Both

