
Bottom-Up Multicore Programming

1

Bottom-Up Approach Inspiration

2

Bottom-Up Approach Inspiration
• Robert Lee Moore

• Mathematician
• Penn (1911-1920)
• U. of Texas (1920-1969)

• Developed “Moore Method” or “Texas Method”
• A unique style of teaching mathematics
• Start with axioms, have class build up the

framework during the semester
• “Looking ahead” forbidden

2

Bottom-Up Approach Inspiration
• Robert Lee Moore

• Mathematician
• Penn (1911-1920)
• U. of Texas (1920-1969)

• Developed “Moore Method” or “Texas Method”
• A unique style of teaching mathematics
• Start with axioms, have class build up the

framework during the semester
• “Looking ahead” forbidden

• Yale Patt
• Computer Architect
• Renowned teacher and researcher
• “Bits and Bytes to C and Beyond” textbook

2

Bottom-up Multicore Programming

3

Bottom-up Multicore Programming
• We’re going to follow a “bottom-up” approach

• We’re going to start with the lowest-level primitives
• Build up high abstractions using these primitives

3

Bottom-up Multicore Programming
• We’re going to follow a “bottom-up” approach

• We’re going to start with the lowest-level primitives
• Build up high abstractions using these primitives

• Why?
• No-magic understanding
• Gain performance intuition

3

Bottom-up Multicore Programming
• We’re going to follow a “bottom-up” approach

• We’re going to start with the lowest-level primitives
• Build up high abstractions using these primitives

• Why?
• No-magic understanding
• Gain performance intuition

• Discarded alternative #1: “top-down”
• Start with high-level parallelism libraries and languages

• As “black boxes”
• Then try to explain how they work

• And their odd performance characteristics

3

Bottom-up Multicore Programming
• We’re going to follow a “bottom-up” approach

• We’re going to start with the lowest-level primitives
• Build up high abstractions using these primitives

• Why?
• No-magic understanding
• Gain performance intuition

• Discarded alternative #1: “top-down”
• Start with high-level parallelism libraries and languages

• As “black boxes”
• Then try to explain how they work

• And their odd performance characteristics

• Discard alternative #2: “top-up”

3

What Bottom-Up Means for You

4

What Bottom-Up Means for You
• Need to “forget” (for now) some things

• Put aside any thoughts of higher-level constructs
• Forget anything you might know of

• TBB, Cilk, OpenMP, Blocks, Grand Central Dispatch, Ct, Java
JSR-166, ZPL, NESL, Fortress, X10, Chapel, StreamIT, Brook, CUDA,
OpenCL, memory consistency, etc.

4

What Bottom-Up Means for You
• Need to “forget” (for now) some things

• Put aside any thoughts of higher-level constructs
• Forget anything you might know of

• TBB, Cilk, OpenMP, Blocks, Grand Central Dispatch, Ct, Java
JSR-166, ZPL, NESL, Fortress, X10, Chapel, StreamIT, Brook, CUDA,
OpenCL, memory consistency, etc.

• Need to actively engage with material
• Engage in class discussion, in-class exercises
• Spend time outside of class on material
• Embrace the homework assignments

• More gritty, more effort at the start

4

What Bottom-Up Means for You
• Need to “forget” (for now) some things

• Put aside any thoughts of higher-level constructs
• Forget anything you might know of

• TBB, Cilk, OpenMP, Blocks, Grand Central Dispatch, Ct, Java
JSR-166, ZPL, NESL, Fortress, X10, Chapel, StreamIT, Brook, CUDA,
OpenCL, memory consistency, etc.

• Need to actively engage with material
• Engage in class discussion, in-class exercises
• Spend time outside of class on material
• Embrace the homework assignments

• More gritty, more effort at the start

• Less spoon-feeding, more self-learning

4

What Bottom-Up Means for You
• Need to “forget” (for now) some things

• Put aside any thoughts of higher-level constructs
• Forget anything you might know of

• TBB, Cilk, OpenMP, Blocks, Grand Central Dispatch, Ct, Java
JSR-166, ZPL, NESL, Fortress, X10, Chapel, StreamIT, Brook, CUDA,
OpenCL, memory consistency, etc.

• Need to actively engage with material
• Engage in class discussion, in-class exercises
• Spend time outside of class on material
• Embrace the homework assignments

• More gritty, more effort at the start

• Less spoon-feeding, more self-learning

• Best way I know how to teach this course
4

Simple Parallel Work Decomposition

5

Static Work Distribution

6

• Sequential code
• for (int i=0; i<SIZE; i++):

• calculate(i, …, …, …)

• Parallel code, for each thread:
• void each_thread(int thread_id):

• segment_size = SIZE / number_of_threads
• assert(SIZE % number_of_threads == 0)
• my_start = thread_id * segment_size
• my_end = my_start + segment_size
• for (int i=my_start; i<my_end; i++)

• calculate(i, …, …, …)

• Hey, its a parallel program!

Static Work Distribution

6

• Sequential code
• for (int i=0; i<SIZE; i++):

• calculate(i, …, …, …)

• Parallel code, for each thread:
• void each_thread(int thread_id):

• segment_size = SIZE / number_of_threads
• assert(SIZE % number_of_threads == 0)
• my_start = thread_id * segment_size
• my_end = my_start + segment_size
• for (int i=my_start; i<my_end; i++)

• calculate(i, …, …, …)

• Hey, its a parallel program!

Static Work Distribution

6

• Sequential code
• for (int i=0; i<SIZE; i++):

• calculate(i, …, …, …)

• Parallel code, for each thread:
• void each_thread(int thread_id):

• segment_size = SIZE / number_of_threads
• assert(SIZE % number_of_threads == 0)
• my_start = thread_id * segment_size
• my_end = my_start + segment_size
• for (int i=my_start; i<my_end; i++)

• calculate(i, …, …, …)

Static Work Distribution

6

• Sequential code
• for (int i=0; i<SIZE; i++):

• calculate(i, …, …, …)

• Parallel code, for each thread:
• void each_thread(int thread_id):

• segment_size = SIZE / number_of_threads
• assert(SIZE % number_of_threads == 0)
• my_start = thread_id * segment_size
• my_end = my_start + segment_size
• for (int i=my_start; i<my_end; i++)

• calculate(i, …, …, …)

• Hey, its a parallel program!

Dynamic Work Distribution

7

• Sequential code
• for (int i=0; i<SIZE; i++):

• calculate(i, …, …, …)

• Parallel code, for each thread:
• int counter = 0 // global variable
• void each_thread(int thread_id):

• while (true)
• int i = atomic_add(&counter, 1)
• if (i >= SIZE)

• return
• calculate(i, …, …, …)

• Dynamic load balancing, but high overhead

Dynamic Work Distribution

7

• Sequential code
• for (int i=0; i<SIZE; i++):

• calculate(i, …, …, …)

• Parallel code, for each thread:
• int counter = 0 // global variable
• void each_thread(int thread_id):

• while (true)
• int i = atomic_add(&counter, 1)
• if (i >= SIZE)

• return
• calculate(i, …, …, …)

• Dynamic load balancing, but high overhead

Dynamic Work Distribution

7

• Sequential code
• for (int i=0; i<SIZE; i++):

• calculate(i, …, …, …)

• Parallel code, for each thread:
• int counter = 0 // global variable
• void each_thread(int thread_id):

• while (true)
• int i = atomic_add(&counter, 1)
• if (i >= SIZE)

• return
• calculate(i, …, …, …)

Dynamic Work Distribution

7

• Sequential code
• for (int i=0; i<SIZE; i++):

• calculate(i, …, …, …)

• Parallel code, for each thread:
• int counter = 0 // global variable
• void each_thread(int thread_id):

• while (true)
• int i = atomic_add(&counter, 1)
• if (i >= SIZE)

• return
• calculate(i, …, …, …)

• Dynamic load balancing, but high overhead

Coarse-Grain Dynamic Work Distribution

8

Coarse-Grain Dynamic Work Distribution

8

Coarse-Grain Dynamic Work Distribution

8

• Parallel code, for each thread:
• int num_segments = SIZE / GRAIN_SIZE
• int counter = 0 // global variable
• void each_thread(int thread_id):

• while (true)
• int i = atomic_add(&counter, 1)
• if (i >= num_segments)

• return
• my_start = i * GRAIN_SIZE
• my_end = my_start + GRAIN_SIZE
• for (int j=my_start; j<my_end; j++)

• calculate(j, …, …, …)

Coarse-Grain Dynamic Work Distribution

8

• Parallel code, for each thread:
• int num_segments = SIZE / GRAIN_SIZE
• int counter = 0 // global variable
• void each_thread(int thread_id):

• while (true)
• int i = atomic_add(&counter, 1)
• if (i >= num_segments)

• return
• my_start = i * GRAIN_SIZE
• my_end = my_start + GRAIN_SIZE
• for (int j=my_start; j<my_end; j++)

• calculate(j, …, …, …)

• Dynamic load balancing with lower (adjustable) overhead

